
Cardinality Estimation Meets Good-Turing

Reuven Cohen Liran Katzir Aviv Yehezkel
Department of Computer Science

Technion
Haifa 32000, Israel

October 25, 2016

Abstract

Cardinality estimation algorithms receive a stream of elements whose order might
be arbitrary, with possible repetitions, and return the number of distinct elements.
Such algorithms usually seek to minimize the required storage and processing at the
price of inaccuracy in their output. Real-world applications of these algorithms are
required to process large volumes of monitored data, making it impractical to collect
and analyze the entire input stream. In such cases, it is common practice to sample
and process only a small part of the stream elements. This paper presents and an-
alyzes a generic algorithm for combining every cardinality estimation algorithm with
a sampling process. We show that the proposed sampling algorithm does not affect
the estimator’s asymptotic unbiasedness, and we analyze the sampling effect on the
estimator’s variance.

1 Introduction

Consider a very long stream of elements x1, x2, x3, . . . , with repetitions. Finding the number
n of distinct elements is a well-known problem with numerous applications. The elements
might represent IP addresses of packets passing through a router [20, 23, 32], elements in a
large database [29], motifs in a DNA sequence [27], or nodes of RFID/sensor networks [35].
One can easily find the exact value of n by comparing the value of a newly encountered
element, xi, to every (stored) value encountered so far. If the value of xi has not been seen
before, it is stored as well. After all of the elements are treated, the stored elements are
counted. This simple approach does not scale if storage is limited, or if the computation
performed for each element xi should be minimized. In these cases, the following cardinality
estimation problem should be solved:

The cardinality estimation problem

Instance: A stream of elements x1, x2, x3, . . . with repetitions, and an integer m. Let n be
the number of different elements, namely n = |{x1, x2, x3, . . .}|, and let these elements
be {e1, e2, . . . , en}.

1

Objective: Find an estimate n̂ of n using only m storage units, where m≪ n.

As an application example, x1, x2, x3, . . . could be IP packets received by a server. Each
packet belongs to one of n IP flows e1, e2, . . . , en, and the cardinality n represents the number
of active flows. By monitoring the number of distinct flows during every time period, a router
can estimate the network load imposed on the end server and detect anomalies. For example,
it can detect DDoS attacks on the server when the number of flows significantly increases
during a short time interval [16, 23].

Several algorithms have been proposed for the cardinality estimation problem [9, 10, 18,
28, 31, 32], all of which were designed to work on the entire stream, namely, without sampling.
However, real-world applications are required to process large volumes of monitored data,
making it impractical to collect and process the entire stream. For example, this is the case
for IP packets received over a high-speed link, because a 100 Gbps link creates a 1 TB log
file in less than 1.5 minutes. In such cases, only a small part of the stream is sampled and
processed [13, 14].

In this paper we present and analyze a generic algorithm that adds a sampling process
into every cardinality estimation procedure. The proposed algorithm consists of two steps:
(a) cardinality estimation of the sampled stream using any known cardinality estimator; (b)
estimation of the sampling ratio. We show that the proposed algorithm does not affect the
original estimator’s asymptotic bias (accuracy), and we analyze the algorithm’s effect on the
estimator’s variance (precision).

A typical application of the proposed algorithm is query optimizers, which need to de-
termine the best (low-cost) plan for processing user queries. The cost of a plan is usually
determined according to its CPU and I/O overhead, and can be estimated using the in-
put/output cardinalities of each operator in the plan. For example, to estimate the CPU
cost of a sort operator, the optimizer estimates the number of distinct tuples that have to
be sorted. While existing cardinality estimators require processing the entire data stream,
the algorithm presented in this paper is much more efficient because it needs to process only
a small sample.

A naive approach to solving the cardinality estimation problem is to estimate the cardi-
nality of the sampled stream and view it as an estimation for the cardinality of the whole
(unsampled) stream. However, this approach yields poor results because it ignores the prob-
ability of elements that do not appear in the sample. For example, we simulated a stream
of n = 10, 000 distinct elements whose frequency in the stream follows uniform distribution
∼ U(102, 104). We then sampled 0.1% of the stream and used the HyperLogLog algorithm
[18] with m = 200 storage units to estimate the cardinality of the sample. We repeated
this test 200 times, each on a different stream of 10, 000 distinct elements, and averaged
the results. We found that the mean estimated cardinality is E [n̂] ≈ 9, 100, which means
a bias of 9%, and that the relative variance is Var

[
n̂
n

]
≈ 0.0552. In contrast, our proposed

algorithm computed a mean estimated cardinality of E [n̂] ≈ 9, 900, namely a bias of only
1%, and a relative variance of only Var

[
n̂
n

]
≈ 0.0118.

