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Abstract

We define a new problem called the Generalized Maximum Coverage Problem (GMC).
GMC is an extension of the Budgeted Maximum Coverage Problem, and it has important
applications in wireless OFDMA scheduling. We use a variation of the greedy algorithm to
produce a ( 2e−1

e−1 +ε)-approximation for every ε > 0, and then use partial enumeration to reduce
the approximation ratio to e

e−1 + ε.

1 Introduction

We study the following new maximization problem, referred to as the Generalized Maximum Cov-
erage Problem (GMC):

Instance: A budget L, a set E of elements, and a collection B of bins. For each bin b ∈ B, each
element e ∈ E has a positive profit and a non-negative weight, denoted by P (b, e) and W (b, e)
respectively. In addition, each bin b has a weight W (b), which can be considered as the
overhead for using this bin.

Objective: Find a feasible selection with maximum profit. A selection is a triple S = (β, η, f)
where β ⊆ B, η ⊆ E, and f is an assignment function from η to β. The selection’s weight is
W (S) =

∑

b∈β W (b)+
∑

e∈η W (f(e), e). A feasible selection is a selection such that W (S) ≤ L.
The selection’s profit is denoted by P (S), where P (S) =

∑

e∈η P (f(e), e). Note that function
f guarantees that an element e can only be chosen for one bin.

Note that the bins have no individual capacity. Instead, there is an overall budget L that limits
the usage of bins and elements within the packing.

The new problem is related to three known problems: the Maximum Coverage Problem (MC) [4],
the Budgeted Maximum Coverage Problem (BMC) [6], and the Multiple Choice Knapsack Problem
(MCKP) [5] (see Figure 1). In MC, the input is a number L, a set of elements E, and a collection
C of subsets of E. The goal is to find a subset of C whose size is ≤ L and which maximizes the
number of elements covered. MC can be captured by the GMC formulation in the following way:
(1) the bins in GMC represent the collection of subsets; (2) the weights of all bins are exactly 1; (3)
the profit of every element is the same for all bins, and it is equal to 1; and (4) if an element e is
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Problem Restrictions Best Known Approx

MC ∀b∈BW (b) = 1, ∀e∈E,b∈BP (b, e) = 1, e
e−1

[4]

Elements can be selected only for a subset of the bins
BMC ∀e∈E,b∈BP (b, e) = 1 , e

e−1
[6]

Elements can be selected only for a subset of the bins
MCKP ∀b∈BW (b) = 0 FPTAS [5]

GMC none e
e−1

+ ε, ∀ε > 0 (this paper)

Figure 1: The variations of MC and their upper bounds and restrictions.

a member of a collection C, then in its corresponding bin b we have W (b, e) = 0 and W (b, e) =∞
otherwise. By setting W (b, e) =∞ we prevent the selection of element e for bin b, while by setting
W (b, e) = 0 we allow the selection of e for bin b with no additional cost. BMC is a generalization
of MC in which the weight of the bins is not necessarily equal. GMC, defined in this paper, is a
generalization of BMC, in which elements have weights and an element’s weight/profit may vary
from bin to bin. MC is NP-hard [4], and therefore both BMC and GMC are also NP-hard. A
simple greedy algorithm yields an ( e

e−1
)-approximation for MC [4]. The special case where an

element can be selected for no more than ρ bins can be approximated within 1

1−(1− 1

ρ)
ρ [1]. For small

values of ρ, this approximation ratio is better than e
e−1

. Several special cases where the bins are
vertices of a graph and the elements are its edges are discussed in [7]. In [6], the authors prove a
lower bound of e

e−1
− ε, for every ε > 0, on the approximation ratio of MC. This lower bound also

applies to BMC and GMC since they hold MC as a special case. The authors of [6] also present

two greedy-based algorithms for BMC. The first achieves a (
√

e√
e−1

)-approximation and the second

a ( e
e−1

)-approximation (the best possible). If the bins have no weight, i.e., ∀b∈BW (b) = 0, GMC
reduces to MCKP [5], which is known to have an FPTAS [5]. Therefore, the hardness of GMC
stems from the bins’ weights.

Another closely related related problem is the generalized assignment problem [2, 3, 9]. In
this problem, each bin has no weight, but rather its own budget. The first known approximation
algorithm for GAP is an LP-based 2-approximation algorithm, presented implicitly in [9]. an
LP-based ( e

e−1
+ ε)-approximation algorithm is presented in [3]. In [2], the authors present a

combinatorial linear time (2 + ε)-approximation.
Both BMC and MC are well established and have many applications [4]. An important ap-

plication of GMC is in the area of OFDMA wireless scheduling. Consider a wireless base station
with a set of packets waiting for transmission to different users. Each packet can be transmitted
using several different Phy-profiles, each of which includes a modulation technique, code rate, and
a scheme of forward error correcting code (FEC). There is a profit/cost tradeoff associated with
selecting a Phy-profile for each packet. Loosely speaking, the more robust Phy-profiles require more
bandwidth than the less robust ones. This added cost can be justified when the quality of a wireless
link is bad and the robustness of the Phy-profile significantly increases the likelihood of a correct
transmission.

