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Abstract—In this paper we define and study a new
problem, referred to as the Dependent Unsplittable Flow
Problem (D-UFP). We present and discuss this problem in
the context of large-scale powerful (radar/camera) sensor
networks, but we believe it has important applications on
the admission of large flows in other networks as well. In
order to optimize the selection of flows transmitted to the
gateway, D-UFP takes into account possible dependencies
between flows. We show that D-UFP is more difficult than
NP-hard problems for which no good approximation is
known. Then, we address two special cases of this problem:
the case where all the sensors have a shared channel and
the case where the sensors form a mesh and route to the
gateway over a spanning tree.

I. I NTRODUCTION

In wireless sensor networks, sensors probe the sur-
rounding environment and generate reports of the col-
lected readings. Using wireless communication, these
reports are sent to a control center, usually through
a gateway deployed in the physical proximity of the
sensors. While much of the focus of the sensor network
community has been on the design of miniature low-
power wireless sensor networks, an important network-
ing revolution has been taking place for powerful sensors
such as radars and cameras [10], [11], [19], [21], [28].
Such sensor networks are used in a variety of civilian and
military applications such as earthquake sensing, weather
monitoring, road traffic monitoring, and Network Centric
Operations (NCO)[9], [21].

As indicated by [11], these emerging systems raise
a number of new research challenges that do not exist
in mote-class wireless sensor networks. Although these
systems are not limited by energy considerations, the
data they generate exceeds, by several orders of mag-
nitude, the bandwidth capacity of the wireless networks
that connect them to their gateway. Since delivering all
this data is not possible, a decision must be made as to
which flow to deliver and which to drop. This decision
should be based on the bandwidth of each flow and its
profit to the whole system.

This brings to mind the well-known NP-hard Un-
splittable Flow Problem (UFP) [7], [12]. However, UFP
does not capture an important property of the considered
radar/camera sensors: the dependency between different
flows. For example, consider two Doppler radars that
scan partially overlapping areas. Some of their detected
events are likely to be similar. Thus, the profit of deliv-
ering both flows should be smaller than the sum of their
individual profits. In other cases, however, the combined
profit of two different flows might be greater than the
sum of their individual ones. For instance, in the context
of adaptive sensing of the atmosphere, data from multiple
radars allows for more accurate estimation of wind
velocity vectors [19]. When some of the dependencies
between flows are positive and others are negative, the
dependency set is said to be mixed and the resulting
optimization problem is harder.

In this paper we define and study a new problem,
referred to asthe Dependent Unsplittable Flow Problem
(D-UFP). We present and discuss this problem in the
context of powerful radar/camera wireless sensor net-
works (WSNs), but we believe it has important applica-
tions in the admission of large flows in other networks as
well. While UFP’s goal is to maximize the profit gained
by accommodating independent flows, our generalization
takes into account the dependency between flows. Thus,
the profit from delivering two flows is not necessarily
equal to the sum of their profits. The algorithms proposed
in this paper allow the sensor network to determine
which flows to deliver and which to drop. In some
applications, such as NCO [21], the network may need
to run the algorithm very often, sometimes even once a
minute, in order to adapt itself to the changing reality.

The rest of the paper is organized as follows. In
Section II we discuss related work. In Section III we
introduce our framework and define D-UFP. In Section
IV we describe a new algorithm for solving D-UFP in the
case where all the sensors transmit to the gateway over
one common channel. In Section V we describe a new
algorithm for solving D-UFP in the more general case



where multi-hop communication is needed in order to
reach the gateway. Section VI presents a simulation study
of the proposed algorithms. Section VII generalizes D-
UFP(tree) to the case where dependencies exist not only
between pairs. Finally, Section VIII concludes the paper.

II. RELATED WORK

The problem addressed in this paper is one of the most
fundamental networking problems: how to accommodate
traffic in a network when the demand exceeds the supply.
While this problem is relevant to many network applica-
tions, including optical networks, cellular networks, and
standard IP networks, it is especially relevant to powerful
sensor networks, where the amount of data generated by
the nodes is greater by several orders of magnitude than
the bandwidth of the wireless links connecting the sensor
nodes to the gateway.

One approach to the bandwidth scarcity problem in
sensor networks is data fusion: instead of sending the
raw data to the network gateway, the sensors perform
local computations and transmit only the required and
partially processed data [1]. In [13] the authors address
specifically the case where close sensors cover overlap-
ping areas. Such sensors negotiate with each other before
transmitting data to ensure that only useful information
will be transferred.

However, data fusion is often not possible in powerful
sensor networks. First, in many of these networks, human
operators play a key role in deciding how to process the
data [9]. Second, while data fusion can help to reduce
traffic when different flows contain similar information,
as in [13], it cannot capture “positive dependency,” i.e.,
the case where the joint profit of two flows is greater
than the sum of their individual profits (a typical case
when the senors are radars [19]). Third, data fusion is
effective when the dependent flows originate at close
sensors, but not when they originate at remote sensors
that cover remote areas, as is usually the case for
positive-dependent flows.