The rest of this paper is organized as follows. Section 2 discusses previous work. Section
3 presents our first algorithm (Algorithm 1) for combining the sampling process with a
generic cardinality estimation procedure. In addition, this section presents an analysis of
the asymptotic bias and variance of Algorithm 1. Section 4 presents our enhanced algorithm

2

(Algorithm 2), which uses subsampling in order to reduce the memory cost of Algorithm 1.
This section also presents an analysis of the asymptotic bias and variance of Algorithm 2.
Section 5 presents simulation results that validate our analysis in Sections 3 and 4. Finally,
Section 6 concludes the paper.

2 Related Work

Several works address the cardinality estimation problem [9, 10, 18, 28, 31, 32] and propose
statistical algorithms for solving it. These algorithms are efficient because they make only
one pass on the data stream, and because they use a fixed and small amount of storage.
The common approach is to use a random hash function that maps each element ej into a
low-dimensional data sketch h(ej), which can be viewed as a random variable. The hash
function guarantees that h(ej) is identical for all the appearances of ej. Thus, the existence
of duplicates, i.e., multiple appearances of the same element, does not affect the value of the
extreme order statistics. Let h be a hash function and h(xi) denote the hash value of xi.
Then, an order statistics estimator or a bit pattern estimator can be used to estimate the
value of n. An order statistics estimator keeps the smallest (or largest) m hash values. These
values are then used to estimate the cardinality [6, 10, 28, 30, 31]. A bit pattern estimator
keeps the highest position of the leftmost (or rightmost) “1” bit in the binary representation
of the hash values in order to estimate the cardinality [9, 18]. Recent surveys about the
various methods can be found in [11, 25].

Real-world applications of cardinality estimation algorithms are required to process large
volumes of monitored data, making it impractical to collect and analyze the entire input
stream. In such cases, it is common practice to sample and process only a small part of the
stream elements. For example, routers use sampling techniques to achieve scalability. The
industry standard for packet sampling is sFlow [1], short for “sampled flow”. Using a defined
sampling rate N , an average of 1 out of N packets is randomly sampled. The flow samples
are then sent as sFlow datagrams to a central monitoring server, which analyzes the network
traffic.

Although sampling techniques provide greater scalability, they also make it more difficult
to infer the characteristics of the original stream. One of the first works addressing inference
from samples is the Good-Turing frequency estimation, a statistical technique for estimating
the probability of encountering a hitherto unseen element in a stream, given a set of past
samples. For a recent paper on the Good-Turing technique, see [21].

In [38, 39], the authors present an estimator for the cardinality and entropy of a stream
using a sample whose length is O(n/ log (n)). Their main idea is to create a frequency finger-
print histogram of all sampled elements, and then run a linear program that approximates
the real frequency distributions in the full stream. However, creating a fingerprint requires
exact mapping and counting of all distinct elements in the given sample, which becomes dif-
ficult in most real-world applications. The algorithm proposed in the present paper requires
significantly less processing overhead.

Several other works have addressed the problem of inference from samples. For example,
the detection of heavy hitters, elements that appear many times in the stream, is studied in
[5]. The authors propose to keep track of the volume of data that has not been sampled.

3

Then, a new element is skipped only when its effect on the estimation will “not be too large.”
The case where the elements are packets has also been addressed. In such cases, the heavy
hitters are called elephants. The accuracy of detecting elephant flows is studied in [33] and
[34]. The authors use Bayes’ theorem for determining the threshold of sampled packets,
which indicates whether or not a flow is an elephant in the entire stream.

Other works have dealt with exploiting protocol-level information of sampled packets in
order to obtain accurate estimations of the size of flows in the network. For example, in [15]
the authors present a TCP-specific method whose estimate is based on the TCP SYN flag in
the sampled packets. Another method, which uses TCP sequence numbers, is presented in
[36]. These methods can also be used to estimate the cardinality of the flows in the network,
i.e., the number of active flows. However, both methods are limited to TCP flows. In this
paper we present a generic algorithm that does not make any assumptions regarding the
type of the input elements.