For each frame transmitted by the base station, the scheduler needs to decide which of the packets
will be transmitted, and what Phy-profile to use for each packet. All the packets transmitted using
the same Phy-profile are grouped together and are considered as a single burst. In addition to the
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bandwidth cost associated with the transmission of every packet, there is also a fixed cost for every
burst, because the base station needs to inform all the receiving nodes about the exact location of
each burst within the frame. Due to the importance of this control information, it is transmitted
using the most expensive and robust Phy-profile. Hence, the cost associated with each Phy-profile
cannot be ignored.

In terms of GMC formulation, the frame’s size is the budget L, each packet is an element, and
each Phy-profile is a bin. The cost associated with the transmission of each packet using each Phy-
profile is equivalent to the weight of the corresponding element in the corresponding bin. The profit
associated with each packet indicates the likelihood that this packet will be transmitted correctly,
multiplied by a factor that indicates the packet’s priority at the considered time. The latter factor
depends not on the Phy-profile, but only on the content of the packet.

In this paper we show how to generalize the BMC algorithms provided in [6] for GMC. The
main new idea behind the proposed algorithms is not to use the original profits and weights for the
entire execution of the algorithm, but to modify these values according to the constructing solution.
As a result of this change, the entire analysis of the approximation ratio has to be extended, and a
different argument is used for the concluding theorems.

The rest of this paper is organized as follows. In Section 2 we present a ( 2e−1
e−1

+ε)-approximation
for GMC for every ε > 0. In Section 3 we analyze the running time for this algorithm. In Section 4
we present an ( e

e−1
+ ε)-approximation for GMC for every ε > 0, and in Section 5 we conclude the

paper.

2 An Efficient Greedy-Based Approximation for GMC

The greedy algorithm presented in [4] for MC has L iterations. During every iteration, this algorithm
picks the most profitable subset of elements in C from the not-yet-selected elements. This algorithm
guarantees an ( e

e−1
)-approximation [4]. An equivalent approach for BMC is to pick the highest

density bin with respect to the set of not-yet-selected elements, until no bin can be added without
violating the budget constraint. However, as shown in [6], such an algorithm has no worst-case
approximation guarantee. In [6], it is also proven that a variation of this algorithm, which returns

as a solution either the most profitable bin or the greedy solution, yields a (
√

e√
e−1

)-approximation for

BMC. In this paper we use a similar approach for GMC, which achieves a ( 2e−1
e−1

+ ε)-approximation1

guarantee.
The main idea behind the proposed algorithm is to define the residual profit and residual weight

of elements already selected for other bins. The residual profit is equal to the original profit minus
the profit already gained when the element was selected. The residual weight is defined similarly,
but with respect to the weights. The rationale behind this definition is that by selecting an element
e for bin bk instead of bj, we gain only the profit difference and pay only the weight difference. This
is stated formally as follows:

Definition 1 (residual profit/weight) Consider a selection S = (β, η, f), a bin b, and an ele-
ment e. We define the residual profit PPPS(b, e) to be equal to P (b, e) if e is not selected by S (that
is, e /∈ η), or to P (b, e)−P (f(e), e) otherwise. We define the residual weight WS(b, e) in a similar

1 e

e−1
' 1.58, 2e−1

e−1
= 1 + e

e−1
' 2.58, and

√

e
√

e−1
' 2.54.
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way, but with respect to the weight rather than the profit. In addition, WS(b) , W (b) if bin b is not
selected by S (that is, b /∈ β), and WS(b) , 0 otherwise. Finally, for a selection S ′ = (β ′, η′, f ′), we
define PS(S′) as

∑

e∈η′ PS(f ′(e), e), and WS(S′) as
∑

b∈β′ WS(b) +
∑

e∈η′ WS(f ′(e), e).

The algorithm uses the residual profit and weight functions to choose a subset of elements from the
same bin with approximately the highest residual density, until no elements can be added without
violating the budget L. Elements with negative profit are ignored, regardless of their weight (even if
it is negative). Subsets of elements with non-positive weights and positive profit are automatically
chosen. When the above greedy phase ends, its selection is compared to the most profitable selection
of a single bin. From these two possible selections, the one with the highest profit is chosen. The
algorithm guarantees a ( 2e−1

e−1
+ ε)-approximation for every ε > 0.

