computer
communications

ELSEVIE Computer Communications 24 (2001) 1525-1539

www.elsevier.com/locate/comcom

Balanced packet discard for improving TCP performance
in ATM networks

sk .
Reuven Cohen™, Yaniv Hamo

Computer Science Department, Technion — Israel Institute of Technology, 32000 Haifa, Israel

Received 14 March 2000; revised 10 January 2001; accepted 11 January 2001

Abstract

TCP suffers from low performance over asynchronous transfer mode (ATM) networks. This is mainly because during phases of conges-
tion, ATM drops cells without taking into account the effect this has on the upper layer protocols. Two main algorithms, called partial packet
discard (PPD) and early packet discard (EPD), were proposed in the past for improving TCP performance. However, they address one aspect
of the problem that has only small effect on the final performance. In this paper we propose an enhanced method for packet discard, called
balanced packet discard (BPD) that improves TCP performance dramatically on congested networks and guarantees fairness among multiple
connections. We will show that BPD increases TCP throughput by more than 25% compared to EPD/PPD. © 2001 Elsevier Science B.V. All

rights reserved.

Keywords: TCP performance; Early packet discard; ATM networks

1. Introduction

With the increased popularity of the Internet, TCP has
become the most commonly used transport protocol. It is
unlikely that this will change in the near future, because of
the enormous amount of software that was written for it. For
this reason, it is essential that asynchronous transfer mode
(ATM), which is likely to play a major role as a layer-2
protocol in the Internet, will provide good support for
TCP. However, the interface between TCP and ATM intro-
duces performance degradation, mainly due to the following
reasons:

e The timeouts problem. When a congested ATM switch
drops a single cell from a TCP segment, the entire
segment is corrupted. This results in an upper layer
packet loss rate that is much larger than the ATM cell
loss rate. Consequently TCP often loses several segments
from the same window, and can usually recover from that
only after a timeout that significantly reduces its perfor-
mance.

e The corrupted packets problem. The rest of the cells
belonging to a corrupted packet continue to travel over
the network, consuming bandwidth and buffer space

* Corresponding author.
E-mail address: rcohen@cs.technion.ac.il (R. Cohen).

unnecessarily, because they will be discarded at the desti-
nation anyway. Furthermore, the transmission of these
useless cells in times of congestion may cause other
packets to lose their cells. The loss of cells belonging
to other packets, due to resource consumption by cells
of a corrupted packet, reduces the network performance
significantly.

Two mechanisms have been proposed in the literature to
address the problem of corrupted packets: Partial Packet
Discard [1] (PPD) and Early Packet Discard [2] (EPD).
In PPD, when a cell has been discarded, the rest of the
cells belonging to the same packet are intentionally
discarded by the same ATM switch. Still, some bandwidth
and network resources are wasted while delivering the lead-
ing cells of the packet, which were stored in the buffer prior
to the loss. EPD is intended to save this bandwidth, by
identifying in advance every packet that is likely to encoun-
ter a loss, and discarding all the cells of such a packet. These
mechanisms do improve performance, but they suffer from
low fairness [3,4], and their contribution is negligible when
the network is not heavily congested. These mechanisms
improve the performance of every packet-based transport
protocol that runs over ATM, but fail to fulfill the specific
requirements of the most widely used protocol — TCP.

In this work we present a new algorithm called Balanced
Packet Discard (BPD), designed specifically to improve the

0140-3664/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S0140-3664(01)00315-2

1526 R. Cohen, Y. Hamo / Computer Communications 24 (2001) 1525-1539

performance of TCP over ATM by minimizing the timeouts
problem. BPD takes into account TCP considerations when
deciding whether or not to discard a packet. It therefore
provides a much better support for TCP connections than
EPD or PPD. In some cases the gain in throughput is 100%
higher than when EPD and PPD are employed. We study the
behavior of TCP over ATM networks, in two representative
topologies. The study is conducted using the NS simulator
from LBL [5] with ATM extensions.

The rest of this paper is organized as follows. Section 2
discusses the timeouts problem, introduces relevant aspects
of TCP and provides a detailed analysis of the behavior of
fast-retransmit in the presence of multiple segment losses.
Section 3 discusses the corrupted packets problem, presents
the existing schemes, PPD and EPD. It introduces the
simulation environment, describes the tested topologies
and provides simulation results for EPD and PPD. Section
4 presents the new algorithm, BPD, in details. Section 5
presents simulation results for BPD. Section 6 gives a
brief overview of the new TCP-SACK extension and
discusses the effects of combining BPD with TCP-SACK,
along with simulation results. Finally, Section 7 concludes
the paper.

2. The timeouts problem
2.1. TCP background

Current TCP implementations [6—8] contain a number of
algorithms aimed at controlling network congestion, and
recovering from segment losses. These algorithms include
slow-start, congestion-avoidance, fast-retransmit and fast-
recovery. Together they define the congestion window,
cwnd, as an estimation of the maximum number of segments
that can be sent back-to-back without overloading the
network. The TCP sender never sends more than the
minimum of cwnd and the receiver advertised window.

The TCP sender operates in one of two modes: slow-start
or congestion-avoidance. The main difference between
these two modes is the rate of increasing cwnd. The sender
determines its mode based on the value of cwnd and a
threshold value called ssthresh. As long as cwnd is smaller
than ssthresh, the sender operates in slow-start mode. When
ssthresh is reached, the sender switches to congestion-
avoidance. During slow-start, the sender starts with a
congestion window of one segment, and increments it by
one segment with every acknowledgment received. Assum-
ing an ack is sent for every received data segment, this
results in doubling cwnd every round trip time (RTT). In
contrast, in congestion-avoidance mode, the sender
increases the value of cwnd by 1/cwnd for every acknowl-
edgment received. This is approximately equivalent to a
linear increase of one segment every RTT.