In this paper, we use a profit/utility function to de-
termine which flows will be routed and which will not.
This function indicates the “profit to the system” from
each flow, and the positive or negative conditional profit
for every pair of flows. In [19], the authors also use a
utility function to address the issue of profit assignment
in the context of radar networks. Their utility function is
more related to the various possible radar configurations.
However, similar considerations can be used in order to
prioritize the flows created by each radar.

UFP has been extensively studied in the past and was
shown to be not onlyNP-Complete [7] but alsoAPX-

Complete [12], which means that it has no PTAS1. More-
over, there exists nolog
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unlessNP ⊆ ZPTIME(npolylog(n)) [2], [3], [4].
A greedy
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|E|-approximation for UFP is presented
in [5], [17], and approximations for some special cases
are provided in [8]. When the graph is a tree, UFP can
be approximated with a factor of 2 [12].

Another relevant problem is the Quadratic Knapsack
Problem (QKP) [6], because we show that it is equivalent
to D-UFP under some constraints. QKP is NP-hard in
the strong sense, as proved in [6]. Hence, we cannot
expect to find an FPTAS for it. A branch-and-bound
algorithm for QKP is presented. The algorithm first
finds tight lower and upper bounds using an efficient
heuristic. Then, suboptimal Lagrangian multipliers are
found and a variable reduction procedure is performed.
Finally, the algorithm invokes a recursive branch-and-
bound procedure. During each iteration, an upper bound
for QKP is calculated using Lagrangian relaxation, and
is solved through a number of continuous Knapsack
problems.

For positive only dependencies and instances with up
to n = 400 items, the algorithm achieves a high quality
upper bound, within1% of the optimum. However,
when dependencies are both positive and negative, the
quality of the upper bound drastically decreases, which
is translated into a substantial increase in the running
time.

Another technique for solving mixed dependencies is
a branch-and-bound method based on an upper bound
derived by semidefinite programming [14], [16], [15].
In [15], semidefinite programming is extended to 0-
1 QKP and three types of semidefinite relaxations are
obtained and analyzed. In [16], the authors show how
these relaxations could be strengthened by a polyhedral
cutting plane method, and a tight bound is derived.
Using a limited computational experiment, the authors
also report that the lower and upper bounds are of good
quality but computationally slow.

III. T HE DEPENDENTUNSPLITTABLE FLOW

PROBLEM (D-UFP) IN POWERFUL WSNS

A. Dependent Flows

The Unsplittable Flow Problem (UFP) is a well-known
optimization problem with many networking applica-
tions. The input of UFP is a network graph with a capac-
ity for each link, and a setF of flows. Every flowfi ∈ F
is defined by a quadruple flow descriptor (si, di, bi, pi),
where si is the source,di is the destination,bi is the
bandwidth demand, andpi is the profit/utility gained

1A PTAS (Polynomial Time Approximation Scheme) is an approx-
imation scheme whose running time is polynomial in the size of the
input.



example p11 p22 p12

1 a b −c/2
2 0 0 c/2
3 a b c/2
4 N1 · a + N2 · c N2 · b −N2 · c/2
5 a 0 c/2

TABLE I
EXAMPLES OF DEPENDENT PROFIT ASSIGNMENT

from routing this flow. The goal is to determine which
flows should be accommodated and what route each one
should use in order to maximize the total profit. The
fact that the flows are unsplittable means that each one
is either fully accommodated along a single route or
not accommodated at all. We now generalize UFP by
modeling possible dependencies between the profits of
different flows.

Definition 1. Consider two flowsf1 and f2. Suppose
that the profit from accommodating onlyf1 in the
network isp1 and the profit from accommodating only
f2 is p2. These two flows are said to be dependent if the
profit of accommodating both of them is either smaller
or greater thanp1 + p2.

Definition 2. Let F be a set of flows. Let every flow be
represented by a node in a dependency graphG(F,E).
An edge exists between two nodesf1 andf2 if flows f1

and f2 are dependent. LetG1(F1, E1), G2(F2, E2) . . .
be the connected subgraphs ofG such that

⋃

Fi = F
and there is no edge inG betweenGi andGj for i 6= j.
Then,

(a) Themaximum dependency rank of F is defined as
MAXi (|Fi|) and is denoted byR(F ).

(b) Thedependency order of F is the cardinality of the
maximum clique inG.

(c) The dependency degree of fi ∈ F is the de-
gree of this node inG, i.e., the number of flows
it depends on, and is denoted bydeg(fi). The
average dependency degree ofF is defined as
∑

i,fi∈F (deg(fi))/|F | and is denoted byD(F ).

B. Profit Assignment

Profit assignment to dependent flows is a big chal-
lenge. In what follows we present examples that cover
the most common dependency combinations. Table I
summarizes these examples.

The first example is of a Doppler radar. The individual
profit of a flow generated by each radar can be set to be
proportional to the size of the covered area. However,
when the areas of two radars partially overlap, we assign
them a joint negative dependent profit. Thus, if the area
covered byR1 is a, by R2 is b, and by both isc, we

havep11 = a, p22 = b and p12 = p21 = −c/2. If the
same area is covered by more than two radars, we have
a dependency order higher than 2, which is addressed
only in Section VII.