Our algorithm employs two other algorithms, called ALG1 and ALG2. ALG1 is used for selecting
a subset of elements with maximum residual density. ALG2 is used for selecting a subset of elements
with maximum profit from a single bin. As explained later, finding an optimal solution for both
sub-problems is also NP-hard. Therefore, the solutions found by ALG1 and ALG2 are only α-
approximations where α can be arbitrarily close to 1. The exact details of ALG1 and ALG2 are
discussed in Section 3. The core of our algorithm is the Greedy() procedure, presented below. As
shown below, during the i’th iteration, Greedy() keeps a tentative selection Si. To simplify the
description of the algorithm, we now define the action of adding elements to this tentative selection:

Definition 2 (addition of elements) For a selection S = (β, η, f), a subset of elements E, and
a bin b, we define by S⊕(b, E) the addition of (b, E) to S. In other words, S ⊕ (b, E) is a new
selection S ′ = (β ′, η′, f ′), where β ′ = β ∪ {b}, η′ = η ∪ E, and

f ′(e) =

{

b, if e ∈ E
f(e), otherwise.

For a sequence N = ((b1, E1), (b2, E2), . . . , (bq, Eq)), we define by S ⊕ N the result of successively
adding the items of this sequence to S, that is, S ⊕ (b1, E1)⊕ (b2, E2)⊕ · · · ⊕ (bq, Eq).

Definition 3 (residual profit/weight of added elements) For a selection S, a subset of ele-
ments E, and a bin b, PPPS(b, E) , PS(S ⊕ (b, E)) and WS(b, E) , WS(S ⊕ (b, E)). Similarly,
P S(N) , PS(S ⊕N), and WS(N) , WS(S ⊕N). Finally, DS(b, E) is the residual density of E

for bin b, namely, PS(b,E)
WS(b,E)

.

To simplify the notations, we use Wi, Pi and Di to indicate the weight, profit, and density functions
of tentative selection Si. Namely, Wi = WSi

, Pi = PSi
, and Di = DSi

.

Greedy(S0):

1. i← 0.

2. While new elements with a positive residual profit can be added to Si without violating the
budget L do:

(a) Invoke ALG1 to select a subset of elements Ei and a bin bi such that Wi(bi, Ei) ≤
L−W (Si) and that (bi, Ei) is an α-approximation with respect to the maximum density.
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(b) Ni ← nil; iteratively concatenate to Ni pairs (b, E) with positive residual profit and
non-negative weight, namely, WSi⊕(bi,Ei)⊕Ni

(b, E) ≤ 0 and ∀e∈EPSi⊕(bi,Ei)⊕Ni
(b, e) > 0. In

other words, Ni contains a maximal ordered sequence of pairs that can be successively
added to Si ⊕ (bi, Ei) without imposing any additional weight.

(c) SEi ← (bi, Ei)||Ni.

(d) Si+1 ← Si ⊕ SEi.

(e) i← i + 1.

3. Return (Si).

Step 2(a) is the greedy part of the procedure. Step 2(b) is still crucial since a pair (bi, Ei) with a
negative residual weight but a positive residual profit has a negative residual density. Therefore,
such a pair has a lower residual density than any pair with a positive, but very small residual profit
and a huge weight. By adding a maximal sequence of pairs with a negative residual weight and a
positive residual profit, we guarantee that during the next iteration the elements with the highest
residual density will indeed be selected.

Algorithm 1

1. SG ← Greedy(∅, ∅, ∅).

2. Invoke ALG2 to find an α-approximation the most profitable selection SH such that SH selects
exactly one bin and W (SH) ≤ L.

3. If the profit of SG is greater than the profit of SH , return (SG). Else, return (SH).

We now prove that Algorithm 1 is a ( 2e−1
e−1

+ε)-approximation for GMC. We start with a sequence
of five lemmas, which provide the foundation for Lemmas 6 and 7. Lemmas 6 and 7 can be viewed
as generalizations of Lemmas 1 and 2 in [6]. Lemma 1 indicates that the residual profit/weight of
a set of elements is just the sum of the residual profit/weight of these elements.

Lemma 1 For a solution S = (β, η, f), a subset of elements E, and a bin b, let S ′ = (β ′, η′, f ′) =
S ⊕ (b, E). Then, PS(b, E) =

∑

e∈E PS(b, e) and WS(b, E) = WS(b) +
∑

e∈E WS(b, e).

Proof: By Definition 3, PS(b, E) = PS(S ⊕ (b, E)). By Definitions 1 and 2, if S ′ = (β ′, η′, f ′) =
S ⊕ (b, E) then, PS(S ⊕ (b, E)) =

∑

e∈η∪E PS(f ′(e), e).

∑

e∈η∪E

PS(f ′(e), e) =
∑

e∈E

PS(b, e) +
∑

e∈η\E
PS(f(e), e)

=
∑

e∈E

PS(b, e) +
∑

e∈η\E
(P (f(e), e)− P (f(e), e))

=
∑

e∈E

PS(b, e).

The proof for the weight function W is similar and therefore omitted.
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Lemma 2 indicates that the addition of a set E of elements to bin b increases the profit/weight
of the tentative solution by the residual profit/weight of (b, E). Lemma 3 extends Lemma 2 for a
sequence of additions. The proofs are straightforward, and are therefore omitted.