When a segment is lost, subsequent segments are
received out of order. An out of order segment triggers an

acknowledgment carrying the same sequence number as a
previous acknowledgment. Such an ack is therefore referred
to as a duplicate ack. The sender attributes the first and
second duplicate acks to a possible out of order routing.
However, when the third duplicate ack is received, the
sender assumes a segment has been lost. It then invokes
the fast-retransmit procedure which sets ssthresh to
cwnd/2, shrinks cwnd to ssthresh, and immediately retrans-
mits the missing segment. After transmitting the missing
segment, fast-recovery takes over. The value of cwnd is
set to ssthresh + 3, and is increased by 1 segment for each
additional duplicate ack received. An ack that acknowl-
edges the retransmitted segment sets cwnd to ssthresh,
thus putting the sender in congestion avoidance mode, and
defining the end of fast-recovery. Fig. 1 illustrates the fast-
retransmit and fast recovery mechanisms.

The scenario considered in the previous paragraph is the
fastest way to recover from a segment loss. However, fast-
retransmit cannot be invoked when cwnd is smaller than 5
segments, or when the TCP connection suffers from a loss of
several segments during the same sending window. In these
cases there are not enough segments in the pipe to trigger
three duplicate acks for every lost segment. Fig. 2 illustrates
one possible scenario, in which two segments are lost from a
window of 8 segments. There are enough duplicate acks to
trigger fast-retransmit for the first segment. However,
because of the window being small, the sender cannot
send enough new segments in order to trigger 3 duplicate
acks for the second lost segment. This prevents TCP from
recovering using fast-retransmit.

In order to detect a loss even in this case, the sender
maintains a retransmission timer. This timer is restarted
when TCP sends a data segment. When the timer expires,

Receiver

Segment —
ACK <---

ack(1)
ack(2)

ack(2)
ack(2)

) ack(2)
3 duplicate ack(2)
ACKs .

1
FastRetransmit 2 ; 2

7

tage

ack(7)
ack(8)

Fast Recovery si

End-FastRecovery

Fig. 1. An example of fast-retransmit.

R. Cohen, Y. Hamo / Computer Communications 24 (2001) 1525-1539

Sender Receiver
0
Segment —
1
ACK it
2
Cund=8 3 ack(1)
4
5 ack(1)
6
7 ack(1)
ack(1)
R ack(1)
ack(1)
A
1
3 duplicate ! ack(1)
AC] v e
FastRetransmit 1 y 1

¥
$ ack(3)
S ack(3)
g
&
ack(3)
End-FastRecovery s - .

Only two duplicate ACKs, 4
not enough to trigger Fast- | L’
Retransmit. A timeout will 1
take place. ;

Fig. 2. Fast-retransmit cannot be invoked for the loss of the second segment.

the oldest segment for which an ack has not been received is
retransmitted. In addition the sender shrinks cwnd to 1,
enters slow-start and sets ssthersh to half the value cwnd
had when the loss was detected. Timeouts have a significant
negative impact on the throughput, both because the sender
waits idle for the timer to expire, and because it operates
with a non-optimal window for a few round trips after the
timeout takes place.

The retransmission timeout value, called RTO, is
computed dynamically, based on round trip measurements
the sender performs throughout its operation. Due to conser-
vative estimation of the round trip time, and the usage of a
coarse granularity timer, typically 500 ms, TCP often ends
up with timeout values that are much longer than the actual
RTT. Fig. 3 shows the average value of RTO versus the
actual RTT for several hundreds TCP connections we

RTO (sec)
22
21

2
19
18

1.7

16 /

1.5 -
10 40 70 100 130 160 190 220 250 260

LI B S

RIT (us)

Fig. 3. RTO as a function of the actual RTT.

1527

have studied by simulation. Since typical transfer times
range from tens of milliseconds to several seconds, one
timeout is sufficient to significantly degrade the perfor-
mance. Later we will see that when more than three
segments are lost from the same window, fast-retransmit
cannot be triggered for the fourth loss, and a timeout takes
place. With small window sizes, even less than three
segment losses can force timeout. Therefore, TCP perfor-
mance can be significantly improved by minimizing the
probability for multiple losses from the same window.

2.2. Analysis of fast-retransmit

In the following we analyze the cases where TCP needs
timeouts in order to recover from losses. Throughout the
discussion, we assume that the sender uses the maximum
window size allowed by cwnd. Consider the case of N lost
segments, from a window of size W. Following the assump-
tion that TCP works at maximum speed, W is also the
maximum window size. Let the segments in the window
be numbered O, 1,...,(W — 1). Let the group of /lost segments
be G, = {ny, n,...,ny}, where |G;| = N and ny, n,, ..., ny
are the indices of the lost segments.

Segments 0,1,...,(n; — 1) arrive at the receiver, and
generate n; normal (i.e. not duplicate) acks. These normal
acks advance the window to [n,...,n; + W — 1]. The last
segment sent is n; + W — 1. Now W — N duplicate acks for
segment n; arrive. Because three duplicate acks are needed
to fast-retransmit segment n;, we require that

W-N=3 ey

will hold in order to avoid a timeout.

After the sender receives three duplicate acks on ny, it
retransmits the lost segment, shrinks the congestion window
size to W/2 + 3, and enters the fast-recovery phase. During
this phase, W — N — 3 duplicate acks on n, arrive. Each one
increases cwnd by one segment. At this stage, new segments
may be transmitted because the increased value of cwnd
allows it. We now compute the number of new segments
that can be transmitted during this phase. Upon entering
fast-recovery, the window contains segments [ny,...,n; +
W/2 + 2], and the last sent segment is n; + W — 1. There-
fore n+WR2+2+W-N-3—-(n+W-—-1)=W/2
—N new segments will be sent. After the receipt of a new
ack, that is ack(n,), fast-recovery ends. The value of cwnd is
set to W/2, and the window embraces segments [n,, ..., n, +
W/2 — 1]. New segments can theoritically be transmitted
now. The last segment sent so farisn; + W — 1+ W/2 —
N. New segments will be transmitted after exiting fast-
recovery only if n, + W2 —1>n, + W -1+ W/2 — N.
That is, only if n, — ny > W — N, which is impossible for
N > 2 (ny — ny cannot be W — N + 1 because when N > 2
we also have n; inside the window and after n,). Fast-
retransmit is therefore ended with W/2 — N new sent
segments. These new segments, and only them, will trigger

1528 R. Cohen, Y. Hamo / Computer Communications 24 (2001) 1525-1539

duplicate acks for n,. Therefore,

w_ N=3 2)
2

must hold in order to fast-retransmit segment n,. This

implies that if only two segments are lost within a window,

the window must be greater than or equal to 10 in order to

avoid any timeout.