The second example is of directionality-based location
discovery sensors. Consider GPS-like sensors, where
each sensor knows its own location and can only tell
the exact direction (azimuth) of a detected event. One
can extract the location of such an event by getting
information from two such sensors [26], [22]. Thus, if
c is the profit from detecting the location of the event,
then p11 = p22 = 0 and p12 = p21 = c/2. If more
than two sensors can detect the same event, we have a
dependency order higher that 2.

The third example has to do with the importance of
getting a full picture from the battlefield in order to make
some crucial decision. Suppose that some region of in-
terest in the battlefield is covered by two sensors/radars.
Each device scans a mutually exclusive area and gains
some individual profit. However, acquiring the data from
both flows gives a “full picture” of the region and is
therefore associated with an extra profit ofc. In this case
we havep11 = a, p22 = b andp12 = p21 = c/2.

In the fourth example we consider a camera that pro-
duces two video flows, one high and one low resolution.
Suppose that we have two types of terminals: type-1 is
a PDA with a small screen that can benefit only from
the low resolution flow, and type-2 is a high resolution
screen that can benefit from both flows but benefits more
from the high resolution flow. The profit of type-1 from
the high resolution flow is0 and from the low resolution
flow is a. The profit of type-2 from the high resolution
flow is b and from the low resolution flow isc < b. If
there areN1 type-1 terminals andN2 type-2 terminals,
then we havep11 = N1 · a + N2 · c, p22 = N2 · b and
p12 = p21 = −N2 · c/2.

In the last example we consider two flows such that
one is not useful without the other but the other has
some merit without the first. A video flow and the
corresponding audio flow is one example. In this case,
p11 = a holds for the video flow,p22 = 0 holds for the
audio flow, andp12 = p21 = c/2 holds for both flows.

C. Problem Formulation and Classification

We are now ready to define the new Dependent
Unsplittable Flow Problem (D-UFP):
Problem 1 (D-UFP):

Instance: A network defined by a graphG = (V,E)
with a capacity functionc : E → Z

+. A set F
of n flows f1, f2, . . . , fn, each defined by a flow
descriptor (si, di, bi, pi). A profit/utility function P
from which one can compute the aggregated profit
of each subset of flows.



Objective: Find a subsetF ′ ⊆ F of flows that has
a feasible routing and a maximum profit.

When the dependency order is limited to 2, the profit
can be represented using a symmetric profit matrix. In
this case, a diagonal element ofP, i.e., pii for every
i, indicates the profit gained from accommodating the
flow fi. A non-diagonal element,pij for every i 6= j, is
half of the extra (negative or positive) profit gained by
accommodating bothfi and fj . Thus, the profit gained
by accommodating two flowsfi and fj is pii + pjj +
pij + pji, wherepij = pji. The extra profitpij + pji

might be negative for some pairs and positive for others.
D-UFP can be classified according to the following

characteristics:

1) Network type: The topology of the network has a
critical impact on the problem. In this paper we
address two cases: the case where all the sensor
are connected to a single broadcast channel through
which they send their flows to the gateway and the
case where they are connected in a multi-hop tree
whose root is the gateway.

2) Dependency type: We distinguish between the case
where the joint profit of every two dependent flows
fi andfj is always larger (or, equivalently, always
smaller) thanpi + pj , and the general case where
for some pairsfi and fj the joint profit is larger
thanpi + pj while for others it is smaller.

3) Maximum dependency rank: We distinguish be-
tween the case where the dependency rank is low,
e.g.,R(F ) ≤ 20 and the case where it is high.

4) Average dependency degree: We distinguish be-
tween the cases whereD(F ) is relatively small, e.g.,
D(F ) = R(F )/10 and the cases where it is large.

IV. D-UFP IN A SINGLE SHARED CHANNEL

A. D-UFP(SC)

In this section we focus on a version of D-UFP that
fulfills the following requirements:

(R1) There is only one broadcast channel, used by
all sensors to send their flows to the network
gateway.

(R2) Mixed dependencies, i.e., the profit of any two
dependent flowsfi and fj , might be either
smaller or larger thanpi + pj .

(R3) A low dependency rank (2 ≤ R ≤ 20) and/or
a low dependency degree (D(F )≪ R(F )).

(R4) A large number of flows (n > 100).
(R5) A dependency order of 2. As previously stated,

in such a case the profit functionP can be
represented by a symmetric matrix.

This version is referred to as D-UFP(SC), where SC
stands for Single Channel. D-UFP(SC) is very relevant
to many state-of-the-art satellite-based powerful sensor

networks. The justification for (R3) is that very often the
sensors cover disconnected areas, such that each area is
covered by a different set of sensors and radars. Thus,
althoughn can be in the order of 100,R(F ) is usually
not larger than 20. Moreover, even ifR(F ) is relatively
large, D(F ) can still be assumed to be considerably
smaller.

Due to (R1) and (R5), D-UFP(SC) is equivalent to the
Quadratic Knapsack Problem (QKP) defined below. Re-
quirements (R2)-(R3) enable us to consider specific QKP
instances, for which we propose efficient algorithms even
though the number of flows might be large (R4).

