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Abstract—In this paper we define and study a new  This brings to mind the well-known NP-hard Un-
problem, referred to as the Dependent Unsplittable Flow splittable Flow Problem (UFP) [7], [12]. However, UFP
Problem (D-UFP). We present and discuss this problem in 445 ot capture an important property of the considered
the context of large-scale powerful (radar/camera) sensor . .
networks, but we believe it has important applications on radar/camera sensors: the_ dependency between different
the admission of large flows in other networks as well. In flows. For example, consider two Doppler radars that
order to optimize the selection of flows transmitted to the scan partially overlapping areas. Some of their detected
gateway, D-UFP takes into account possible dependenciesevents are likely to be similar. Thus, the profit of deliv-
between flows. We show that D-UFP is more difficult than o inq poth flows should be smaller than the sum of their

En%mﬂﬁéﬂbﬂn :dgfes";ht:zg Snpoec?gloga;pspgf)ﬂ]rgag;Jonblzesm: individual profits. In other cases, however, the combined

the case where all the sensors have a shared channel and?rofit of two different flows might be greater than the
the case where the sensors form a mesh and route to thesum of their individual ones. For instance, in the context

gateway over a spanning tree. of adaptive sensing of the atmosphere, data from multiple
radars allows for more accurate estimation of wind
. INTRODUCTION velocity vectors [19]. When some of the dependencies

between flows are positive and others are negative, the

In wireless sensor networks, sensors probe the sdependency set is said to be mixed and the resulting
rounding environment and generate reports of the captimization problem is harder.
lected readings. Using wireless communication, theseln this paper we define and study a new problem,
reports are sent to a control center, usually througkferred to ashe Dependent Unsplittable Flow Problem
a gateway deployed in the physical proximity of thgD-UFP). We present and discuss this problem in the
sensors. While much of the focus of the sensor netwodontext of powerful radar/camera wireless sensor net-
community has been on the design of miniature lowworks (WSNs), but we believe it has important applica-
power wireless sensor networks, an important networkions in the admission of large flows in other networks as
ing revolution has been taking place for powerful sensovgell. While UFP’s goal is to maximize the profit gained
such as radars and cameras [10], [11], [19], [21], [28by accommodating independent flows, our generalization
Such sensor networks are used in a variety of civilian angkes into account the dependency between flows. Thus,
military applications such as earthquake sensing, weathke profit from delivering two flows is not necessarily
monitoring, road traffic monitoring, and Network Centricequal to the sum of their profits. The algorithms proposed
Operations (NCO)[9], [21]. in this paper allow the sensor network to determine

As indicated by [11], these emerging systems raisghich flows to deliver and which to drop. In some
a number of new research challenges that do not exagplications, such as NCO [21], the network may need
in mote-class wireless sensor networks. Although thes® run the algorithm very often, sometimes even once a
systems are not limited by energy considerations, tmeinute, in order to adapt itself to the changing reality.
data they generate exceeds, by several orders of magThe rest of the paper is organized as follows. In
nitude, the bandwidth capacity of the wireless networkSection Il we discuss related work. In Section Il we
that connect them to their gateway. Since delivering altroduce our framework and define D-UFP. In Section
this data is not possible, a decision must be made asltowe describe a new algorithm for solving D-UFP in the
which flow to deliver and which to drop. This decisioncase where all the sensors transmit to the gateway over
should be based on the bandwidth of each flow and e common channel. In Section V we describe a new
profit to the whole system. algorithm for solving D-UFP in the more general case



where multi-hop communication is needed in order t€omplete [12], which means that it has no PTABore-
reach the gateway. Section VI presents a simulation studyer, there exists ndbg%‘g(|E|)-approximation and no
of the proposed algorithms. Section VII generalizes Dogéfﬁ(‘N|)-approxima{ion for UFP for any > 0,
UFP(tree) to the case where dependencies exist not odlylessNP C ZPTIME(nPe¥loe(m) [2], [3], [4].
between pairs. Finally, Section VIII concludes the paper. A greedy /| E[-approximation for UFP is presented
in [5], [17], and approximations for some special cases
are provided in [8]. When the graph is a tree, UFP can
1. RELATED WORK be approximated with a factor of 2 [12].
Another relevant problem is the Quadratic Knapsack

The problem addressed in this paper is one of the md{oPIem (QKP) [6], because we show that it is equivalent
D-UFP under some constraints. QKP is NP-hard in

fundamental networking problems: how to accommodal8 qi
traffic in a network when the demand exceeds the sup Eye strong sense, as proved in [6]. Hence, we cannot

While this problem is relevant to many network applica-XpeCt to find an FPTAS for it. A branch-and-bound

tions, including optical networks, cellular networks, anglgonthr?] flor QKP is presented. The .algorlthn;r f!rst

standard IP networks, it is especially relevant to powerf(if’ds tight lower and upper bounds using an efficient
sensor networks, where the amount of data generated I§FIStic. Then, suboptimal Lagrangian multipliers are
the nodes is greater by several orders of magnitude thigi"d and a variable reduction procedure is performed.