So far, the position of the lost segments within the
window does not play any role in determining whether or
not a fast-retransmit is invoked. After three duplicate acks
on n,, the lost segment is retransmitted, the congestion
window size shrinks to W/4 + 3, and the fast-recovery
phase is entered. During this phase, W/2 — N — 3 duplicate
acks on n, arrive. Each one of them increases cwnd by one
segment. We next find the number of new segments trans-
mitted during this phase. Upon entering fast-recovery, the
window embraces segments [n,,...,n, + W/4 + 2], and the
last segment sent is 3W/2 +n; — N — 1. Hence n, +
Wi4d+2+WR2-N—-3-QC8WR2+n —N—-1)=
n, — ny; — 3W/4 new segments are sent. After the receipt of
a new ack, that is, ack(n;), fast-recovery is ended. The value
of cwnd is set to W/4 and the window contains segments
[n3,...,n3 + W/4 — 1]. The last segment sent so far is
3W/4 + ny — N — 1. New segments will be transmitted
after exiting fast-recovery only if ny + W/4 — 1 > 3W/4 +
n, — N — 1. That is, only if ny — n, > W/2 — N, which is
impossible under the constraint n, — ny — 3W/4 > 0 (posi-
tive number of sent segments). The fast-retransmit state is
therefore ended with n, — n; — 3W/4 new sent segments.
These new segments, and only them, trigger duplicate acks
for ns;. The conclusion is that
n, —n = W +3 3)

4

must hold in order to fast-retransmit segment n;. This
implies that the first loss and the second loss must be spaced
far enough from each other, in order for the third lost
segment to be fast-retransmitted. Fig. 4 demonstrates the
above equations by an example of three losses from a
window of 24 segments. Similar analysis for the case of
four losses yields the condition

11w
mom=—— —N+3 4)

which can never hold with the previous constraints (n, —
n; = 3W/4 + 3). This implies that if TCP loses four
segments from the same window, a timeout is inevitable,
regardless of the position of the lost segments within the
window, or the size of the window.

To conclude, TCP can recover using fast-retransmit with
high probability only if two segments or less are lost within
the same window. With small window sizes, even such a
loss might result in a timeout. However, for long transfer
and reasonable loss rates, cwnd is most of the time not so
small. Thus, keeping the number of losses from the same

window below three is sufficient in order to minimize the
probability for a timeout, with the understanding that three
losses are also acceptable, if the first two are spaced far
enough. A conservative approach would be to minimize
the probability that two segments are lost from a consecu-
tive group of 3W/4 + 3 segments. In this case TCP loses one
segment every 3W/4 + 3 segments on the average, which is
a loss of at most two segments per window, a loss TCP can
handle without significant performance degradation. This
value also ensures that if something happens and two
close segments are lost, no timeout will occur, because the
previous two segments are spaced for enough. Minimizing
the probability for two losses within a consecutive group of
W/2 can also ensure no timeouts, if it is strictly kept. Our
proposed algorithm, BPD, provides a way to space the
losses far enough from each other.

3. The corrupted packets problem

Since TCP is a packet based protocol while ATM is a cell
based network, TCP/IP segments must be fragmented into
several ATM cells. For example, a typical TCP segment is
of 536 bytes. With the additional TCP/IP headers, we get an
IP datagram of 576 bytes. This datagram is fragmented by
ATM to 12 AALS ATM cells. A special bit in the ATM
header of an AALS cell, called ATM-layer-user-to-user
(AUU), is set to 1 for the last cell of the packet. Hence
the ATM layer can distinguish one packet from another.

At times of congestion, the buffers at the ATM switch are
overflown. When the buffer is full, the switch must drop any
incoming cell. Because the switch may drop only part of the
cells of a packet, we might see cells of corrupted packets
traveling across the network. When such cells are received
by the destination host, they are discarded by the segmenta-
tion and reassembly (SAR) unit at the end of the unsuccess-
ful reassembly process. Therefore, the network resources
consumed by these cells are wasted, and other packets
that could have used these resources might also be dropped
because of congestion.

An improved cell discarding scheme, called PPD was
proposed in [1]. According to this scheme, when a switch
drops one cell, it continues to drop all subsequent cells
belonging to the same packet, except the last one with the
AUU bit set to 1. PPD requires the switch to keep state
information for each crossing VC. This information
indicates which VC uses AALS, and whether to drop or
forward the next cell of such a VC. This scheme practically
chops the tail of a damaged packet, and in this way saves the
network resources otherwise needed for transferring this
tail. However, the head of the corrupted packet is still
transmitted.

EPD [2], aims at saving the network resources consumed
by the head cells of corrupted packets. EPD introduces a
threshold on the buffer of the ATM switch, called EPD-
threshold. The switch is said to be in an overflow danger

R. Cohen, Y. Hamo / Computer Communications 24 (2001) 1525-1539 1529

Sender Receiver
Segment ————= X 2
ACK =<---- 3
4|
;
}0
it
13
14
}(55 W-N=21
17 dupACKs
18 for segment 1
19
2
X
X%
24
Cwnd = 15 FastR !
Cwnd =25 T 265
&
Woalg 1 2
e
New segments : 32
'
H
'
Cwnd = 33 Y
Cwnd = 12
Cwnd =9
Cwnd = 13 3w v ack(23)
g mp- =3 35
'
s | R
G =
‘wnd = 15 ¥ | dupACKs
ack(23) '# for segment 23
Cwnd=6 End-FastRecovery
Cwnd =6 FastRetransmit 23
ack(37)
Cwnd =3 End-FastRecovery

Fig. 4. Fast-retransmit in the presence of multiple losses.