The Quadratic Knapsack Problem (QKP): The in-
stance of this problem is a setS of n itemss1, s2, . . . , sn

and a capacityc. Each itemsj has a weightwj and a
profit defined by the profit matrixP = (pij), described
earlier. The objective is to find a subsetS′ ⊆ S of items
that has a feasible packing, namely,

∑

sj∈S′ wj ≤ c, and
a maximum profit

∑

si,sj∈S′ pij .
QKP is NP-hard in the strong sense [6]. Moreover,

[25] shows that when everypij might be either positive
or negative, as in our case, no polynomial time algorithm
with fixed approximation ratio exists unlessP = NP.

B. An MCKP-based Algorithm for D-UFP(SC)

We now propose a new algorithm for solving D-
UFP(SC). While this algorithm scales very well in the
number of flows, it strongly depends on the maximum
dependency rankR(F ). Thus, it fits our D-UFP(SC)
(R1)-(R5) requirements. This algorithm transforms a D-
UFP(SC) instance with a given dependency rank to
an instance of the Multiple Choice Knapsack Problem
(MCKP), defined as follows.

The Multiple Choice Knapsack Problem (MCKP):
The instance is a set ofn items, belonging tom disjoint
classes of itemsC1, . . . , Cm, and a capacityc; each
item i ∈ Cj has a profitp(i) and a weightw(i). The
objective is to find a subsetC ′ of items, with exactly
one item from each class, whose packing is feasible,
i.e.,

∑

i∈C′ w(i) ≤ c, such that the aggregated profit
∑

i∈C′ p(i) is maximized.
MCKP can be optimally solved in pseudo-polynomial

time of O(nc) [24]. It can also be approximated with
a factor of 2 in linear time [29]. The best FPTAS for
MCKP is given in [20], with running time ofO(mn/ǫ).

We now show how to transform a D-UFP(SC) instance
to an MCKP one. Consider a setF of items, divided into
m mutually disjoint subsetsF1, . . . , Fm. We construct
m MCKP classes such that each classCi consists of
2|Fi| binary vectors. Each vectorv ∈ Ci represents one
option for choosing items inFi. For example, if|Fi| =
4, the vector1101 indicates that the first, second, and
fourth items fromFi are chosen. Each such vector is also
associated with a profit and a weight. The profit is the



sum of the profit of the chosen items, while taking into
account the dependencies. The weight is the sum of the
weight of the chosen items. The MCKP knapsack size is
the same as the D-UFP(SC) one. We can now apply an
MCKP algorithm for the transformed instance. MCKP
will choose one item (vector) from each classCi, which
is translated into a selection of a subset of dependent
items from each class. Algorithm 1 summarizes this idea.

Algorithm 1. (solving D-UFP(SC) using a reduction to
MCKP)

1) Create independent item sets from the D-UFP(SC)
instance,{Fi}

m
i=1.

2) Transform the independent D-UFP(SC) sets into an
MCKP instance in the following way:
a) transform each item setFi, i = 1, . . . ,m to an

MCKP classCi, with 2|Fi| items (vectors);
b) let F ⊆ Fi be the chosen items indicated by the

vectorv ∈ Ci; the profit and weight assigned tov
are p(v) =

∑

k,l∈F ′ pkl and w(v) =
∑

k∈F ′ wk.
3) Set the MCKP capacity to be equal to the bandwidth

of the D-UFP(SC) shared channel.
4) Solve MCKP.

C. Reducing the Maximum Dependency Rank of the D-
UFP(SC) Instance

The time complexity of reducing a D-UFP(SC)
to MCKP is O(2R(F )). Hence, even a polynomial time
approximation for MCKP cannot solve instances with
R(F ) > 20 in reasonable time. In what follows we
propose an algorithm for reducing the maximum depen-
dency rank of the input set of flowsF . This algorithm
takes advantage of requirement (R3), which states that
if the dependency rank is higher than 20, the maximum
dependency degree is low. Still, such a reduction is likely
to decrease the profit because MCKP has an FPTAS
while D-UFP(SC) with mixed dependencies does not
(unlessP = NP). In the following we reduce the D-
UFP(SC) dependency rank by translating this problem
into the Simple Graph Partitioning Problem (SGPP) [27].

The Simple Graph Partitioning Problem (SGPP):
The instance is a simple graphG = (V,E), an edge
weight functionc : E → R

+, and a positive constantR′.
The objective is to divideG into disconnected segments
by removing some of the edges such that each segment
will have at mostR′ nodes and the total weight of the
pruned edges is minimized.

In order to translate our problem to SGPP, we repre-
sent the items (flows) by the graph nodes and assign to
every edge a value that indicates the correlation between
two dependent items. While several such correlation
functions can be considered, in the following we use
c(i, j) = 2|pij |. This represents the correlation as the
total dependent profit the algorithm will have to ignore
if the edge is removed.

SGPP is NP-Complete. All previously proposed al-
gorithms solve small instances, with up ton = 50
nodes, while we are interested in larger ones. We now
propose an efficient algorithm that is based on the
Kruskal method [18] and whose running time complexity
is O(|E| · log|E|). The algorithm starts with a graph
whose edge set is empty. It then goes through a list that
contains all the edges sorted in a decreasing order of
their weight and adds the next edge if this edge does
not create a connected segment bigger thanR′.