the bandwidth of the wireless links connecting the sensp@ly: the algorithm invokes a recursive branch-and-
nodes to the gateway. bound procedure. During each iteration, an upper bound

. . for QKP is calculated using Lagrangian relaxation, and
One approach to the bandwidth scarcity problem i solved through a number of continuous Knapsack
sensor networks is data fusion: instead of sending t Coblems

lraw Idata o ttr]f netwoc;kt gatew_?y, tlh etr? ensors pgrfo MEor positive only dependencies and instances with up
ocal computations and transmit only the required ang , _ o jtems, the algorithm achieves a high quality

partially processed data [1]. In [13] the authors addrea per bound, within1% of the optimum. However,

specifically the case where close sensors cover overl hen dependencies are both positive and negative, the

ping areas. Such sensors negotiate with each other b?f [J%Iity of the upper bound drastically decreases, which
transmitting data to ensure that only useful informatio translated into a substantial increase in the running
will be transferred. time

However, data fu'sion' is often not possible in powerful aApother technique for solving mixed dependencies is
sensor networks. First, in many of these networks, humanpranch-and-bound method based on an upper bound
operators play a key role in deciding how to process therived by semidefinite programming [14], [16], [15].
data [9]. Second, while data fusion can help to redugg [15], semidefinite programming is extended to O-
traffic when different flows contain similar information,; Qkp and three types of semidefinite relaxations are
as in [13], it cannot capture “positive dependency,” i.eghtained and analyzed. In [16], the authors show how
the case where the joint profit of two flows is greatehese relaxations could be strengthened by a polyhedral
than the sum of their individual profits (a typical cas@utting plane method, and a tight bound is derived.
when the senors are radars [19]). Third, data fusion {$sing a limited computational experiment, the authors

sensors, but not when they originate at remote sens@fgality but computationally slow.

that cover remote areas, as is usually the case for
positive-dependent flows. IIl. THE DEPENDENTUNSPLITTABLE FLOW

In this paper, we use a profit/utility function to de- PROBLEM (D-UFP)IN POWERFULWSNs
termine which flows will be routed and which will not.A. Dependent Flows
This function indicates the “profit to the system” from The Unsplittable Flow Problem (UFP) is a well-known
each flow, and the positive or negative conditional proféptimization problem with many networking applica-
for every pair of flows. In [19], the authors also use @ons. The input of UFP is a network graph with a capac-
utility function to address the issue of profit assignmerity for each link, and a sef’ of flows. Every flowf; € F
in the context of radar networks. Their utility function isis defined by a quadruple flow descriptas,(d;, b;, p;).
more related to the various possible radar configurationshere s; is the sourced; is the destinationp; is the
However, similar considerations can be used in order tmandwidth demand, ang; is the profit/utility gained

prioritize the flows created by each radar. .
. . . A PTAS (Polynomial Time Approximation Scheme) is an approx-
UFP has been eXtenSNely studied in the past and WiRtion scheme whose running time is polynomial in the size of the

shown to be not onlfNP-Complete [7] but alsSAAPX- input.



exainple pl; ng ,pcl/22 havepy1 = a, pa2 = b andpiz = pa1 = —c¢/2. If the
2 0 0 /2 same area is covered by more than two radars, we have
3 a b c/2 a dependency order higher than 2, which is addressed
2 Ni-a+Nz-c Nz -b ~Nz2-¢/2 | gnly in Section VII
5 a 0 c/2 : ) . ) ) )
TABLE | The second example is of directionality-based location

EXAMPLES OF DEPENDENT PROFIT ASSIGNMENT discovery sensors. Consider GPS-like sensors, where
each sensor knows its own location and can only tell
the exact direction (azimuth) of a detected event. One
can extract the location of such an event by getting

from routing this flow. The goal is to determine Whichmformatlon f_rom two such SENsors [2(.3]’ [22]. Thus, if

c is the profit from detecting the location of the event,
flows should be accommodated and what route each qne
. o . €npi; = pee = 0 and p;o = po; = ¢/2. If more
should use in order to maximize the total profit. Th?h
. an two sensors can detect the same event, we have a

fact that the flows are unsplittable means that each oHe .

. . ependency order higher that 2.

is either fully accommodated along a single route or The third le has to do with the i . ¢

not accommodated at all. We now generalize UFP b € third example has to do wi € Importance o

modeling possible dependencies between the profits q,tting a full picture from the battlefield in order to make
different flows some crucial decision. Suppose that some region of in-

terest in the battlefield is covered by two sensors/radars.
Definition 1. Consider two flowsf; and f,. Suppose Each device scans a mutually exclusive area and gains
that the profit from accommodating only; in the some individual profit. However, acquiring the data from
network isp; and the profit from accommodating onlyboth flows gives a “full picture” of the region and is
fa is p2. These two flows are said to be dependent if thiberefore associated with an extra profitcofn this case
profit of accommodating both of them is either smallewe havep;; = a, pas = b andpia = p21 = ¢/2.
or greater tharp; + p». In the fourth example we consider a camera that pro-
duces two video flows, one high and one low resolution.
Suppose that we have two types of terminals: type-1 is
a PDA with a small screen that can benefit only from
the low resolution flow, and type-2 is a high resolution
screen that can benefit from both flows but benefits more
from the high resolution flow. The profit of type-1 from
the high resolution flow i® and from the low resolution
i ) i flow is a. The profit of type-2 from the high resolution
(@) Themaximum dependency rank of £ is defined as {1 s §, and from the low resolution flow ig < b. If