Lemma 2 Let S = (βs, ηs, fs), and let S ′ = (β ′
s, η

′
s, f

′
s) = S⊕(b, E), where E is a subset of elements

and b is a bin. Then, PS(b, E) = P (S ′)− P (S) and WS(b, E) = W (S ′)−W (S).

Lemma 3 Let S = (βs, ηs, fs) a selection, N = ((b1, E1), (b2, E2), . . . , (bn, En)) and S ′ = S ⊕ N .
Then, PS(N) = P (S ′)− P (S) and WS(N) = W (S ′)−W (S).

Corollary 1 Pi(SEi) = P (Si+1)− P (Si) and Wi(SEi) = W (Si+1)−W (Si).

Lemma 4 indicates that the total residual weight of the elements selected in step 2(a) has a
positive increment.

Lemma 4 For every i ≥ 0, Wi(bi, Ei) > 0 holds.

Proof: The claim is proven by induction on the value of i. At the basis of the induction, we
know that W = W0. Since there are no elements with non-positive weights, W0(b0, E0) > 0. For
the inductive step i > 0, we have that Wi(bi, Ei) > 0 by the induction hypothesis. After Ei is
chosen, step 2(b) of the greedy procedure guarantees that if there exists a bin and elements pair
(b, E) with PSi⊕(bi,Ei)⊕Ni

(b, E) > 0 and WSi⊕(bi,Ei)⊕Ni
(b, E) ≤ 0, it is added to Ni. Therefore,

Wi+1(bi+1, Ei+1) > 0 holds as well.
Lemma 5 indicates that for two solutions S and S ′, the residual profit of S ′ with respect to S

is bigger than the difference of their profits. This property will be used to compare the tentative
solution to the optimal one, and to prove that there exists a sufficiently good augmentation to the
tentative solution.

Lemma 5 For every two selections S = (βs, ηs, fs) and S ′ = (β ′
s, η

′
s, f

′
s), PS(S ′) ≥ P (S ′)− P (S).

Proof: Let S∗ = (βs, ηs ∩ η′
s, f

∗
s ), where ∀e∈ηs∩η′

s
f ∗

s (e) = fs(e). By Definition 1, we have PS(S ′) =
∑

e∈η′
s
PS(f ′(e), e). Since only elements from η′

s contribute to this sum, PS(S ′) = PS∗(S ′). Now,

P (S) =
∑

e∈ηs

P (fs(e), e)

=
∑

e∈ηs∩η′
s

P (fs(e), e) +
∑

e∈ηs\η′
s

P (fs(e), e)

= P (S∗) +
∑

e∈ηs\η′
s

P (fs(e), e).

The last equation implies that P (S) ≥ P (S∗). Clearly, there is a sequence N such that S ′ = S∗⊕N .
By Lemma 3, PS∗(S ′) = PS∗(S∗ ⊕ N) = PS∗(N) = P (S ′) − P (S∗). Therefore, PS∗(S ′) ≥ P (S ′) −
P (S).

Definition 4 identifies the iteration for which a sufficiently good augmentation to the tentative
solution might not exists. However, as seen later, this implies that for this iteration the tentative
solution or a single bin solution is sufficiently good.
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Definition 4 Consider a feasible selection S = (β, η, f). We define by q(S) the first iteration
of Greedy() after which there exists at least one bin b such that adding (b, E) to Sq(S), where
E = {e ∈ η|f(e) = b}, would violate the budget constraint L. Namely, Wq(S)(b, E) > L−W (Sq(S)).

The next two lemmas are the building block for proving the behavior of Greedy() during the first
q(S) iterations. These lemma enables us to determine the profit gained in comparison to a target
solution S. Without loss of generality, we assume that S is not entirely contained in the greedy
solution, since otherwise the greedy is at least as profitable as S. Recall that α is the approximation
ratio for ALG1.

Lemma 6 Let S be a selection. Then, the following holds for every i, where 0 < i < q(S):

P (Si+1)− P (Si)

Wi(bi, Ei)
=

Pi(SEi)

Wi(bi, Ei)
≥

Pi(bi, Ei)

Wi(bi, Ei)
≥

Pi(S)

α ·Wi(S)
≥

P (S)− P (Si)

α ·Wi(S)
.

Proof: The first equality follows from Corollary 1. The first inequality follows from the fact that
Pi(SEi) contains all items in (bi, Ei) along with all items in Ni, and that each item in Ni has a
positive residual profit. To prove the second inequality, let the average residual density of S with
respect to Si be d = Pi(S)

Wi(S)
. Therefore, at least one of the bins in S, say b, has a density ≥ d. The pair

(b, E) is valid for addition to Si since q(S) > i. ALG1 ensures that (bi, Ei) is an α-approximation
with respect to the maximal residual density. Therefore, we get Di(bi, Ei) ≥

d
α
, which proves the

third inequality. Finally, the last inequality Pi(S) ≥ P (S)− P (Si) follows directly from Lemma 5.