whenever the threshold is exceeded. EPD-threshold can be
defined by an absolute number of cells or by percentage of
the total buffer capacity. In [9] it is suggested to define the
threshold by examining the slope of the buffer occupancy
curve. When the buffer occupancy reaches the EPD-thresh-
old, the switch discards the first cell and all subsequent cells
of every received packet. In this way the switch imitates a
packet-based switch, which drops full packets. Since EPD is

usually used in conjunction with PPD, for the rest of this
paper the term EPD means EPD with PPD. In terms of
implementation, EPD only drops the first cell of the packet,
and then PPD drops all subsequent cells, except the last one.
EPD requires the switch to hold an EPD-threshold for every
buffer, and to efficiently monitor the occupied buffer size.
First, we examine the performance and fairness of TCP
over ATM assuming the two existing discard algorithms

1530 R. Cohen, Y. Hamo / Computer Communications 24 (2001) 1525-1539

Senders

75 Mbit/s

Receiver

Senders

A

Senders

30 Mbit/s
0.3ms
75 Mbit/s
0.3ms

Receiver

Senders O B

Fig. 5. The considered network topologies. topology A (left) and topology B (right).

PPD and EPD. We show that these algorithms eliminate the
problem of corrupted packets, but fail to prevent timeouts
and thus fail to significantly improve the performance of
TCP.

All simulations were performed using a modified version
of NS 1.4 from LBL [5]. The TCP flavor used is Reno. TCP
maximum segment size is set to 536 Bytes, which yields IP
datagram of 576 Bytes (20 Bytes of TCP header + 20 Bytes
of IP header). Maximum window size is 64 KB. We have
considered two network topologies for our simulations. In
both topologies there is one bottleneck switch, colored gray.
This congested switch is assumed to have a buffer of 1200
cells, and it implements some of the discussed packet
discard mechanisms. The two simulated network top-
ologies, called topology A and topology B, are shown in
Fig. 5. Topology A presents 10 incoming links, each of
75 Mbit/s with a propagation delay of 0.3 ms, and one
outgoing link of 75 Mbit/s with the same delay. This top-
ology is practically the same as considered in [2]. The gray
switch in this example is much more congested than the one
in topology B. However, it is enough for this system to have
one active TCP connection, namely a connection that does
not wait for a timeout, in order to reach maximum through-
put. This means that we can lose many cells, have 90% of
the connections inactive, and still achieve maximum
throughput. Throughput degradation in this case is caused
mainly by cells of corrupted packets, that are nevertheless
still transmitted, rather than from TCP idle times. Hence, in
this case, low throughput can be avoided by means of EPD.

In topology B the congested switch has five incoming
links, each of 30 Mbit/s with a propagation delay of
0.3 ms, and one outgoing link of 75 Mbit/s with the same
delay. It is clear that the gray switch might be congested,
because it might receive cells at a rate of 150 Mbit/s, while
it can transmit cells at a rate of only 75 Mbit/s. Assuming
that a TCP connection runs on each of the five VCs, it is
enough that three connections wait for a timeout to degrade
the total throughput. In such case only two connections

remain active, and they can generate together only
60 Mbit/s.

We start with topology A. Similarly to [2], we define the
effective throughput or goodput as the throughput that is
“good” in terms of the application layer. That is, the
effective throughput does not include the various headers
(in our case, ATM, TCP and IP headers) nor the cells that
are part of retransmitted or incomplete packets. Fig. 6 plots
the effective throughput, or goodput, as a function of the
EPD-threshold. The threshold is given as a percentage of the
total buffer size. For instance, 0.4 means that the switch
invokes EPD when the buffer is more than 40% full.

The “Plain ATM” curve represents the case where no
special cell discard policy is enforceable. Hence, for this
curve and for the PPD curve, the threshold plays no role.
We see that PPD has better performance than Plain ATM,
and that EPD only slightly improves this performance, with
the increase of the EPD-threshold (recall that by EPD we
refer to the implementation of EPD and PPD). Increasing

! T T T T T T T v T
: : : D PR QU S S WY
00 i b B R ST B s n G s B s B B
’ oo
08fF : P : -
07k U
goﬁ_. ISR
£osl B .
§ :
Soal RS
03f i i
0.2+ i
01k O PO RCPOY: USRI SURSRUS SUTUPROE SUPRRY - Fan
: a- PPD
0 ; H i i i i O =8 -
0 0.1 02 03 04 05 06 07 08 09 1
EPD Threshold

Fig. 6. Plain ATM, PPD and EPD in topology A.

R. Cohen, Y. Hamo / Computer Communications 24 (2001) 1525-1539 1531

100

90

80

70

60

50

40

30 1

20 1

Percentage of time the connection is active

10 A

EPD

PPD Plain ATM

Cell discarding mechanism

Fig. 7. Proportion of the time the connections are active in topology A.

the EPD-threshold above 70% in our case has negative
effect because the switch has not enough excess space for
storing the body of every packet for which the first cell is not
discarded.

In overall, this configuration reaches fairly high through-
out. The results are consistent with those presented in [2].
The reason for the high throughput is that one active
connection is enough to keep the congested link highly
utilized. In other words, if many TCP connections are not
active because their senders are waiting for their timeout to
expire, the link is still being utilized by the other connec-
tions, and the total throughput is not affected. Note,
however, that for smaller buffer sizes [2] shows that PPD
and EPD significantly improve the effective throughput.

For each discarding scheme, Fig. 7 depicts the total
percent of time the TCP connections are active, i.e. trans-
mitting data and not waiting for a timeout. Because of the
early packet discard performed by EPD, it sometimes drops
a packet when PPD would not have, thus causing more
timeouts at the sender. This is the reason why under PPD
the connections are more active than under EPD. However,
in this topology, there is almost no correlation between the
percentage of time the connections are active, and the
overall throughput, and indeed, EPD reaches higher
throughput than PPD even though its TCP connections are
less active.