MAX; (|¥;]) and is denoted bR(F). there areN; type-1 terminals andV type-2 terminals,

(b) The(_jepender_]cy or_der of F is the cardinality of the (a1 we haver;; = Ny -a + Na - ¢, pas = Ny - b and
maximum clique inG. P2 = por = —Na - ¢/2.

(C) The dependency degree of f; € F' is the de- ~, yhe |ast example we consider two flows such that
gree of this node |rG., i.e., the number of flows one is not useful without the other but the other has
it depends on, and is denoted Wg(fi_)' The some merit without the first. A video flow and the
average dependency degree Bf is defined as qre5n0nding audio flow is one example. In this case,
Zi,fieF (deg(fi))/|F| and is denoted byD(F). p11 = a holds for the video flowp,, = 0 holds for the

B audio flow, andp;2 = p21 = ¢/2 holds for both flows.

Definition 2. Let F' be a set of flows. Let every flow be
represented by a node in a dependency graph, E).
An edge exists between two nodgsand f if flows f;
and f, are dependent. Let/, (Fy, E1),Go(Fs, Es) ...
be the connected subgraphs @Gfsuch thatl J F; = F
and there is no edge i betweenG; andG for ¢ # j.
Then,

B. Profit Assignment C. Problem Formulation and Classification

Profit assignment to dependent flows is a big chal- i
lenge. In what follows we present examples that cover W& areé now ready to define the new Dependent
the most common dependency combinations. TableUpsplittable Flow Problem (D-UFP):
summarizes these examples. Problem 1 (D-UFP):

The first example is of a Doppler radar. The individual Instance: A network defined by a grapff = (V, E)
profit of a flow generated by each radar can be set to be with a capacity functionc : £ — ZT. A set F
proportional to the size of the covered area. However, of n flows fi, f,..., f., €ach defined by a flow
when the areas of two radars partially overlap, we assign descriptor §;, d;, b;, p;). A profit/utility function P
them a joint negative dependent profit. Thus, if the area from which one can compute the aggregated profit
covered byR; is a, by Ry is b, and by both isc, we of each subset of flows.



Objective: Find a subsef” C F of flows that has networks. The justification for (R3) is that very often the
a feasible routing and a maximum profit. sensors cover disconnected areas, such that each area is

When the dependency order is limited to 2, the proffovered by a different set of sensors and radars. Thus,
can be represented using a symmetric profit matrix. fithoughn can be in the order of 100%(F) is usually
this case, a diagonal element B, i.e., p;; for every not larger than 20. Moreover, eveni(F) is relatively

i, indicates the profit gained from accommodating thi@rge, D(F) can still be assumed to be considerably
flow f;. A non-diagonal elemeng;; for everyi # j, is Smaller.

half of the extra (negative or positive) profit gained by Due to (R1) and (R5), D-UFP(SC) is equivalent to the
accommodating botlf; and f;. Thus, the profit gained Quadratic Knapsack Problem (QKP) defined below. Re-
by accommodating two flowsg; and f; is pi; + pj; + quirements (R2)-(R3) enable us to consider specific QKP
pij + pji, Wherep;; = pj;. The extra profitp;; + pj; instances, for which we propose efficient algorithms even
might be negative for some pairs and positive for otherflough the number of flows might be large (R4).

D-UFP can be classified according to the following The Quadratic Knapsack Problem (QKP): The in-
characteristics: stance of this problem is a s&tof n itemssy, ss, ..., s,

1) Network type: The topology of the network has &"d @ capacity. Each items; has a weightw; and a
critical impact on the problem. In this paper Wéorof]t defined t_)y the me't matrig = (pij), desprlbed
address two cases: the case where all the sen§gfier- The objective is to find a subsgtC .5 of items
are connected to a single broadcast channel throuflt has @ feasible packing, namely, s w; < ¢, and

which they send their flows to the gateway and th@ Maximum profity S, . c e pi;.
case where they are connected in a multi-hop tree QKP is NP-hard in the strong sense [6]. Moreover,
whose root is the gateway. [25] shows that when every;; might be either positive