Lemma 7 Let S be a selection. Then, for every 0 < i < q(S)

P (Si+1) ≥ P (S) ·

[

1−
i

∏

k=0

(

1−
Wk(bk, Ek)

α ·W (S)

)

]

.

Proof: The proof is by induction on the number of iterations. The induction basis is for i = 0.
From Lemma 6 we have

P (S1)− P (S0)

W0(b0, E0)
≥

P0(S)

α ·W0(S)
.

Since P ≡ P0, W0 ≡ W and S0 = (∅, ∅, ∅), then by Lemma 4 we get

P (S1) ≥ P (S) ·
W0(b0, E0)

α ·W (S)
.

For the inductive step we assume that the claim holds for j ≤ i < q(S), and we prove it for
j = i + 1 < q(S). From Lemma 6 we get

P (Si+1)− P (Si)

Wi(bi, Ei)
≥

P (S)− P (Si)

α ·Wi(S)
.
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From Lemma 4 we get Wi(bi, Ei) > 0. Thus,

P (Si+1) ≥ P (Si) + Wi(bi, Ei) ·
P (S)− P (Si)

α ·Wi(S)
.

We now develop the right side of this equation, while noting that Wi(S) ≤ W (S):

P (Si+1) ≥ P (Si) + Wi(bi, Ei) ·
P (S)− P (Si)

α ·Wi(S)

= P (Si) ·

(

1−
Wi(bi, Ei)

α ·Wi(S)

)

+ Wi(bi, Ei) ·
P (S)

α ·Wi(S)

≥ P (S) ·

[

1−
i−1
∏

k=0

(

1−
Wk(bk, Ek)

α ·W (S)

)

]

·

(

1−
Wi(bi, Ei)

α ·Wi(S)

)

+ Wi(bi, Ei) ·
P (S)

α ·Wi(S)

≥ P (S) ·

[(

1−
Wi(bi, Ei)

α ·Wi(S)

)

−

i
∏

k=0

(

1−
Wk(bk, Ek)

α ·W (S)

)

]

+ Wi(bi, Ei) ·
P (S)

α ·Wi(S)

= P (S) ·

[

1−
i

∏

k=0

(

1−
Wk(bk, Ek)

α ·W (S)

)

]

.

The second inequality is the induction hypostasis on P (Si).
Lemma 8 uses lemma 7 to provide a worst-case analysis for the first q(S) iterations.

Lemma 8 Let S = (β, η, f) be any selection. If
∑i

k=0 Wk(bk, Ek) ≥ W (S) then P (Si+1) ≥

P (S)
(

1− e−
1

α

)

, where α is the approximation ratio of ALG1.

Proof: Let b and A be two positive numbers and a = a0, a1, . . . , an be a sequence of positive numbers
such that

∑n
k=0 ak ≥ b·A. Then, it can be seen that the function f(a) =

[

1−
∏n

k=0

(

1− ak

A

)]

receives

its minimum at ak = b·A
n+1

, and that f(a) ≥
[

1−
(

1− b
n+1

)n+1
]

> 1− e−b. The lemma then follows

from combining this observation with Lemma 7, taking A = α ·W (S), b = 1
α
, and ai = Wi(bi, Ei).

Theorem 1 Algorithm 1 is a ( 1+α−α·e− 1
α

1−e−
1
α

)-approximation for GMC.

Proof: Let S = (β, η, f) be the optimal selection. Let (b, E) be one of the pairs that define q(S)
(see Definition 4). Thus, W (Sq(S)) + Wq(S)(b, E) > L, and we have

q(S)−1
∑

i=0

Wi(bi, Ei) ≥

q(S)−1
∑

i=0

Wi(SEi) =

q(S)−1
∑

i=0

(W (Si+1)−W (Si)) = W (Sq(S)) > L−Wq(S)(b, E).
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The first inequality stems from two observations: (1) by Lemma 3, for every i, Wi(SEi) = Wi(bi, Ei)+
WSi⊕(bi,Ei)(Ni) and (2) from the code of Greedy(), for every i, WSi⊕(bi,Ei)(Ni) < 0. The first equality
stems from Corollary 1. The second equality is simple arithmetic, and the last inequality is due to
the definition of q(S).

Let S ′ = (β ′, η′, f ′) be a selection such that β ′ = β \ b, η′ = η \ E, and ∀e∈η′f ′(e) = f(e).

W (Sq(S)) > L−Wq(S)(b, E)

≥ W (S)−Wq(S)(b, E)

= W (S ′) + W (b, E)−Wq(S)(b, E)

≥ W (S ′).

The first inequality is from the previous equation. The second inequality holds because L ≥ W (S).
The first equality holds because W (S) = W (S ′) + W (b, E). Finally, the last inequality stems from
the fact that W (b, E) ≥ Wq(S)(b, E). This is because the residual weight is always smaller than the
original weight.