TCP timeouts have a minor influence on the overall
throughput of the system in topology A because there are
many competitors over the congested link. Hence, if some
connections are idle, awaiting timeouts, other connections

use their “bandwidth share”. In order to examine how the
different discard mechanisms really perform, we must test
them in scenarios where the overall throughput is affected
by timeouts. Such cases are characterized by an outgoing
link whose bandwidth can be fully utilized only if most of
the connections are active, as in topology B. In this topology
it is enough to have three idle connections in order to reduce
the maximum possible throughput to 60/75 = 0.8. There-
fore, the conventional EPD/PPD schemes cannot signifi-
cantly improve the performance. Fig. 8 depicts the
measured effective throughput as a function of the EPD-
threshold for topology B. The EPD-threshold is given
again as percentage of the total buffer size. The curves are

1 T T T D T T T
osf 4
08k OSSN S ; B o d
| : : L _a
07k ot L . : -
: Py '& 1
RSt St SETEY S-SR S 8 -0
Zosl aT . .
6 : :
H :
£osl : J
§ 5
| ¢ 9 $ ¢
£oaf : 4
oaf 4
o2k 4
0.1} ~6- Phin
: -&. PPD
o ; ; ; H ; i ; i LA EPD
[0.1 0.2 03 04 0.5 06 0.7 08 09 1
EPD Thveshold

Fig. 8. Plain ATM, PPD and EPD in topology B.

1532 R. Cohen, Y. Hamo / Computer Communications 24 (2001) 1525-1539

100

90

80

70

60

50

Percentage of time the connection is active

EPD

PPD Plain ATM

Cell discarding mechanism

Fig. 9. Proportion of the time of connections are active in topology B.

similar to those presented for topology A, but they are much
lower. EPD is again the better scheme, but here it achieves a
maximum throughput of only 0.75. Fig. 9 presents the
percentage of the time during which the connections are
active for each discarding scheme. We see that with EPD
the connections are idle for 49% of time.

TCP timeouts are the main cause for low throughput in
configurations like topology B. We now present a discard
scheme that significantly decreases the number of TCP
timeouts.

4. Balanced packet discard

As explained in Section 2 and shown in the simulations
results for PPD and EPD, TCP timeouts cause significant
throughput degradation. When a segment is dropped from a
TCP connection, the sender does not get an ack for it, so it
cannot advance its sending window. After sending all the
data in the sending window, and without being able to
advance the window, the sender remains idle until the lost
segment timer expires. Then, the sender retransmits the first
segment in the window for which an ack was not received,
and continues with a window of one segment in slow-start
mode. The sender may recover from a segment loss much
faster using the fast-retransmit mechanism, where the third
duplicate ack triggers retransmission. However, as
explained in Section 2.2, when the sender window is smaller
than 5 segments or when multiple segments from the same
window are lost, there are often not enough duplicate acks to
trigger fast-retransmit.

In order to minimize the number of timeouts, BPD aims at
preventing multiple segment losses from the same window.
In this way, it increases the probability of loss recovery
using fast-retransmit. BPD can be viewed as an extension
of EPD, the EPD-threshold is called Lower-Threshold (LT)
in BPD terms, and an additional, higher, threshold is added,
called Upper-Threshold (UT). When a switch drops a cell
from VC i, because the buffer occupancy exceeds the lower-
threshold or the buffer overflows, it drops all subsequent
cells of the same packet (PPD), and marks this VC as
“damaged”. A damaged VC is a VC that has “recently”
lost a packet. This VC is granted a higher priority over the
non-damaged VCs in the sense that it is subject to the upper-
threshold for some recovery period. The flow chart of the
algorithm is presented in Fig. 10. To see how this scheme
significantly reduces the probability of multiple segment
losses from the same window, consider a case of an EPD
switch with a 50 KB buffer and an EPD-threshold of 50%.
This buffer has an “excess buffer capacity” [2] of 25 KB.
This means that as long as the switch is not overloaded,
these 25 KB are not in use. However, when the buffer is
congested, i.e. contains more than 25 KB awaiting for trans-
mission, and some VC has two incoming packets, EPD
would drop both packets. In contrast, with BPD the second
packet of the VC has high probability not to be discarded,
because it will be subject to UT which is higher than 50%.
The immediate effect of BPD is that a damaged connection
is given the chance to recover from the first loss, without
immediate additional packet losses. The recovery period is
the period of time during which damaged VCs enjoy a
higher threshold than the non-damaged VCs. In our study,

R. Cohen, Y. Hamo / Computer Communications 24 (2001) 1525-1539 1533

Buffer

No Is the Buffer

Gaplil > 0
?

full

Yes

No Applying
EPD

Gapli] — GAP

Gaplil=— Gaplil-1

Fig. 10. The BPD algorithm. GAP is the desired recovery period in packet units. Gap[i] holds the number of packets left until the recovery period is over.

we represent this period in packet units. A recovery period
of 5 packets means that after a VC loses a packet, it is
subject to UT for the subsequent 5 packets of this VC.
From implementation point of view, the switch initializes
a counter per VC (called Gap[i] for VC i) at the beginning of
the recovery period, and decrements it by one for every end
of packet cell. When this counter reaches zero, the VC is
considered regular again.

Let B be the capacity in cells of the space between LT and
UT (see Fig. 11). This space is mainly available for the
damaged VCs, for recovery purpose.

Let N be the number of VCs, G be the recovery period (in
packets), and M be the number of cells in each packet. In the
worst case, all the VCs may lose a packet at the same time,
so all of them may enter the recovery period and need to be

BPD Buffer
Excess Buffer Space

Upper
Ereshold
Cells

J Lower
Threshold

Fig. 11. A diagram of the space distribution in a buffer of a BPD switch.

protected by BPD from additional losses. In this case,
NGM < B must hold. This imposes an upper bound on the
length of the recovery period, during which a damaged VC
is protected. Statistical considerations can be taken into
account in order to increase the recovery period beyond
B/NM. However, there is no practical need to make it longer
than the sending window. In reality, even a shorter recovery
period significantly decreases the probability for a timeout.