Related to the cardinality estimation problem is the problem of finding a uniform sample
of the distinct values in the stream. Such a sample can be used for a variety of database
management applications, such as query optimization, query monitoring, query progress
indication and query execution time prediction [4, 7, 8]. Additional applications of the
uniform sample pertain to approximate query answering, such as estimating the mean, the
variance, and the quantiles over the distinct values of the query [2, 3, 26]. Several algorithms
provide a uniform sample of the stream; for example, the authors of [24] show how to find
such a sample in a single data pass. Several variations of this work are also proposed in
[12, 19, 22]. However, all the discussed approaches require scanning the entire input stream,
which is usually impractical. In this paper we present a generic algorithm that does not
require a full data pass over the input stream.

3 Cardinality Estimation with Sampling

3.1 Preliminaries: Good-Turing Frequency Estimation

The Good-Turing frequency estimation technique is useful in many language-related tasks
where one needs to determine the probability that a word will appear in a document.

Let X = {x1, x2, x3, . . .} be a stream of elements, and let E be the set of all different
elements E = {e1, e2, . . . , en}, such that xi ∈ E. Suppose that we want to estimate the
probability π(ej) that a randomly chosen element from X is ej. A naive approach is to

choose a sample Y = {y1, y2, . . . , yl} of l elements from X, and then to let π(ej) =
#(ej)

l
,

where #(ej) denotes the number of appearances of ej in Y . However, this approach is
inaccurate, because for each element ej that does not appear in Y even once (an “unseen
element”), #(ej) = 0, and therefore π(ej) = 0.

Let Ei = {ej|#(ej) = i} be the set of elements that appear i times in the sample Y .

Thus,
∑
|Ei| · i = l. The Good-Turing frequency estimation claims that P̂i = (i+ 1) |Ei+1|

l
is

a consistent estimator for the probability Pi that an element of X appears in the sample i
times.

For the special case of P0, we get from Good-Turing that P̂0 = |E1| /l. In other words,
the hidden mass P0 can be estimated by the relative frequency of the elements that appear

4

exactly once in the sample Y . For example, if 1/10 of the elements in Y appear only once
in Y , then approximately 1/10 of the elements in X do not appear in Y at all (i.e., they are
unseen elements).

3.2 The Proposed Algorithm

We now show how to use Good-Turing in order to combine a sampling process with a
generic cardinality estimation procedure, referred to as Procedure 1. As before, let X =
{x1, x2, x3, . . .} be the entire stream of elements, and let Y = {y1, y2, . . . , yl} be the sampled
stream. Assume that the sampling rate is P , namely, 1/P of the elements of X are sampled
into Y . Let n and ns be the number of distinct elements in X and Y respectively. The
algorithm receives the sampled stream Y as an input and returns an estimate for n. The
algorithm consists of two steps: (a) estimating ns using Procedure 1 (any procedure, such
as in [9, 18, 28, 31]); (b) estimating n/ns, the factor by which to multiply the cardinality ns

of the sampled stream in order to estimate the cardinality n of the full stream.
To estimate ns in step (a), Procedure 1 is invoked using m storage units. To estimate

n/ns in step (b), we first note that N0, i.e., the number of distinct elements that do not
appear in the sample, satisfies N0 = n−ns. By the definition of P0, N0 = P0 ·n holds as well.
Combining these two equalities yields that P0 = (n − ns)/n and thus 1/(1 − P0) = n/ns.
Therefore, the problem of estimating n/ns is reduced to estimating the probability P0 of

unseen elements. As indicated above, by Good-Turing, P̂0 = |E1| /l is a consistent estimator
for P0. Thus, we only need to find the number |E1| of elements that appear exactly once
in the sampled stream Y . To compute the value of |E1| precisely, one should keep track
of all the elements in Y and ignore each previously encountered element. This is done by
Algorithm 1 below using O(l) storage units. We later show (Algorithm 2 in Section 4) that
the number of storage units can be reduced by estimating the value of |E1| /l.

Algorithm 1
(cardinality estimation with sampling)

(a) n̂s ← Procedure1(Y).

(b) P̂0 ← |E1| /l. The value of |E1| is computed precisely and l is known.

(c) n̂/ns ← 1

1−P̂0
.

(d) Return (n̂ = n̂s · n̂/ns).

3.3 Analysis of Algorithm 1

In this section we analyze the asymptotic bias and variance of Algorithm 1, assuming that
the HyperLogLog algorithm [18] is used as Procedure 1. This algorithm is the best known
cardinality estimator and it has a relative variance of Var

[
n̂
n

]
≈ 1.08/m, where m is the

number of used storage units. Our main result is Theorem 1, where we prove that the
sampling does not affect the estimator’s asymptotic unbiasedness, and we show the effect of
the sampling rate P on the estimator’s variance.