We conclude from the last two equations that
∑q(S)−1

i=0 Wi(bi, Ei) > W (S ′). Now, let r = P (b,E)
P (S)

.
Applying Lemma 8 using the previous inequality, we get

P (Sq(S)) > P (S ′) ·
(

1− e−
1

α

)

≥ P (S) · (1− r) ·
(

1− e−
1

α

)

. (1)

A selection that contains only elements from a single bin b is examined in step 2. The selection Sq(S)

is examined in step 1. Therefore, the returned selection is at least P (S)·max
(

r
α
, (1− r)

(

1− e−
1

α

))

.

The minimum of this expression is P (S) 1−e−
1
α

1+α−α·e− 1
α
, which means that the approximation ratio is

1+α−α·e− 1
α

1−e−
1
α

.

An immediate implication is that by choosing a small enough α, the approximation ratio is ( 2e−1
e−1

+ε)
for every ε > 0.

3 Run-Time Complexity Analysis

We now analyze the running time of Algorithm 1. The size of the input is O(mn), where m is the
number of elements and n is the number of bins. ALG2 simply solves (approximately) a Knapsack
problem, since a most profitable subset of elements should be chosen under some budget constraint.
To analyze the running time of Greedy(), note that in each iteration it chooses at least one bin-
elements pair (in step 2(a)). Such a pair can also be selected in step 2(b). After a pair is added to the
tentative selection, the residual profit of all elements in this pair for the considered bin is 0. Since no
element with a non-positive profit can be chosen, the residual profit can only decrease. This implies
that each bin-elements pair can only be selected once in steps 2(a) and 2(b). Thus each element can
be selected at most m times during the entire run of the algorithm. Therefore, Greedy() has O(mn)
iterations. Moreover, the amortized number of pairs in step 2(b) in all iterations is O(mn). It is
easy to see that all the operations in each iteration, except those in step 2, can also be performed
in O(mn).
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To implement step 2(b) of Greedy(), we distinguish between two cases: (a) bin b is selected and
an element has a positive profit and non-positive weight; (b) bin b is not selected, and there is a
set of elements of positive profit and non-positive weight, and the total weight of b and E is non-
positive. Both cases are easy to compute. In the first case we examine each element individually,
and in the second we sum up all elements with positive profit and non-positive weight and compare
it with b’s weight.

In step 2(c) we need to add Ni to the tentative solution. Since the length of Ni is at most nm,
this can be done by applying each bin-elements pair separately. In fact, we can apply such a pair
immediately when it is identified, instead of accumulating the list of pairs. In such a case step 2(c)
of the algorithm can be eliminated.

To address step 2(a) of Greedy(), we now show how to implement ALG1 such that the selected
pair (bi, Ei) will be an α-approximation for the maximum residual density pair (bmax, Emax) that
satisfies (bmax, Emax) < L −W (Si). Formally, the residual density of a pair (b, E) during the i’th
iteration of Greedy() is

Di(b, E) =
Pi(b, E)

Wi(b, E)
=

∑

e∈E Pi(b, e)

Wi(b) +
∑

e∈E Wi(b, e)
.

If b was already selected in one of the previous iterations, then Wi(b) = 0. We know that
∀e∈EWi(b, e) > 0 holds since otherwise e must have been selected to Ni−1. Therefore, the max-
imum of this weighted average is a single element whose residual density is maximum. If b was not
selected (Wi(b) > 0) we know that Wi(b, E) > 0 holds for every subset of elements E with positive
profits, since otherwise (b, E) must have been selected to Ni−1. In addition, if Wi(b, e) ≤ 0 and
Pi(b, e) > 0, then adding e will only increase the weighted density since it incurs no penalty and
it increases the total profit. This means that an element e with Wi(b, e) ≤ 0 and Pi(b, e) > 0 is
present in every maximum density solution, and can be added to every pair automatically.

We now discuss the complexity of finding a maximum residual density set of elements for bin b
in the case where Wi(b) > 0 and the residual weight of all other elements for this bin is positive.
To this end, we define the following Maximum Density Knapsack (MDK) Problem:

Instance: A positive number c0. A set S of items s1, s2, . . . , sm and a capacity c. Each item si

has positive profit p(si) and a positive weight w(si).

Objective: Find a subset S ′ ⊆ S of items such that
∑

sj∈S′ w(sj) ≤ c and the average density
P

sj∈S′ p(sj)

c0+
P

sj∈S′ w(sj)
is maximized.

MDK is NP-hard. This can be shown by a simple reduction from the Subset Sum Problem(SSP),
which is known to be NP-hard [5]. We now show that there is an FPTAS for MDK. To this end,
we consider the well-known Knapsack problem, defined as follows:

Instance: A capacity c. A set S of items s1, s2, . . . , sm with profit p(si) and a weight w(si).

Objective: Find a subset S ′ ⊆ S of items such that
∑

sj∈S′ w(sj) ≤ c and
∑

sj∈S′ p(sj) is maxi-
mized.