Procedure 1. (Kruskal method for SGPP) For each
connected componentGi = (Vi, Ei) of G for which
|Vi| > R

′ holds do
1) Start with a graphG′

i = (Vi, E
′
i), whereE′

i = ∅.
2) Sort the edges ofEi in decreasing order of their

weight.
3) Go through the sorted list and add an edge(u, v) ∈

Ei to E′
i if u and v are already in the same

connected segment or if they create a new connected
segment with no more thanR′ nodes.

In section VI we show the effectiveness of executing
this procedure prior to Algorithm 1.

V. D-UFP IN MULTI -HOP POWERFUL WSNS

A. D-UFP(tree)

The single channel case addressed in Section IV
covers many applications of powerful WSNs. However,
there are also important applications for which it is
neither economical nor possible to equip each powerful
sensor with a satellite transceiver. In such applications,
the sensors use some variant of WiFi communication in
order to transmit their flows, and multi-hop routing is
needed in order to reach the gateway. In this section
we study the new D-UFP problem in such networks,
under the conventional assumption where the collection
of multi-hop paths from the sensors to the gateway form
a spanning tree rooted at the gateway. Figure 1 shows an
example of the routing tree connecting 9 sensors to the
gateway. We also assume that each collection of wireless
links connecting a set of sensors to their parent (e.g.,
the collection{s4 → s1, s5 → s1 } or the collection
{s6→ s2, s7→ s2 }) can be viewed as a single shared
channel.

If the capacity of the level-1 shared channel connect-
ing the level-1 nodes to the gateway is smaller than or
equal to the capacity of every other tree channel, then the
problem is reduced to the single channel case. In such a
case we can ignore the multi-hop routing and solve the
problem using the algorithms proposed in Section IV.
Therefore, in what follows we address the general case,
where a collection of flows can be admitted into the root
channel, but cannot reach this channel due to some other
channel’s lack of bandwidth. The new problem, called
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Fig. 1. The multi-hop routes to the gateway form a tree

D-UFP(tree), has the same (R2)-(R5) requirements as
D-UFP(SC), but a new (R1) requirement as follows:

(R1) The sensors have any mesh topology. Routing
is performed over a (shortest-path or any other)
tree rooted at the gateway.

B. An MMKP-based Algorithm for D-UFP(tree)

In Section IV we solved D-UFP(SC) by transforming
it into an MCKP instance, with a knapsack size equal
to the channel bandwidth. To use a similar approach for
D-UFP(tree), we should consider each shared channel
as a different dimension of a knapsack and each flow
as being a multidimensional item. Each dimension of
the knapsack indicates the available bandwidth on one
tree channel. Each dimension of an item indicates the
bandwidth requirement of the corresponding flow from
each tree channel. That is, a 100Mb/s flow originating at
sensors4 in Figure 1 requires 100Mb/s on the channel to
s1 and on the channel to the gateway, but no bandwidth
on the other channels.

The extension of MCKP to a multidimensional knap-
sack is called MMKP (Multiple Dimensional Multiple
Choice Knapsack Problem), and is defined as follows.

The Multiple Dimensional Multiple Choice Knap-
sack Problem (MMKP): The instance is a set
of n items, belonging tom disjoint classes of items
C1, . . . , Cm, and a vector of capacitiesc1, . . . , cD. Each
item i ∈ Cj has a profitp(i) and a weight vector ~w(i) ∈
R

D. The objective is to find a subsetC ′ of items, with
exactly one item from each class, whose packing is
feasible (i.e.,

∑

i∈C′

~w(i) ≤ ~c), such that the aggregated
profit

∑

i∈C′ p(i) is maximized.

Algorithm 2. (Solving D-UFP(tree) using a reduction
to MMKP)

1) Create independent item sets from the D-UFP(tree)
instance,{Fi}

m
i=1.

2) Transform the independent D-UFP(tree) sets into
an MMKP instance in the following way:
a) transform each item setFi, i = 1, . . . ,m to an

MMKP classCi, with 2|Fi| items (vectors);

b) let F ⊆ Fi be the chosen items indicated by the
vectorv ∈ Ci; the profit and weight assigned tov
are p(v) =

∑

k,l∈F ′ pkl and w(v) =
∑

k∈F ′ wk,
respectively.

3) Set each capacityci of MMKP to the bandwidth of
one channel in the tree, such that the numberD of
capacities in the vectorc1, . . . , cD is equal to the
number of channels.

4) Solve MMKP.

Algorithm 2 works as long as each flow has a unique
path, even if the collection of paths does not form a
tree. However, the time complexity of MMKP depends
on the number of dimensions (channels) of the knapsack.
Later on we shall use the tree assumption to substantially
reduce this complexity.

MMKP generalizes the Multidimensional Knapsack
Problem (MKP). Thus, it is not only NP-hard, but is
also unlikely to have an EPTAS. In [23], a polynomial-
time approximation scheme is proposed for a similar
problem called the Multiple-Choice Multidimensional
Knapsack problem (MMK). Due to the similarity of
MMK to MMKP, the algorithm proposed by [23] can
also be used for solving MMKP. The time complexity
of this algorithm isO((nm)⌈D/ǫ⌉), where 1

1+ǫ is the
approximation ratio. Thus, we cannot afford largeD/ǫ
values. SinceD represents the number of tree channels
in a D-UFP(tree) instance, which in general can be large,
we must reduce its value somehow.