5. Simulation results for BPD

Fig. 12 plots the effective throughput as a function of the

] 0.1 0.2 03 04 0.5 0.6 0.7 08
Lower-Threshold (UT=00%)

Fig. 12. BPD in topology B.

1534 R. Cohen, Y. Hamo / Computer Communications 24 (2001) 1525-1539

-
8

e active

of time the

8 & 3 8 3 3 8 8

-
3

EPD PPD Plain ATM

Cell diacarding mechaniem

Fig. 13. Proportion of the time the connections are active in topology B with BPD (Gap = 25).

LT as achieved by BPD in topology B. A smaller LT gives a
larger excess buffer capacity, and the ability to lengthen the
recovery period. There are six graphs, for several lengths of
the recovery period Gap: 5, 10, 15, 20, 25 and 35 packets.
Buffer size is 1200 cells (100 packets).

There is a general increase in performance with the
increase of LT. This is because a larger LT provides more
usable buffer space. However, if we take a look at some of
the larger Gap values, 35 for instance, we see that from a
certain point the performance degrades as the LT increase.
This is because a larger LT provide less excess buffer capa-
city. The small excess buffer capacity is not enough to hold
35 segments of each VC that has lost one packet, so the
buffer fills up until UT is reached, and the switch starts
discarding packets indiscriminately.

In general, BPD reaches high throughput in this config-
uration, and is significantly better than EPD. EPD reaches a
maximum throughput of 0.741, while BPD reached 0.932.
This is an improvement of more than 25%. The reason for
this improvement can be easily seen from Fig. 13: with BPD
the connections are active 92% of the time, while with EPD
they are active only 49% of the time. This indicates that
BPD eliminates most of the timeouts.

Recall that in topology A timeouts almost never affect the
throughput. Hence, for this topology BPD introduces only a
minor improvement. Fig. 14 plots the effective throughput
of the network in topology A and BPD is used, as a function
of LT. Although the results are very good, there is no signif-
icant improvement over EPD.

In topology B when BPD is being applied and the system
stablizes, each TCP connection loses one segment every
Gap segments. Therefore, Gap practically determines the
maximum number of segments lost from the same window.
In a first glance it seems impossible to have such a guarantee
without an additional buffer. However, TCP is an adaptive
protocol that “senses” the network and adjusts its sending
rate accordingly. When TCP loses a segment, it transmits
the next segments at a lower rate. BPD will help Gap
segments to be queued, allowing the congestion window
of TCP to be opened, and then if the buffer is full, another

segment is lost, causing cwnd to decrease and so on. After
the system stablizes, TCP loses segments periodically, but
almost never require a timeout in order to recover. Every
loss is recovered using fast-retransmit and the rate of the
connection is reduced by half.

Fig. 15 demonstrates the above discussion. It plots cwnd
of a TCP connection over an ATM network with BPD, as a
function of the time. As can be seen, at the beginning the
connection has no knowledge of the network capacity, and
its congestion window expands exponentially without
proportion to the network capacity. This results in multiple
losses that in most of the cases, cause a timeout. In the
example shown in Fig. 15, a timeout does not take place,
but nevertheless segments are lost, and fast-retransmit is
triggered. After it recovers, TCP sends new segments at a
lower rate, and after the stabilization point it loses one
segment every 25-26 segments which is the Gap that was
used (this can be clearly seen in higher resolution, in
Fig. 16).

After a timeout cwnd decreases to one segment, SO we can
determine the number of timeouts by counting the points at
the bottom of the graph. In the case of BPD, we conclude
that no timeout has occurred, because cwnd never reaches 1.

P AU USSR PSRN USSR SN SR S ; 4
o8l J
0.7 -
Zosl 4
&
Eosl]
H >
£ 041 -
b d
03F -
02f U S .]
P10
: : : : -~ Gap20 ||
oAb i B : b | S
: : : : —*— Gap30 ||
0 i HE i ; ; i =1
0 0.1 0.2 03 04 7 08 09 1

0.5 0.6
Lower-Threshold (UT=90%)

Fig. 14. BPD in topology A.

R. Cohen, Y. Hamo / Computer Communications 24 (2001) 1525-1539 1535

40 T T T T

Congestion Window
n n
o W
T T

oy
[$,]
T

asko] e R S S :

0k - « k

time {seconds)

Fig. 15. Congestion Window with BPD over a long period of time. LT = 40%, UT = 90%, Gap = 25.

With EPD (Fig. 17) we count 18 times where cwnd reaches
1, meaning 18 timeouts during a period of 10 s. Although
cwnd reaches lower peeks when applying BPD than when
applying EPD, it maintains cwnd in a reasonable size for a
lengthy period of time. With EPD cwnd reaches higher
peeks, but suffers from timeouts, so the average cwnd size
is significantly lower than with BPD.

A key parameter of BPD is the excess buffer space,
namely the buffer space above LT. This space is normally
not used when BPD is inactive. When a new cell arrives, and
the buffer is above LT, this cell is accepted only if it is a part
of a packet whose leading cells have already been accepted.
Hence, each connection may usually have no more than one

0 ' 1 1 1 a L
6.27 5.28 5.28 5.3 6.31 5.32 533 5.34 5.35 5.36 8.37
time (seconds)

Fig. 16. Congestion Window with BPD over a short period of time.
LT =40%, UT = 90%, Gap = 25.

packet in the excess buffer space. When using LT of 50%,
like in Ref. [2], there is still much space left. BPD makes use
of that space to hold packets of VCs in their recovery period.
Fig. 18 depicts the amount of used buffer space during the
simulation time with an EPD-threshold of 50% in the switch
that implements EPD, and an LT of 50% in the switch that
implements BPD. We can see that EPD keeps the buffer
constantly below the threshold, with only minor breaks to
the excess buffer space. These breaks are tails of packets
whose leading cells were accepted before the buffer was
congested. BPD, on the other hand, uses this space more
often and more intensively. This is because VCs in their
recovery period consume buffer space of several packets.