To produce an FPTAS for MDK, we will use a scaling-based dynamic programming algorithm for
Knapsack [5]. Denote by ε′ the input for the FPTAS for Knapsack. This FPTAS ensures that for
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every profit P , a minimum weight subset S ′ is found such that P (S ′) ≥
⌊

P
1+ε′

⌋

. In the same way,
denote by ε the input for the FPTAS for MDK. Let Sopt be a feasible set with maximum density.

Since the Knapsack FPTAS finds a minimum weight set S ′ such that P (S ′) ≥
⌊

P (Sopt)
1+ε′

⌋

, we get that

W (S ′) ≤ W (Sopt) ≤ L. Therefore,

P (S ′)

c0 + W (S ′)
≥

P (S ′)

c0 + W (Sopt)
≥

⌊

P (Sopt)

1 + ε′

⌋

·
1

c0 + W (Sopt)
.

We now choose ε′ to satisfy

⌊

P (Sopt)

1 + ε′

⌋

·
1

c0 + W (Sopt)
≥

1

1 + ε
·

P (Sopt)

c0 + W (Sopt)
.

We now find the condition on ε′ from this requirement:

⌊

P (Sopt)

1 + ε′

⌋

>
P (Sopt)

1 + ε′
− 1

P (Sopt)

1 + ε′
− 1 ≥

P (Sopt)

1 + ε
P (Sopt)

1 + ε′
≥

P (Sopt) + 1 + ε

1 + ε
P (Sopt)(1 + ε)

P (Sopt) + 1 + ε
≥ 1 + ε′

P (Sopt) + P (Sopt)ε

P (Sopt) + 1 + ε
≥ 1 + ε′

P (Sopt)ε− 1− ε

P (Sopt) + 1 + ε
≥ ε′.

If 1
ε
≥ P (Sopt)

c
then O(f(n, ε)) is polynomial in n and P (Sopt). So rather than using an approximate

solution, we can use the optimal solution, which requires a polynomial in n and P (Sopt) running

time, and have no error at all. Otherwise, when P (Sopt)�
1
ε
, we get P (Sopt)ε−1−ε

P (Sopt)+1+ε
≈ ε ≥ ε′. Therefore,

S ′ is a (1 + ε)-approximation for MDK. We can therefore conclude that MDK has an FPTAS.
Let f(n, ε) be the running time of a single FPTAS for Knapsack. The total running time for

step 2(a) is O(n · f(n, ε)), and the total running time is O(n2m · f(n, ε)).

4 Improving the Performance Guarantee

In this section we show how to improve the performance guarantee from 2e−1
e−1

+ ε to e
e−1

+ ε for every
ε > 0. The main idea is to apply the partial enumeration technique [8] before calling Greedy(). In
this technique, a small but significant part of the optimal solution is “guessed”, by iterating over
the spectrum of all small solutions. For BMC [6], the authors used partial enumeration on the bins,
which reduces the approximation ratio to e

e−1
. However, even if all the bins of the optimal solution

are selected with this technique, the solution of Greedy() still has no performance guarantee. For
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example, consider an instance with one bin b and two elements {e1, e2}. Let W (b) = 0, P (e1) = 2,
P (e2) = L, W (e1) = 1 and W (e2) = L. Not surprisingly, this example also shows that a greedy
selection of the items for the Knapsack problem has no performance guarantee. This problem can
be resolved by using another enumeration to guess elements as well.

Algorithm 2, presented below, employs enumeration to guess both the most profitable bins and
the most profitable elements (with their assignment to bins of the optimal solution). The intuition
is that if adding a pair (b, E) to a selection would violate the budget constraint L, then the profit of
this pair is small. Specifically, for an integer K, all feasible initial selections which use K elements
and K bins are examined. For the most profitable K elements and K bins, P (b, E) is not more than
1
K

of the optimum. Algorithm 2 replaces Algorithm 1 presented in Section 2. Note that Greedy()
remains unchanged.

Algorithm 2 employs another algorithm, called ALG3. For a set of bins B, ALG3 finds a (1+ε′)-
approximate maximum profit selection S that uses all the bins in B and only bins in B, such that
W (S) ≤ L. The details of ALG3 are discussed at the end of this section.

Algorithm 2

For a set of bins B, denote W (B) =
∑

b∈B(W (b)).

1. For each set of bins B such that |B| ≤ K and W (B) ≤ L, invoke ALG3 to find a (1 + ε′)-
approximation for maximum profit selection while using all the bins in B and only bins in B.
From all these selections, let the maximal one be H≤K.

2. For each selection S0 = (β0, η0, f0) such that |η0| = k, W (S0) ≤ L, and |β0| ≤ k+|{f0(e) | e ∈ η0}|,
run Greedy(S0). From all these selections, let the maximal one be H≥K.