C. An Efficient Probabilistic Algorithm

We now propose an efficient probabilistic algorithm to
solve D-UFP(tree) using algorithm 2 while bounding the
value ofD. The main idea behind the proposed scheme
is as follows. Assuming that the capacities of the tree’s
channels do not vary much, and because all the flows
should reach the gateway, the low level tree channels,
i.e., those that are close to the root, are likely to be
the network bottleneck. For example, if every node in
Figure 1 generates exactly one flow, then the load on
each of the level-2 channels is 2 flows whereas the load
on the level-1 channel channel is 6 flows. The following
algorithm takes advantage of this property.

Algorithm 3. (A probabilistic algorithm for solving D-
UFP(tree) efficiently)

1) SetR← 1.
2) Repeat:

a) run Algorithm 2 while taking into account, in
step (3), only the channels up to levelR of the
tree;

b) check if the feasible solution found by Algo-
rithm 2 for the channels in level1 · · ·R is also
feasible for every channeli > R;

c) if the solution is infeasible, setR← R + 1.



3) Until a feasible solution for the whole tree is found
or R is too big for step 4 of Algorithm 2.

To quantitatively estimate Algorithm 3, we define
a distribution of channel capacities and a set of not-
necessarily-feasible flows, and evaluate the value of
Pr(A|AR), where

A
def
=

{

the solution satisfies the capacity con-
straints in the whole tree

}

and

AR
def
=

{

the solution satisfies the capacity con-
straints until (including) the depthR

}

.

To find a lower bound forPr(A|AR) = Pr(A)
Pr(AR) , we need

to find a lower bound forPr(A) and an upper bound for
Pr(AR), or equivalently, an upper bound forPr(A) and
a lower bound forPr(AR). The first bound is the best
of:

Pr(A) ≤
L

∑

i=1

Pr(A(i))

and

Pr(A) = Pr(∩L
i=1A(i))

=

L
∏

i=1

Pr(A(i)| ∩i−1
j=1 A(j)) ≥

L
∏

i=1

Pr(A(i));

the second bound is:

Pr(AR) = Pr(∪R
i=1A(i)) ≥ max

i=1,...,R
(Pr(A(i))),

where

A(i)
def
=

{

the solution satisfies the capacity con-
straints of all the level-i channels

}

.

To find A(i), we define for every nodev:

E(v)
def
=

{

the solution satisfies the capacity con-
straint at the shared channel tov

}

.

From the independence of theE(v)’s on the same level,

Pr(A(i)) =
∏

v∈level i − 1

Pr(E(v)). (1)

Let F (v) be a random variable that indicates the total
flow throughv. Thus,

Pr(E(v)) = Pr({F (v) ≤ C(e)}) =

Pr({F (v)− C(e) ≤ 0}), (2)

wheree is the channel tov andC(e) is its capacity.
Suppose that we have a completel-ary tree of

heightL. Let the channel capacities be independent and
identically distributed random variables, withC(e) ∼
Bin(λρ,p). Suppose that every non-root tree node seeks
to transmitX ∼ Pois(d) flows to the root and that the
bandwidth demand of each flow isY ∼ Bin(ρ,p). To
use Eq. 2 in order to solve Eq. 1, we can approximate
F (v)− C(e) by a Gaussian distribution.
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From the above discussion it is clear thatPr(A|AR)
depends mainly on the average number of flows orig-
inating from each node (d), and on the ratio between
the capacity of each channel and the bandwidth demand
of each flow (λ). In Figure 2 we show the results of
the above analysis as a function ofλ and d for l = 2,
ρ = 10 and p = 0.1. In this figureR = 1 and L = 4,
which means that instead of checking the constraints for
∑4

i=1 2i−1 = 15 channels, we check them only for the
root channel.

Recall that the results shown in the figure are only
lower bounds. Simulation results indicate that the actual
value ofPr(A|AR) is much bigger and can be obtained
for larger values ofd and/or for smaller values ofλ.

VI. SIMULATION STUDY

We study the performance of our algorithms using
Monte Carlo simulations on instances constructed as
follows. Let {Fi , i = 1, . . . ,m} be m disjoint subsets
of dependent flows. Each of these subsets is represented
by a diagonal block in the profit matrixP:

0

B

B

@

(P1)|F1|×|F1| 0 . . . 0
0 (P2)|F2|×|F2| . . . 0
...

...
. . .

...
0 0 . . . (Pm)|Fm|×|Fm|

1

C

C

A

.

Let R(F ) and D(F ) be the maximum dependency
rank and the average dependency degree of the con-
sidered instance. The size of each diagonal block is
uniformly distributed in[1,R(F )], and in each of the
block’s rows there are, on the average,D(F ) non-zero
entries. Each non-zero entry valuepij = pji is uniformly
distributed in[−r/2, r/2], wherer is a constant for the
whole matrix. The weightwj of each itemj is uniformly
distributed in[1, r/2]. Finally, the capacity of the channel
is uniformly distributed in[1,

∑n
j=1 wj ].