2) Dependency type: We distinguish between the Cagénegative, as in_our case, no pollynomial time algorithm
where the joint profit of every two dependent flowdVith fixed approximation ratio exists unlegs= NP.
fi and f; is always larger (or, equivalently, aIwaysB_ An MCKP-based Algorithm for D-UFP(SC)
smaller) thanp; + p;, and the general case where . ]
for some pairsf; and f; the joint profit is larger W& now propose a new algorithm for solving D-
thanp; + p; while for others it is smaller. UFP(SC). While this algorithm scales very well in the
3) Maximum dependency rank: We distinguish bedumber of flows, it strongly depends on the maximum
tween the case where the dependency rank is lo@gPendency rankk(F). Thus, it fits our D-UFP(SC)
e.g., R(F) < 20 and the case where it is high. (R1)-(R5) requirements. This algorithm transforms a D-
4) Average dependency degree: We distinguish bE!FP(SC) instance with a given dependency rank to
tween the cases wheR(F) is relatively small, e.g., &n instance of the Multiple Choice Knapsack Problem

D(F) = R(F)/10 and the cases where it is large.(MCKP), defined as follows.
The Multiple Choice Knapsack Problem (MCKP):

IV. D-UFPIN A SINGLE SHARED CHANNEL The instance is a set of items, belonging tan disjoint
A. D-UFP(SC) classes of item«’y,...,C,,, and a capacity; each
item i € C; has a profitp(i) and a weightw(i). The
objective is to find a subset’ of items, with exactly
one item from each class, whose packing is feasible,
(R1) There is only one broadcast channel, used y Sicor w(i) < ¢ such that the aggregated profit
all sensors to send their flows to the networlgiec,p(i) is maximized.
gateway. MCKP can be optimally solved in pseudo-polynomial
(R2) Mixed dependencies, i.e., the profit of any tWw@ime of O(nc) [24]. It can also be approximated with
dependent flowsf; and f;, might be either a factor of 2 in linear time [29]. The best FPTAS for
smaller or larger tham; + p;. MCKP is given in [20], with running time 0O (mn/¢).
(R3) A low dependency rank(< R < 20) and/or  \We now show how to transform a D-UFP(SC) instance
a low dependency degre®(F) < R(F)).  to an MCKP one. Consider a sEtof items, divided into
(R4) A large number of flowsr{ > 100). m mutually disjoint subsetd, ..., F,,. We construct
(R5) A dependency order of 2. As previously stated,, MCKP classes such that each clags consists of
in such a case the profit functioR can be 2I%:l pinary vectors. Each vectar € C; represents one
represented by a symmetric matrix. option for choosing items iF;. For example, if|F}| =
This version is referred to as D-UFP(SC), where S@, the vector1101 indicates that the first, second, and
stands for Single Channel. D-UFP(SC) is very relevafburth items fromF; are chosen. Each such vector is also
to many state-of-the-art satellite-based powerful sensassociated with a profit and a weight. The profit is the

In this section we focus on a version of D-UFP that
fulfills the following requirements:



sum of the profit of the chosen items, while taking into SGPP is NP-Complete. All previously proposed al-
account the dependencies. The weight is the sum of therithms solve small instances, with up to = 50
weight of the chosen items. The MCKP knapsack size i@des, while we are interested in larger ones. We now
the same as the D-UFP(SC) one. We can now apply propose an efficient algorithm that is based on the
MCKP algorithm for the transformed instance. MCKRKruskal method [18] and whose running time complexity
will choose one item (vector) from each claSg which is O(|E| - log|E|). The algorithm starts with a graph

is translated into a selection of a subset of dependamhose edge set is empty. It then goes through a list that
items from each class. Algorithm 1 summarizes this ideaontains all the edges sorted in a decreasing order of
their weight and adds the next edge if this edge does

Algorithm 1. (solving D-UFP(SC) using a reduction tonot create a connected segment bigger {3

MCKP)
1) Create independent item sets from the D-UFP(S®yocedure 1. (Kruskal method for SGPP)  For each
instance,{F,;};il. connected componertt; = (V;, E;) of G for which

2) Transform the independent D-UFP(SC) sets into df;| > R’ holds do
MCKP instance in the following way: 1) Start with a graphG’, = (V;, E!), where E! = ().
a) transform each item sdf;, i =1,...,mtoan 2) Sort the edges oF,; in decreasing order of their
MCKP classC;, with 2!7i| items (vectors); weight.
b) let F C F; be the chosen items indicated by the 3) Go through the sorted list and add an edgev) €
vectorv € Cj;; the profit and weight assigned to E; to E! if v and v are already in the same
are p(v) = 3 e P ANd w(v) = 375 oy Wi connected segment or if they create a new connected

3) Set the MCKP capacity to be equal to the bandwidth ~ segment with no more thaR’ nodes. .

of the D-UFP(SC) shared channel. In section VI we show the effectiveness of executing

4) Solve MCKP. this procedure prior to Algorithm 1.