5

We start with three preliminary lemmas. The first lemma, known as the Delta Method,
can be used to compute the probability distribution for a function of an asymptotically
normal estimator using the estimator’s variance:

Lemma 1 (Delta Method)
Let θm be sequence of random variables satisfying

√
m(θm − θ)→ N (0, σ2), where θ and σ2

are finite valued constants. Then, for every function g for which g′(θ) exists and g′(θ) ̸= 0,
the following holds:

√
m(g(θm)− g(θ))→ N

(
0, σ2g′(θ)

2
)
.

A proof is given in [37].
The next lemma shows how to compute the probability distribution of a random variable

that is a product of two normally distributed random variables whose covariance is 0:

Lemma 2 (Product distribution)
Let X and Y be two random variables satisfying X → N (µx, σ

2
x) and Y → N

(
µy, σ

2
y

)
, such

that Cov [X,Y] = 0. Then, the product X · Y asymptotically satisfies the following:

X · Y → N
(
µxµy, µ

2
yσ

2
x + µ2

xσ
2
y

)
.

The proof follows directly from applying the multivariate version of the Delta Method on
the function g(X, Y) = (X · Y, 1).

The last lemma states a normal limit law for |E1| /l, where |E1| and l are as described in
Section 3.1:

Lemma 3
|E1| /l → N

(
P0,

1
l
((|E1|+ 2 |E2|)/l − (|E1| /l)2)

)
, where l is the sample size.

Proof:
Theorem 1 in [17] states that1

1− |E1| /l → N
(
C,

1

l
((|E1|+ 2 |E2|)/l − (|E1| /l)2)

)
.

C is defined there as “the coverage”, and it satisfies that “1−C is equivalent to the probability
that the next observation will belong to a new class”. Thus, according to our notations,
1− C = P0, and the previous equation is equivalent to

|E1| /l→ N
(
P0,

1

l
((|E1|+ 2 |E2|)/l − (|E1| /l)2)

)
.

We are now ready to start our analysis. Our first lemma summarizes the distribution of
P0:

1Notice the change in the notations: in [17] the authors use Ni instead of Ei and n instead of l.

6

Lemma 4
P̂0 → N

(
P0,

1
l

(
P0(1− P0) + P1

))
, where l is the sample size.

Proof:
For the expectation, the following holds

E
[
P̂0

]
= E [|E1| /l] = P0.

The first equality is due to the definition of P̂0 in Algorithm 1, and the second is due to
Lemma 3.

For the variance, the following holds

Var
[
P̂0

]
= Var [|E1| /l] = 1/l · ((|E1|+ 2 |E2|)/l − (|E1| /l)2).

The first equality is due to the definition of P̂0 in Algorithm 1. The second equality is due
to Lemma 3. Finally, due to Good-Turing we get that 1/l · ((|E1|+ 2 |E2|)/l− (|E1| /l)2)→
1
l

(
P0(1− P0) + P1

)
.

As shown in [18], when sampling is not used, Procedure 1 estimates n with mean value
n and variance 1.03·n2

m
(approximated in the rest of the paper as n2

m
). Therefore, using

standard statistical claims, the distribution of the estimator can be approximated as the

normal distribution with the abovementioned mean and variance, namely, n̂→ N
(
n, n

2

m

)
.

The following theorem states the asymptotic bias and variance of Algorithm 1 for P < 1.

Theorem 1
Algorithm 1 estimates n with mean value n and variance n2

l
P0(1−P0)+P1

(1−P0)2
+ n2

m
, namely, n̂→

N
(
n, n

2

l
P0(1−P0)+P1

(1−P0)2
+ n2

m

)
, where l is the sample size, and m is the storage size used for

estimating ns. In addition, P0 and P1 satisfy:

1. E [P0] =
1
n

∑n
i=1 e

−P ·fi.

2. E [P1] =
P
n

∑n
i=1 fi · e−P ·fi

where fi is the frequency of element ei in X.