We start with the results for the single channel case.
We first execute Algorithm 1 while solving MCKP (in
step 4) using the optimal algorithm described in [24].
Figure 3 shows the running time of Algorithm 1 as a
function of the dependency rank and as a function of the
number of flows (when the dependency rank is maximal,
i.e.,D(F ) = R(F )− 1). It is evident that the execution
time grows exponentially withR(F ) for every D(F )
value, and only polynomially (or even linearly) with the
number of flows.

When the instance rank is high(R(F ) > 20), the
running time of Algorithm 1 renders it impractical. In
such cases we use Procedure 1 in order to reduce the
rank of the instance before Algorithm 1 is invoked.
Rank reduction might have a negative effect on the
performance of Algorithm 1. In order to study this
effect, we use as a benchmark instances with only
positive dependencies. With such dependencies, the al-
gorithm from [6] is shown to be optimal. Figure 4
shows the performance of Algorithm 1 with Procedure
1 for this benchmark. The x-axis is the dependency
degree, whereas the y-axis is the profit ratio between
the performance of Algorithm 1 with Procedure 1 and
the performance of the optimum solution. As expected,
as we increase the dependency rank and the degree, the
profit ratio monotonically decreases. However, when we
consider our requirements that a high dependency rank
dictates a low dependency degree, we get solutions that
are not far from the optimum.

Next, we study scenarios with multiple Doppler radars
and 100 flows. We assume that each radar has the same
bandwidth demand, but a different profit. The profit
depends on the importance and size of the covered area.
For both tactical and practical considerations, some areas
are covered by more than a single radar. The purpose
of this study is to show the importance of taking such
dependencies into account. We thus compare the results
of our model with the results of a model that ignores the
dependencies and make a decision based on the largest
profit/weight ratio (a simple Knapsack algorithm).

We study two profit scenarios. In Scenario A, the
individual profits are all equal, whereas in Scenario B
different profits are assigned to different flows. Each
scenario is tested in two layouts, with different depen-
dency ranks and different overlapping areas between
dependent radars. The results are presented in Figure
5. The x-axis is the channel’s normalized capacity,
i.e., c/

∑

i∈N wi, and the y-axis is the percentage of
additional profit gained by taking the dependencies into
account. In all of the graphs, as the average channel
capacity and the overlapping areas grow, the benefit from
taking dependencies into account increases. We can see a
similar behavior when we increase the dependency rank
from R(F ) = 30 to R(F ) = 100. We can also see that

for the sameR(F ), the profit in Scenario B is larger
that in Scenario A. The reason is that in Scenario B the
dependency has a larger variance, and therefore a larger
impact on the total profit.

We can summarize that for the Doppler radar sce-
narios, when the dependencies between flows are not
ignored, the performance of the radar sensor network
substantially increases.

We now present simulation results for the performance
of our algorithms in a mesh network over a routing tree.
In these simulations, we run Algorithm 3 forR = 1. The
output of this algorithm for R=1 is either feasible for the
whole tree or infeasible for some of the nodes. If it is
feasible, then the solution is also optimal. Otherwise, the
algorithm is executed for higher value ofR. It is easy
to see that infeasible solutions are possible only if the
capacity of the root is smaller than the capacity of some
lower node. We are therefore interested in the probability
that a solution of Algorithm 3 forR = 1 is feasible for
the whole tree when the ratioα between the capacity of
a level-(i−1) tree node and the capacity of a level-i tree
node, for everyi, is smaller than 1.

In Figure 6 we show the probability described above
as a function ofα. For this set of simulations, we gen-
erated flows from random trees in the following way. A
routing tree has 3 levels. Every tree node hasd children,
whered ranges between 3 and 7, and there are 10 flows
originating from every node.R(F ) = 15 andD(F ) = 5
are the maximum dependency rank and the average
dependency degree of the considered instance. As before,
the size of each diagonal block in the profit matrixP
is uniformly distributed in[1,R(F )], and in each of the
block’s rows there are, on the average,D(F ) non-zero
entries. Each non-zero entry valuepij = pji is uniformly
distributed in[−r/2, r/2], wherer is a constant for the
whole matrix. The weightwj of each itemj is uniformly
distributed in[1, r/2]. Finally, the capacity of the channel
is uniformly distributed in[1,

∑n
j=1 wj ].

As expected, whenα gets closer to 1, the probability
that a solution for the root is feasible for the whole tree
gets also closer to 1. But we can see that for practical
trees it is enough to haveα ≈ 0.5. We can also see
that when the number of children per node increases,
the probability that a solution for the root is feasible for
the rest of the tree increases as well. For instance, when
α = 0.4 we see that the probability is 1 if there are
7 children and 0.8 if there are only 3. The reason for
this is that when there are more tree nodes, the flows
originating in every level-i tree are assigned bandwidth
from more level-i channels. Thus, it is less likely that
a solution feasible for the root will impose intolerable
load on a lower channel.

Figure 7 shows the feasibility of the solution as a
function of the load for the case where each node has
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4 or 5 children. Each graphs is for the same number of
children, but for a different number of flows originating
at every node. We can see in both graphs that when
the number of flows increases, the probability that a
solution feasible for the root is also feasible for the rest
of the tree increases as well. The reason for this is that
when there are more flows, Algorithm 3 is more likely
to choose flows from different nodes, in which case the
load imposed on a given non-root channel is smaller.