C. Reducing the Maximum Dependency Rank of the D-
UFP(SC) Instance V. D-UFPIN MULTI-HOP POWERFULWSNS

The time complexity of reducing a D-UFP(SC)A- D-UFP(tree)

to MCKP is O(2R(F)). Hence, even a polynomial time The single channel case addressed in Section IV
approximation for MCKP cannot solve instances witisovers many applications of powerful WSNs. However,
R(F) > 20 in reasonable time. In what follows wethere are also important applications for which it is
propose an algorithm for reducing the maximum depemeither economical nor possible to equip each powerful
dency rank of the input set of flow®'. This algorithm sensor with a satellite transceiver. In such applications,
takes advantage of requirement (R3), which states thhe sensors use some variant of WiFi communication in
if the dependency rank is higher than 20, the maximugrder to transmit their flows, and multi-hop routing is
dependency degree is low. Still, such a reduction is likelyeeded in order to reach the gateway. In this section
to decrease the profit because MCKP has an FPTA® study the new D-UFP problem in such networks,
while D-UFP(SC) with mixed dependencies does naetnder the conventional assumption where the collection
(unlessP = N'P). In the following we reduce the D- of multi-hop paths from the sensors to the gateway form
UFP(SC) dependency rank by translating this problemspanning tree rooted at the gateway. Figure 1 shows an
into the Simple Graph Partitioning Problem (SGPP) [27gxample of the routing tree connecting 9 sensors to the

The Simple Graph Partitioning Problem (SGPP): gateway. We also assume that each collection of wireless
The instance is a simple grapii = (V, E), an edge links connecting a set of sensors to their parent (e.g.,
weight functionc : E — R™*, and a positive constaR’.  the collection{s4 — s1, s5 — sl } or the collection
The objective is to divide&7 into disconnected segments{s6 — s2, s7 — s2 }) can be viewed as a single shared
by removing some of the edges such that each segmehannel.
will have at mostR’ nodes and the total weight of the If the capacity of the level-1 shared channel connect-
pruned edges is minimized. ing the level-1 nodes to the gateway is smaller than or

In order to translate our problem to SGPP, we reprequal to the capacity of every other tree channel, then the
sent the items (flows) by the graph nodes and assignpgmblem is reduced to the single channel case. In such a
every edge a value that indicates the correlation betweease we can ignore the multi-hop routing and solve the
two dependent items. While several such correlatigoroblem using the algorithms proposed in Section IV.
functions can be considered, in the following we us&herefore, in what follows we address the general case,
c(i,7) = 2|pi;|. This represents the correlation as thevhere a collection of flows can be admitted into the root
total dependent profit the algorithm will have to ignorehannel, but cannot reach this channel due to some other
if the edge is removed. channel's lack of bandwidth. The new problem, called



one b) let F C F; be the chosen items indicated by the

level-1 . . . .
-~ shared vectorv € C;; the profit and weight assigned to

channel are p(v) = >y 1ep Pri ANd w(v) = 37 o wi,
respectively.
3) Set each capacity; of MMKP to the bandwidth of
one channel in the tree, such that the numbepf

level-0

level-1 @

capacities in the vectoey, ..., cp is equal to the
number of channels.
level-2 4) Solve MMKP. L]

@ @ @ @ @ @ Algorithm 2 works as long as each flow has a unique

path, even if the collection of paths does not form a
tree. However, the time complexity of MMKP depends
on the number of dimensions (channels) of the knapsack.

D-UFP(tree), has the same (R2)-(R5) requirements hater on we shall use the tree assumption to substantially
D-UFP(SC), but a new (R1) requirement as follows: reduce this complexity. o _
(R1) The sensors have any mesh topology. Routi%qMMKP generalizes the Multidimensional Knapsack

is performed over a (shortest-path or any othe roblem (MKP). Thus, it is not only NP-hard, but_ is
tree rooted at the gateway. also unlikely to have an EPTAS. In [23], a polynomial-

) time approximation scheme is proposed for a similar
B. An MMKP-based Algorithm for D-UFP(tree) problem called the Multiple-Choice Multidimensional
In Section IV we solved D-UFP(SC) by transformingKnapsack problem (MMK). Due to the similarity of
it into an MCKP instance, with a knapsack size equalMK to MMKP, the algorithm proposed by [23] can
to the channel bandwidth. To use a similar approach fafso be used for solving MMKP. The time complexity
D-UFP(tree), we should consider each shared chanrglthis algorithm isO((nm) fD/ﬂ), Whereﬁ is the
as a different dimension of a knapsack and each flagpproximation ratio. Thus, we cannot afford largee
as being a multidimensional item. Each dimension afalues. SinceD represents the number of tree channels
the knapsack indicates the available bandwidth on ofrea D-UFP(tree) instance, which in general can be large,
tree channel. Each dimension of an item indicates th@ must reduce its value somehow.
bandwidth requirement of the corresponding flow from . o )
each tree channel. That is, a 100Mb/s flow originating & AN Efficient Probabilistic Algorithm
sensors4 in Figure 1 requires 100Mb/s on the channel to We now propose an efficient probabilistic algorithm to
s1 and on the channel to the gateway, but no bandwidgiolve D-UFP(tree) using algorithm 2 while bounding the
on the other channels. value of D. The main idea behind the proposed scheme
The extension of MCKP to a multidimensional knapis as follows. Assuming that the capacities of the tree’s
sack is called MMKP (Multiple Dimensional Multiple channels do not vary much, and because all the flows
Choice Knapsack Problem), and is defined as followsshould reach the gateway, the low level tree channels,
The Multiple Dimensional Multiple Choice Knap- i.e., those that are close to the root, are likely to be
sack Problem (MMKP): The instance is a setthe network bottleneck. For example, if every node in
of n items, belonging tom disjoint classes of items Figure 1 generates exactly one flow, then the load on
Cy,...,Cn, and a vector of capacities, ..., cp. Each each of the level-2 channels is 2 flows whereas the load
item+i € C; has a profip(i) and a weight vectow(z') e on the level-1 channel channel is 6 flows. The following
RP. The objective is to find a subsét’ of items, with algorithm takes advantage of this property.