Proof:
Applying the Delta Method (Lemma 1) on 1

1−P0
yields that

1

1− P̂0

→ N
(

1

1− P0

,
1

l

P0(1− P0) + P1

(1− P0)4

)
. (1)

According to [18] (see also the explanation in the paragraph preceding Theorem 1):

n̂s → N
(
ns,

n2
s

m

)
. (2)

7

Next, we show that 1
1−P0

and ns have zero covariance:

Cov

[
ns,

1

1− P0

]
= Cov

[
ns,

n

ns

]
= E

[
Cov

[
ns,

n

ns

| ns

]]
+ Cov

[
E [ns | ns] ,E

[
n

ns

| ns

]]
= 0 + Cov

[
ns,

n

ns

]
= E

[
ns ·

n

ns

]
− E [ns]E

[
n

ns

]
= E [n]− ns ·

n

ns

= n− n = 0.

The first equality is due to the P0 definition. The second equality is due to the law of total
covariance. The third equality is because ns and n/ns are independent when ns is known.
The fourth equality is due to the covariance definition. The fifth and sixth equalities are due
to the expectation definition and algebraic manipulations.

Applying the distribution product property (Lemma 2) for Eqs. (1) and (2) yields that:

n̂ =
n̂s

1− P̂0

→ N
(
n,

n2
s

l

P0(1− P0) + P1

(1− P0)4
+

n2
s

m

1

(1− P0)2

)
.

Finally, substituting ns = n · (1− P0) yields that:

n̂→ N
(
n,

n2

l

P0(1− P0) + P1

(1− P0)2
+

n2

m

)
.

The resulting asymptotic variance depends on both P0 and P1, which are determined
according to the sampling rate P and fi, the frequency of each distinct element in the
stream. Thus, the final part of the proof is to compute their expectation. For P0 we get
that:

E [P0] =
1

n

n∑
i=1

(1− P)fi =
1

n

n∑
i=1

((1− P)1/P)P ·fi =
1

n

n∑
i=1

(e−1)P ·fi =
1

n

n∑
i=1

e−P ·fi .

The first equality is due to the expectation and P0 definitions. The second and the last
equalities are due to algebraic manipulations. The third equality is due to the known limit
result where (1− x)1/x → e−1 when x→ 0 (in our case P → 0).

For P1 we get that:

E [P1] =
1

n

n∑
i=1

fi · P (1− P)fi−1 =
1

n

n∑
i=1

fi · P ((1− P)1/P)P ·(fi−1) =
P

n

n∑
i=1

fi · e−P ·fi .

The first equality is due to the expectation and P1 definitions. The second and third equalities
are due to algebraic manipulations and the same known limit result noted above.

8

Y (a sample of X)

X (the original stream)

(a sample of Y)
U

Figure 1: The relationship between X, Y and U

4 Reducing the Computational Cost of Algorithm 1

4.1 Algorithm 2 with Subsampling

Algorithm 1 computes |E1| precisely. To this end, it uses O(l) storage units, which is linear
in the sample size. For practical real-world applications, such as those described in Section
1, this storage size is neither practical nor scalable. In such applications, the goal is to
minimize the required storage and to use small fixed-size memory. We now show how to
obtain this goal by approximating the value of |E1| using a subsample U of the sample Y
(see Figure 1).

Algorithm 2
(cardinality estimation with sampling and subsampling)
Same as Algorithm 1, except that in step (b) the ratio |E1| /l is estimated by invoking
Procedure 2.

Procedure 2:

1. Uniformly subsample u elements from the sampled stream Y . Let this subsample be
U .

2. Compute (precisely) the number |U1| of elements that appear only once in U .

3. Return P̂0 = |U1| /u.

The intuition behind Algorithm 2 is that the cheap operation of Algorithm 1, estimating
ns, is performed on the whole sample Y , whose length is l, while the expensive operation,
computing the number of elements that appear only once (|E1|), is performed on a small
subsample U of length u, where u≪ l.

Uniform subsampling (step (1) in Procedure 2) can be implemented using one-pass reser-
voir sampling [40], as follows. First, initialize U with the first u elements of Y , namely,

9

y1, y2, . . . , yu, and sort them in decreasing order of their hash values. When a new element
is sampled into Y , its hash value is compared to the current maximal hash value of the
elements in U . If the hash value of the new element is smaller than the current maximal
hash value of U , the new value is stored in U instead of the element with the maximal hash
value. After all of the elements are treated and the sample Y is created, U is a uniform
subsample of length u.

We now analyze the running time complexity of Algorithm 2. Both steps (a) and (b)
are performed using a simple pass over the sample Y , and require O(1) operations per
sampled element. Thus, these steps require O(l) operations. Step (b) requires additional
O(u) operations for each insertion of an element into U . On the average, there are O(log l)
such insertions. The total complexity is thus O(l+ u · log l) = O(l), which is similar to that
of Algorithm 1. However, the main advantage of Algorithm 2 over Algorithm 1 is that it
requires only m + u storage units, while Algorithm 1 requires m + l storage units, where
u≪ l.