VII. EXTENSION TO HIGHER ORDER OF

DEPENDENCIES

We now discuss flows with higher dependency
orders. Consider the three Doppler radars in Figure 8.
Let SA, SB andSC be the areas covered by each radar.
Similarly, let SAB be the area covered by bothA and
B, SABC the area covered byA, B andC, and so on.
Table II shows the profit for every combination of flows.
This profit is assumed to be proportional to the scanned
areas.

When the dependency order is higher than 2, the
profit function P can no longer be represented by a
matrix, D-UFP is no longer equivalent to QKP, and
Algorithm 1 cannot be used. The profit to be gained from
a given combination of flows must be now calculated
in an entirely different manner. Let this combination be
represented by a binary vectorv, as in Algorithm 1, and
let the profit gained from each combination beP(v).
Then we can adapt Algorithm 1, as follows, to handle
dependencies of higher orders.

An MCKP instance is constructed by definingm
MCKP classes, wherem is the number of mutually
disjoint subsets (see Definition 2). Each classCi consists
of 2|Fi| binary vectors, and vectorv ∈ Ci represents one
combination items chosen fromFi. The profit for each
combination is determined byP(v). The time complex-
ity for this construction is similar to that discussed in
Section IV-B, where only dependencies between pairs
were considered. In addition we need to revise Procedure
1. A D-UFP instance can no longer be represented as
a simple graph but by a hyper-graph. In this hyper-
graph, each node indicates a single flow, and each edge,
connecting any number of nodes, represents the extra
profit gained by accommodating all the flows represented
by the connected nodes. Procedure 1 should go through
the list of edges of the relevant hyper-graph, sorted by
their weight. Any edge that exceeds the segment size
criterion is removed from the graph.

Next we compare the profit gained when dependency
orders of both 2 and 3 are taken into account to the profit
gained when only a dependency order of 2 is considered.
As in Scenario B in Section VI, the profit assigned to
each flow is proportional to the scanned areas (see Table
II). The results of the comparison are presented in the
6 graphs in Figure 9. For each graph, the x-axis is the
channel’s normalized capacity, i.e.,c/

∑

i∈N wi, and the
y-axis is the percentage of extra profit gained by not
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ignoring a dependency order of 3. Each graph depicts
two curves. The first shows the extra profit gained by
taking a dependency order of 2 into account. The second
shows the extra profit gained by taking a dependency
order of 3 into account as well. We consider twoR(F )

radars assigned profit
A SA

B SB

C SC

A, B SA + SB − SAB

A, C SA + SC − SAC

B, C SB + SC − SBC

A, B, C SA + SB + SC − SAB − SAC − SBC + SABC

TABLE II
PROFIT ASSIGNMENT BASED ON THE AREA COVERED BY EVERY

RADAR

values:30 and100. We also consider three values of area
overlap:10%, 20% and30%.

As expected, Figure 9 indicates that the performance
gain is larger when the percentage of overlap and the
dependency rank are larger. For example, consider Figure
9(a), where the overlapping area is30% andR(F ) is
30. When the channel’s capacity is70% of the total
bandwidth demand, performance improves by more that
50% over the case, shown in Figure 9(c), where the



 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5P
(s

ol
ut

io
n 

is
 fe

as
ib

le
 fo

r 
th

e 
w

ho
le

 tr
ee

)

α 

7 flows
5 flows
3 flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5P
(s

ol
ut

io
n 

is
 fe

as
ib

le
 fo

r 
th

e 
w

ho
le

 tr
ee

)

α 

7 flows
5 flows
3 flows

(a) 4 children (b) 5 children

Fig. 7. Feasibility as a function ofα and load

B

A

C

Fig. 8. Three360◦ radars withO = 3

overlap is only 20%, and it improves by more than
100% over the case, shown in Figure 9(e), where the
overlap is only 10%. The improvement results for a
larger dependency rank, shown in Figure 9 (b), (d) and
(f), where it is equal to100 are even stronger.

Our key conclusion, however, is that taking into ac-
count a dependency order of 3 rather than of 2 alone
yields much less benefit than taking into account a
dependency order of 2 rather than of 1 alone. The
main reason for this is that the area mutually scanned
by any three radars is always smaller than the area
scanned by any two radars of the same group, i.e.,
SABC ≤ SAB , SBC , SAC .

Although we considered here only one example for
which taking into account a dependency order of 3 is
not considerably more beneficial than taking in account
a dependency order of 2 alone, we believe that the same
conclusion holds for most of the practical scenarios.

VIII. C ONCLUSIONS

We defined and studied a new problem, referred to as
the Dependent Unsplittable Flow Problem (D-UFP), in
the context of large-scale powerful (radar/camera) sensor
networks. In order to optimize the selection of flows

transmitted to the gateway, D-UFP takes into account
possible dependencies between flows. D-UFP is a very
difficult problem, even under many constraints. When
the network consists of one shared channel, D-UFP was
shown to be equivalent to QKP, which is NP-hard in
the strong sense and has no good approximation. We
presented an efficient algorithm for this case of D-UFP,
under several constraints, and for the case where the
sensors form a spanning tree. Among other things, our
simulation results revealed that taking the dependencies
into account can increase the performance of a typical
Doppler radar system by10− 100%.
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