exactly one item frolT] each class, whose packing E’Igorithm 3. (A probabilistic algorithm for solving D-

feasible (i.e.,) ;. w(i) < ¢), such that the aggregatedUFP(tree) efficiently)
profit } .. p(i) is maximized.

Fig. 1. The multi-hop routes to the gateway form a tree

1) SetR «+ 1.
Algorithm 2. (Solving D-UFP(tree) using a reduction 2) Repeat:
to MMKP) a) run Algorithm 2 while taking into account, in
1) Create independent item sets from the D-UFP(tree) step (3), only the channels up to lev@lof the
instance,{F;}." ;. tree;
2) Transform the independent D-UFP(tree) sets into  b) check if the feasible solution found by Algo-
an MMKP instance in the following way: rithm 2 for the channels in level --- R is also
a) transform each item sdf;, i =1,...,m to an feasible for every channeél> R;

MMKP classC;, with 217l items (vectors); c) if the solution is infeasible, s&t «— R + 1.



3) Until a feasible solution for the whole tree is found  **
or R is too big for step 4 of Algorithm 2. 1

To quantitatively estimate Algorithm 3, we define  oe| T
a distribution of channel capacities and a set of no :
necessarily-feasible flows, and evaluate the value
Pr(A|Ag), where

def {the solution satisfies the capacity cpn-

= . . and
straints in the whole tree

A def the solution satisfies the capacity cén- 094

R = 1 straints until (including) the dept®

to

3 -
8 097t o

o

=

o

-

0.93 -

To find a lower bound foPr(A|AR) = Pﬁz(ﬁz) , we need I T T

to find a lower bound foPr(A4) and an upper bound for A

Pr(Ag), or equivalently, an upper bound for(A) and
a lower bound forPr(Agr). The first bound is the best

Fig. 2. The computed lower bound dh(A|AR)

of:
_ L _ From the above discussion it is clear thiat(A|Ag)
Pr(4) < ZPT(AU)) depends mainly on the average number of flows orig-
i=1 inating from each noded}, and on the ratio between
and the capacity of each channel and the bandwidth demand

Pr(A) = Pr(nk, A(i))

= [T Pr(a@ni=i AG) = T Pr(AG));

=1
the second bound is:
Pr(Ag) = Pr(UfL,AQ) 2 max (Pr(A{),

Ly

where
.\ def [the solution satisfies the capacity cpn-
Al) = . .
straints of all the level-channels

of each flow ). In Figure 2 we show the results of
the above analysis as a function ®fandd for | = 2,

p =10 andp = 0.1. In this figure R = 1 and L = 4,
which means that instead of checking the constraints for
S, 21 = 15 channels, we check them only for the
root channel.

Recall that the results shown in the figure are only
lower bounds. Simulation results indicate that the actual
value of Pr(A|Ag) is much bigger and can be obtained
for larger values ofi and/or for smaller values of.

V1. SIMULATION STUDY
To find A(7), we define for every node: . .
We study the performance of our algorithms using

E(v) % {the solution satisfies the capacity c?r)- Monte Carlo simulations on instances constructed as
straint at the shared channel #o follows. Let {F; , i =1,...,m} bem disjoint subsets
From the independence of tlig(v)'s on the same level, of dependent flows. Each of these subsets is represented
by a diagonal block in the profit matri®:

Pr(A(i) = [ Pr(E@)). 1)
v€Elevel i — 1
. L. (Pl)\Fl\x\F1| 0 0
Let F(v) be a random variable that indicates the total 0 (P2) 1y ix ol - 0
flow throughw. Thus, e :
Pr(E(v)) =Pr({F(v) < C(e)}) = 0 0 (P )1 By || P |

Pr({F(v) = Cle) <0}), (2) Let R(F) and D(F) be the maximum dependency

wheree is the channel t@ andC(e) is its capacity. rank and the average dependency degree of the con-

Suppose that we have a completaary tree of sidered instance. The size of each diagonal block is
height L. Let the channel capacities be independent anchiformly distributed in[1,R(F)], and in each of the
identically distributed random variables, with(e) ~ block’s rows there are, on the average(F’) non-zero
Bin(\p, p). Suppose that every non-root tree node seekstries. Each non-zero entry valpg = p;; is uniformly
to transmitX ~ Pois(d) flows to the root and that the distributed in[—r/2, /2], wherer is a constant for the
bandwidth demand of each flow ¥ ~ Bin(p,p). To whole matrix. The weightv; of each iteny is uniformly
use Eqg. 2 in order to solve Eq. 1, we can approximatéstributed in[1, /2]. Finally, the capacity of the channel
F(v) — C(e) by a Gaussian distribution. is uniformly distributed in[1, 3~7_, w;].