6. BPD in the presence of TCP-SACK
6.1. TCP-SACK overview

TCP-SACK [10] is an extension to TCP that makes it
behave more like a Selective Repeat protocol, rather than
a Go-Back-N protocol. TCP-SACK can recover from multi-
ple segment losses from the same window without a time-
out, using a selective retransmission of the lost segments
during the fast-recovery phase. The main idea behind
TCP-SACK is that the receiver informs the sender of non-
contiguous blocks of data that have been received and
queued [10]. TCP-SACK makes use of the options field in
the TCP header of the returning ack segments, and stores
there pairs of sequence numbers, each represent a single
non-contiguous block. The TCP header can hold up to 4
blocks in such a representation. If the Time-Stamp option

1536 R. Cohen, Y. Hamo / Computer Communications 24 (2001) 1525-1539

5
time (seconds)
Fig. 17. Congestion Window with EPD. EPD-threshold = 90%.

is used (for the PAWS [11] algorithm, to prevent wrapping
of sequence numbers in high transfer rate networks), SACK
has room for only 3 blocks.

The SACK receiver must indicate in every ack the block
to which the segment that has triggered this ack belongs.
Hence, it would be enough to report just one block in the
SACK option in order to allow the sender to build an exact
map of the receiver’s queue. Still, three blocks are used in
order to provide some redundancy in the case of ack loss.
The SACK option does not require the receiver to hold the
segments reported in a SACK option but not yet acknowl-
edged. This implies that the sender must not discard data
from its buffer until it was acked.

The RFC of TCP-SACK [10] does not explicitly specify
the SACK sender behavior. In [12] the authors propose the

following scheme for the sender. The sender keeps an addi-
tional bit for every segment in its queue, called SACK-bit.
When the server receives an ack with SACK info, it turns
that bit on for every segment within the boundaries of the
reported blocks. The trigger for retransmission remains 3
duplicate acks. Fast-recovery phase is exited when an ack
for all the data that was outstanding upon initiating fast-
retransmit is received, as proposed for TCP-Reno in Ref.
[13]. This is in contrast to what TCP-Reno does: it exits fast-
recovery immediately after an ack for the retransmitted
segment is received. Upon entering fast-retransmit, the
sender initializes a variable called pipe to the value of
the current window size minus 3. This variable reflects the
number of outstanding segments in the pipe between the
sender and the receiver. In TCP-Reno, cwnd was used for
this purpose. However, because TCP-SACK may retransmit
several old segments during fast-recovery, rather than trans-
mitting only new segments, cwnd can no longer track the
number of outstanding segments. Because it no longer aims
at estimating the number of outstanding segments, but only
serves for congestion control, upon entering fast-retransmit
cwnd is shrunk to cwnd/2 and not to cwnd/2 + 3 as in TCP-
Reno. The congestion window grows or shrinks exactly as
with TCP-Reno. However, the requirements for sending a
segment are modified. With TCP-Reno the sender could
retransmit a segment if highest_ask + cwnd > last_sent.
In such a case a segment is transmitted from the right
edge of the window. With SACK, the sender can transmit
a segment if pipe < cwnd, and then the transmitted segment
is chosen from the SACK info. If no such segment exists, i.e.
the SACK bit is turned on for all segments, the sender may
send a new segment. The pipe variable only determines

eyl AL ol i il

Fig. 18. Occupied buffer space of EPD (left) and BPD (right). EPD-threshold is 50% when EPD is used, and LT is 50% when BPD is used.

R. Cohen, Y. Hamo / Computer Communications 24 (2001) 1525-1539 1537

TCP-Reno

ack(1)

ack(1)
ack(1)
ack(1)

ack(1)

fast-retransmit 1

ack(2)

ack(2)

End fast-retransmit

§ timeout §

TCP-SACK

fast-retransmit 1

cwnd=4 pipe=4 -> 3
cwnd=4 pipe=3 -> 4

cwnd=>5 pipe=4 -> 2

cwnd=5 pipe=3 -> 4

End fast-retransmit

Fig. 19. TCP-SACK can recover from multiple losses without a timeout.

when the sender may send data, rather than when and what
to send as cwnd does in traditional TCP implementations.

The value of pipe is incremented by one when the sender
either sends a new segment or retransmits an old one. It is
decremented when the sender receives a dup ack with a
SACK option reporting that a new segment has been
received and queued by the receiver. The SACK sender
has a special treatment for a partial ack, namely an ack
received during fast-recovery that advances the Acknowl-
edgement Number field, but does not take the sender out of
fast-recovery. For such an ack, the sender decrements pipe
by two segments, rather than only one, for the following
reason: when fast-retransmit is initiated, pipe is initialized
to cwnd — 3, following the assumption that only one
segment was lost. However, if several segments have been
lost, pipe holds a larger value than the actual number of
segments in the pipe. Each partial ack represents a segment
that was lost before fast-retransmit began, which the initial
value of pipe did not take into account, as well as segment
that has just left the pipe. Fig. 19 demonstrates how TCP-
SACK can recover from multiple losses without a timeout,
while under the same conditions, TCP-Reno requires a time-
out in order to recover.

6.2. BPD in the presence of TCP-SACK

TCP-SACK dramatically improves the performance of
TCP by addressing the timeouts problem, as does BPD. In
a typical scenario that was examined in Ref. [14], TCP-

SACK reduced the number of timeouts from 50 to 2.
Hence, BPD cannot significantly improve the throughout
of TCP if SACK is used. However, BPD can still contribute
to the overall performance of the network if some of the
connections use TCP-Reno while other use TCP-SACK.
Simulations in Ref. [14] show that when two TCP-Reno
connections share the same link, they receive an even
share of the bandwidth more or less. However, when one
TCP-SACK connection and one TCP-Reno connection
share the same link, TCP-SACK gets almost 100% more
bandwidth than Reno. This results in low fairness among
the connections. If BPD is employed in the ATM layer, then
the bandwidth is shared among all the connections, SACK
and non-SACK, more fairly as shown in the following.