3. If P (H≤K) > P (H≥K), return H≤K. Else, return H≥K.

To prove the final theorem, we need to tighten the bound on q(S) for which Lemmas 6 and 7 hold.

Definition 5 Consider a feasible selection S = (β, η, f), and let S0 = (β0, η0, f0) be its initial
selection. We define by q′(S) the first iteration of Greedy() during which one of the following
conditions is fulfilled: (1) there exists a bin b ∈ β \ β0 such that adding (b, E) to Sq′(S), where
E = {e ∈ η|f(e) = b}, would violate the budget constraint L; (2) there exists an element e ∈ η such
that adding (f(e), {e}) to Sq′(S) would violate the budget constraint L.

This definition extends Definition 4 in instances where S0 is not empty. It turns out that Lemmas 6
– 8 apply also for q′. Lemma 6 applies since a maximum density pair for the bins selected is S0 is
a single element. The correctness of Lemmas 7 and 8 for q ′(S) follows from Lemma 6.

Theorem 2 Algorithm 2 is an approximation algorithm for GMC whose performance guarantee is
(

1− e−
1

α

)−1
(

1− 1
K

)−1
.

Proof: Let S = (β, η, f) be the optimal selection. If |β| ≤ K, namely the number of bins in S is
less than K, then β will be considered in step 1 of Algorithm 2 and a (1 + ε′)-approximation of S
will be found. Thus, ε′ = 1

e−1
would yield an ( e

e−1
)-approximation.
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If |β| > K, consider the iteration of step 2 during which the K most profitable items and the
K most profitable bins are selected. Since the k most profitable items might belong to the k most
profitable bins, β0 might take any value in [k, 2k]. If |β0| is set to be equal to k + |{f0(e) | e ∈ η0}|,
then solutions with exactly k + 1 to 2k − 1 bins are excluded. Let (b, E) be one of the pairs that

defines q′(S) (see Definition 5). Thus, W (Sq′(S)) + Wq′(S)(b, E) > L. Now, let r = P (b,E)
P (S)

. Using
arguments similar to those in Eq.1, we get Eq.2.

P (Sq′(S)) ≥ P (S) · (1− r) ·
(

1− e−
1

α

)

. (2)

We now argue that Pq′(S)(b, E) ≤ P (b, E) ≤ P (S)
K

. To prove this, consider first the case where E
contains several elements. In this case, by the definition of q ′(S), bin b cannot be one of the K bins
in S0. Then, since S0 holds the K most profitable bins, we get that any bin is less profitable than
their average, which is bounded by P (S)

K
. Next, consider the case where E contains a single element.

Using the same averaging argument, p(b, E) is smaller than the average of the K most profitable
elements. Therefore, we can conclude that

P (Sq′(S)) ≥ P (S) · (1−
1

K
) ·

(

1− e−
1

α

)

.

By choosing a small enough α and a big enough K, the approximation ratio becomes ( e
e−1

+ ε).
ALG3 is used by Algorithm 2 to find a (1 + ε′)-approximate maximum profit selection that uses

only bins in B and all the bins in B. This problem is identical to the Multiple Choice Knapsack
Problem (MCKP) [5], defined as follows:

Instance: Disjoint classes N1, . . . , Nm of items, and a capacity c. Each item s ∈ Nj has a profit
p(s) and a weight w(s).

Objective: Find a subset S ′ of items with at most one item from each class that has a feasible
packing, such that the aggregated profit

∑

sj∈S
′ p(sj) is maximized.

MCKP is known to have an FPTAS [5], which can be used as ALG3.
The running time of Algorithm 2 is O((n ·m)2K) executions of greedy and O(nK) executions of

ALG3, where m is the number of elements and n is the number of bins. Therefore, for every fixed
K, the running time is polynomial in n ·m.

5 Conclusions and Extensions

We defined a new problem, referred to as the Generalized Maximum Coverage Problem (GMC),
which is a generalization of the Maximum Coverage Problem (MC), the Budgeted Maximum Cov-
erage Problem (BMC), and the Multiple Choice Knapsack Problem (MCKP). We also presented
two algorithms for solving GMC. The first is a ( 2e−1

e−1
+ ε)-approximation, and the second is an

( e
e−1

+ ε)-approximation with a much higher running time. Earlier works showed that MC is e
e−1
− ε

hard to approximate for every ε > 0. Thus, our second algorithm is the best possible up to an ε.
GMC can be extended to the case where there are several budgets L1, L2, . . . , Lk. Each budget

has its own bins, but the elements are joint. In this extension, one needs to make a selection for
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each budget, such that the credit for each element can be acquired at most once. In [2], the authors
provide a framework that translates any α-approximation algorithm for maximizing the sum of
profits for a single budget to an (α + 1)-approximation algorithm for a similar problem but with
multi-budgets. This framework, which is valid if for every feasible solution A any subset of A is
also a feasible solution, can be used in order to get a ( 2e−1

e−1
+ ε)-approximation, for every ε > 0, to

the this extension.
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