We start with the results for the single channel casér the sameR(F), the profit in Scenario B is larger
We first execute Algorithm 1 while solving MCKP (inthat in Scenario A. The reason is that in Scenario B the
step 4) using the optimal algorithm described in [24[dependency has a larger variance, and therefore a larger
Figure 3 shows the running time of Algorithm 1 as ampact on the total profit.
function of the dependency rank and as a function of theWe can summarize that for the Doppler radar sce-
number of flows (when the dependency rank is maximaiarios, when the dependencies between flows are not
i.e., D(F) =R(F)—1). Itis evident that the executionignored, the performance of the radar sensor network
time grows exponentially withR(F) for every D(F) substantially increases.
value, and only polynomially (or even linearly) with the We now present simulation results for the performance
number of flows. of our algorithms in a mesh network over a routing tree.

When the instance rank is higfR(F) > 20), the In these simulations, we run Algorithm 3 fét = 1. The
running time of Algorithm 1 renders it impractical. Inoutput of this algorithm for R=1 is either feasible for the
such cases we use Procedure 1 in order to reduce thiole tree or infeasible for some of the nodes. If it is
rank of the instance before Algorithm 1 is invokedfeasible, then the solution is also optimal. Otherwise, the
Rank reduction might have a negative effect on thalgorithm is executed for higher value @. It is easy
performance of Algorithm 1. In order to study thisto see that infeasible solutions are possible only if the
effect, we use as a benchmark instances with ontapacity of the root is smaller than the capacity of some
positive dependencies. With such dependencies, the lalwver node. We are therefore interested in the probability
gorithm from [6] is shown to be optimal. Figure 4that a solution of Algorithm 3 forR = 1 is feasible for
shows the performance of Algorithm 1 with Proceduréhe whole tree when the ratio between the capacity of
1 for this benchmark. The x-axis is the dependenaylevel{i—1) tree node and the capacity of a levetee
degree, whereas the y-axis is the profit ratio betweerde, for everyi, is smaller than 1.
the performance of Algorithm 1 with Procedure 1 and In Figure 6 we show the probability described above
the performance of the optimum solution. As expecteds a function ofx. For this set of simulations, we gen-
as we increase the dependency rank and the degree, dr@ted flows from random trees in the following way. A
profit ratio monotonically decreases. However, when weuting tree has 3 levels. Every tree node Hashildren,
consider our requirements that a high dependency rankered ranges between 3 and 7, and there are 10 flows
dictates a low dependency degree, we get solutions thaiginating from every nodeR (F') = 15 andD(F) = 5
are not far from the optimum. are the maximum dependency rank and the average

Next, we study scenarios with multiple Doppler radardependency degree of the considered instance. As before,
and 100 flows. We assume that each radar has the saime size of each diagonal block in the profit mat#ix
bandwidth demand, but a different profit. The profits uniformly distributed in[1, R(F")], and in each of the
depends on the importance and size of the covered arbck’s rows there are, on the averag2(F') non-zero
For both tactical and practical considerations, some area@tries. Each non-zero entry valpg = pj; is uniformly
are covered by more than a single radar. The purpodistributed in[—r/2,r/2], wherer is a constant for the
of this study is to show the importance of taking suclvhole matrix. The weightv; of each itemyj is uniformly
dependencies into account. We thus compare the resulistributed in[1, »/2]. Finally, the capacity of the channel
of our model with the results of a model that ignores this uniformly distributed in[1, 2?21 w;].
dependencies and make a decision based on the large#ts expected, when gets closer to 1, the probability
profit/weight ratio (a simple Knapsack algorithm). that a solution for the root is feasible for the whole tree