In order to examine the effect that BPD has when SACK
is being used, we consider a simple model, consisting of two
connections, connection 1 and connection 2, that share the
same buffer at the congested switch, and the same outgoing
link. Both incoming links to the congested (gray) switch are
of 45 Mbit/s, and the outgoing link is of 75 Mbit/s, introdu-
cing possible congestion. Connection 1 and connection 2
will be either Reno or SACK. The gray switch has a buffer
of 400 cells, and is capable of performing BPD. The
simulated network topology is shown in Fig. 21.

We first examine the results with BPD turned off. We
check the throughput when both connections are Reno,
and when connection 1 is SACK and connection 2 is
Reno. The fairness index is computed as suggested in Ref.
[15]: [Zx,-]zanx,z, where n is the number of connections,

1538

R. Cohen, Y. Hamo / Computer Communications 24 (2001) 1525-1539

Connection TCP | Number of | Throughput | Fairness Overall
Version | Timeouts throughput

Connection 1 | Reno 24 0.454 0.995 0.584
(a) || Connection 2 | Reno 22 0.517

Connection 1 | SACK 3 0.910 0.702 0.662

Connection 2 | Reno 34 0.193

Connection 1 | Reno 0 0.8122 0.999 0.98
(b) || Connection 2 | Reno 0 0.8216

Connection 1 | SACK 0 0.8109 0.999 0.98

Connection 2 | Reno 0 0.8228

Fig. 20. (a) Performance without BPD, (b) performance with BPD.

and x; is the throughput of the i’th connection in Mbit/s. A
fairness index of 1 indicates a perfect fairness, where each
connection gets the same share. In a less fair situation, the
fairness index will be smaller than 1.

We first examine the results when BPD is not used. As
can be seen from Fig. 20 (a), when two Reno connections
are competing with each other, they receive more or less the
same share. The fairness in this case is good, but both
connections suffer from many timeouts and thus low
throughput. When we replace one Reno connection with a
SACK connection, we see that the SACK connection has
huge advantage over the Reno connection in terms of
throughput. It experiences only three timeouts, and reaches
fairly high throughput, as opposed to Reno that suffers from
34(!) timeouts. Reno cannot compete against SACK in
preventing timeouts, so it is left behind with much lower
throughput. This results in a very low fairness index, and in
low overall throughput.

When applying BPD, we expect that the number of time-
outs will decrease dramatically, allowing Reno to compete
with SACK, and the overall throughput to increase. We set
the following BPD parameters: lower-threshold = 0.4,
upper-threshold = 0.9, Gap = 20. Fig. 20 (b) summarizes
the results. Indeed, BPD eliminates all the timeouts in
both cases. Without timeouts, Reno competes with SACK
as equal, and both get almost the same bandwidth share.
Moreover, the overall utilized bandwidth is almost 100%.

Fig. 21. The topology used to test BPD in a mixed environment of Reno and
SACK TCP connections.

7. Conclusions

The paper has shown that the poor throughput TCP
achieves in ATM networks can be attributed to two main
reasons: transmission of useless cells from corrupted pack-
ets, and timeouts. The first problem has been fixed by
previously proposed discard policies called PPD and EPD.
However, in many cases, these schemes have little effect on
the throughput, which remains low because of the timeouts
problem. A new discard policy, called BPD, was introduced.
BPD spaces segments losses far from one another, resulting
in almost no timeouts. BPD significantly improves perfor-
mance compared to EPD + PPD and achieves almost the
maximum possible throughput.

The paper has shown that in contrast to the standard TCP-
Reno, the new TCP option, called SACK, enables to achieve
maximum throughput even without BPD. However, without
BPD when a TCP-Reno and a TCP-SACK share the same
links, the SACK connections get much more throughput and
the overall bandwidth is not fully utilized. In the presence of
BPD, the two connections get equal share of the bandwidth
because BPD eliminates the advantage of SACK over Reno.
Moreover, the overall bandwidth is fully utilized by all the
connections.

References

[1] J.A. Grenville, M.A. Keith, Packet reassembly during cell loss, IEEE
Network 7 (5) (1993) 26-34.

[2] A. Romanow, S. Floyd, The dynamics of TCP traffic over ATM
Networks, in: Proceedings, SIGCOMM Conference, London, UK,
August 1994, pp. 79-88.

[3] H. Tzeng, C. Ikeda, H. Li, K. Siu, H. Suzuki, TCP Performance over
ABR and UBR Services in ATM, in: IPCCC’96, March 1996.

[4] R. Goyal, Performance of TCP over UBR + , October 1996.

[5] S. McCanne, S. Floyd, ns-Network Simulator.

[6] V. Jacobson, Congestion avoidance and control, ACM Computer
Communication Review; Proceedings of the Sigcomm ’88 Sympo-
sium in Stanford, CA, vol. 18, no. 4, August1988, pp. 314-329.

[7] W.Stevens, TCP Slow Start, Congestion Avoidance, Fast-Retransmit,
and Fast Recovery Algorithms, RFC-2001, January 1997.

R. Cohen, Y. Hamo / Computer Communications 24 (2001) 1525-1539 1539

[8] V. Paxson, M. Allman, W. Stevens, TCP Congestion Control, RFC-
2581, April 1999.
[9] Jonathan Turner, Maintaining high throughput during overload in
ATM switches, in: Infocom, San Fransisco, California, March 1996,
pp- 287-295.
[10] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP Selective
Acknowledgement Options, RFC-2018, October 1996.
[11] V.Jacobson, R. Braden, D. Borman, TCP Extensions for High Perfor-
mance, RFC-1323, May 1992.
[12] K. Fall, S. Floyd, Simulation-based comparisons of Tahoe, Reno, and

SACK TCP, ACM Computer Communication Review 26 (3) (1996)
5-21.

[13] J.C. Hoe, Improving the Start-up Behavior of a Congestion Control
Scheme for TCP, Sigcomm’961996, pp. 270-280.

[14] R. Bruyeron, B. Hemon, Experimentations with TCP selective
acknowledgement, ACM Computer Communication Review 28 (2)
(1998).

[15] R. Jain, D. Chiu, W. Hawe, A quantative measure of fairness and
discrimination for resource allocation in shared computer systems,
Tech. Rep. TR-301, DEC Research Report, September 1984.