We study two profit scenarios. In Scenario A, theets also closer to 1. But we can see that for practical
individual profits are all equal, whereas in Scenario Bees it is enough to hava ~ 0.5. We can also see
different profits are assigned to different flows. Eacthat when the number of children per node increases,
scenario is tested in two layouts, with different deperthe probability that a solution for the root is feasible for
dency ranks and different overlapping areas betwede rest of the tree increases as well. For instance, when
dependent radars. The results are presented in Figure= 0.4 we see that the probability is 1 if there are
5. The x-axis is the channel's normalized capacity, children and 0.8 if there are only 3. The reason for
i.e., ¢/ > ,cnwi, and the y-axis is the percentage ofhis is that when there are more tree nodes, the flows
additional profit gained by taking the dependencies intariginating in every level- tree are assigned bandwidth
account. In all of the graphs, as the average chanrisdm more leveli channels. Thus, it is less likely that
capacity and the overlapping areas grow, the benefit fromsolution feasible for the root will impose intolerable
taking dependencies into account increases. We can sdeaal on a lower channel.
similar behavior when we increase the dependency rankFigure 7 shows the feasibility of the solution as a
from R(F) = 30 to R(F') = 100. We can also see thatfunction of the load for the case where each node has
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Fig. 3. Execution time (in msec.) of Algorithm 1
L N S LA S S When the dependency order is higher than 2, the
profit function P can no longer be represented by a
I AN 1 matrix, D-UFP is no longer equivalent to QKP, and
09 PN i Algorithm 1 cannot be used. The profit to be gained from
£ a given combination of flows must be now calculated
& 085f - in an entirely different manner. Let this combination be
& fjj_ represented by a binary vector as in Algorithm 1, and
o8 T - T TN let the profit gained from each combination Buv).
075 L R(F)=30 —— — . ) Then we can adapt Algorithm 1, as follows, to handle
i S dependencies of higher orders.
0.7 e An MCKP instance is constructed by defining

0 2 4 6 8 10 12 14 16 18 20

MCKP classes, wheren is the number of mutually
Dependency degree D(F)

disjoint subsets (see Definition 2). Each clagsonsists
Fig. 4. The performance of Algorithm 1 with Procedure 1 didde of 2/¥:| binary vectors, and vectar € C; represents one
by the performance of the optimal solution combination items chosen frod,. The profit for each
combination is determined b7 (v). The time complex-
ity for this construction is similar to that discussed in
4 or 5 children. Each graphs is for the same number &fection 1V-B, where only dependencies between pairs
children, but for a different number of flows originatingwere considered. In addition we need to revise Procedure
at every node. We can see in both graphs that whdn A D-UFP instance can no longer be represented as
the number of flows increases, the probability that @ simple graph but by a hyper-graph. In this hyper-
solution feasible for the root is also feasible for the regtraph, each node indicates a single flow, and each edge,
of the tree increases as well. The reason for this is the@nnecting any number of nodes, represents the extra
when there are more flows, Algorithm 3 is more likelyprofit gained by accommodating all the flows represented
to choose flows from different nodes, in which case they the connected nodes. Procedure 1 should go through
load imposed on a given non-root channel is smaller. the list of edges of the relevant hyper-graph, sorted by
their weight. Any edge that exceeds the segment size
VII. EXTENSION TOHIGHER ORDER OF criterion is removed from the graph.
DEPENDENCIES Next we compare the profit gained when dependency
We now discuss flows with higher dependencgrders of both 2 and 3 are taken into account to the profit
orders. Consider the three Doppler radars in Figure §ained when only a dependency order of 2 is considered.
Let S4,Sp and S¢ be the areas covered by each radaAs in Scenario B in Section VI, the profit assigned to
Similarly, let S4p be the area covered by both and each flow is proportional to the scanned areas (see Table
B, Sapc the area covered byl, B andC, and so on. ). The results of the comparison are presented in the
Table Il shows the profit for every combination of flows6 graphs in Figure 9. For each graph, the x-axis is the
This profit is assumed to be proportional to the scannetiannel’s normalized capacity, i.e/, >, 5 w;, and the
areas. y-axis is the percentage of extra profit gained by not
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TABLE Il
PROFIT ASSIGNMENT BASED ON THE AREA COVERED BY EVERY
RADAR

04 |

02 |

7 children ----+---
5 children ——
3 children ——

P(solution is feasible for the whole tree)

0.3 0.35 0.4 0.45 0.5

values:30 and100. We also consider three values of area
overlap:10%, 20% and 30%.

As expected, Figure 9 indicates that the performance
gain is larger when the percentage of overlap and the
ignoring a dependency order of 3. Each graph depiatependency rank are larger. For example, consider Figure
two curves. The first shows the extra profit gained b9(a), where the overlapping area 38% and R(F) is
taking a dependency order of 2 into account. The secoBd. When the channel’s capacity 8% of the total
shows the extra profit gained by taking a dependenbandwidth demand, performance improves by more that
order of 3 into account as well. We consider tR4F) 50% over the case, shown in Figure 9(c), where the

Fig. 6. Feasibility as a function af and number of children
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overlap is only20%, and it improves by more than
100% over the case, shown in Figure 9(e), where th
overlap is only 10%. The improvement results for a

transmitted to the gateway, D-UFP takes into account
possible dependencies between flows. D-UFP is a very
difficult problem, even under many constraints. When
the network consists of one shared channel, D-UFP was
shown to be equivalent to QKP, which is NP-hard in
the strong sense and has no good approximation. We
presented an efficient algorithm for this case of D-UFP,
under several constraints, and for the case where the
sensors form a spanning tree. Among other things, our
simulation results revealed that taking the dependencies
into account can increase the performance of a typical
Doppler radar system by0 — 100%.
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