Next, we analyze the asymptotic bias and variance of Algorithm 2, assuming that the
HyperLogLog algorithm [18] is used as Procedure 1. Then we generalize the analysis for any
cardinality estimation procedure.

4.2 Analysis of Algorithm 2

Our main result is Theorem 2, which proves that the subsampling does not affect the asymp-
totic unbiasedness of the estimator and analyzes the effect of the sampling rate P on the
estimator’s variance, with respect to the storage sizes m and u.

Let Zi be the set of elements that appear exactly i times in the subsample U ; thus,∑
|Zi| · i = u and Z1 is the set of elements that appear only once in U . |Z1| can be written

using indicator variables as:

|Z1| =
u∑

j=1

Ij, where

Ij =

{
1 if the j’th element in U has a single appearance in the subsample
0 otherwise.

Consider the estimator |̂E1| /l for |Z1| /u. By definition, the variable |Z1| follows a hyper-
geometric distribution, which can be relaxed to a binomial distribution if u≪ l [37]. Thus,
due to binomial distribution properties, the expectation is

E
[
|̂E1| /l | |E1|

]
= E [|Z1| /u] = E [Ij] = |E1| /l, (3)

and the variance is

Var
[
|̂E1| /l | |E1|

]
= Var [|Z1| /u] = 1/u · Var [Ij] = 1/u · |E1| /l · (1− |E1| /l). (4)

The following lemma summarizes the distribution of P0:

Lemma 5
P̂0 → N

(
P0,

1
u

(
2P0(1− P0) + P1

))
.

10

Proof:
For the expectation, the following holds

E
[
P̂0

]
= E

[
|̂E1| /l

]
= E

[
E
[
|̂E1| /l | |E1|

]]
= E [|E1| /l] = P0.

The first equality is due to Procedure 2. The second equality is due to the law of total
expectation. The third equality is due to Eq. 3. The fourth equality is due to Lemma 3.

For the variance, the following holds:

Var
[
P̂0

]
= Var

[
|̂E1| /l

]
= Var

[
E
[
|̂E1| /l | |E1|

]]
+ E

[
Var

[
|̂E1| /l | |E1|

]]
= 1/u · ((|E1|+ 2 |E2|)/l − (|E1| /l)2) + 1/u · |E1| /l · (1− |E1| /l)
= 2/u · ((|E1|+ |E2|)/l − (|E1| /l)2).

The first equality is due to Procedure 2. The second equality is due to the law of total
variance. The third equality is due to Eq. 4 and Lemma 3. The fourth equality is due to
algebraic manipulations.

By Good-Turing we get that 2/u · ((|E1|+ |E2|)/l − (|E1| /l)2)→ 1
u

(
2P0(1− P0) + P1

)
.

The following theorem states the asymptotic bias and variance of Algorithm 2 for P < 1.

Theorem 2
Algorithm 2 estimates n with mean value n and variance n2

u
2P0(1−P0)+P1

(1−P0)2
+ n2

m
, namely,

n̂ → N
(
n, n

2

u
2P0(1−P0)+P1

(1−P0)2
+ n2

m

)
. In addition, P0 and P1 can be estimated as described in

Theorem 1.

Proof:
Applying the Delta Method (see Section 3.3) on 1

1−P0
yields that:

1

1− P̂0

→ N
(

1

1− P0

,
1

u

2P0(1− P0) + P1

(1− P0)4

)
. (5)

According to [18] (see also the explanation in the paragraph preceding Theorem 1):

n̂s → N
(
ns,

n2
s

m

)
. (6)

Recall that Cov
[
ns,

1
1−P0

]
= 0 (see Section 3.3); applying the distribution product property

(see Section 3.3) for Eqs. (5) and (6) yields that:

n̂ =
n̂s

1− P̂0

→ N
(
n,

n2
s

u

2P0(1− P0) + P1

(1− P0)4
+

n2
s

m

1

(1− P0)2

)
.

11

Finally, substituting ns = n · (1− P0) yields that:

n̂→ N
(
n,

n2

u

2P0(1− P0) + P1

(1− P0)2
+

n2

m

)
.

The resulting asymptotic variance depends on both P0 and P1, which are determined
according to the sampling rate P and fi, the frequency of each distinct element in the
stream, as was described in Section 3.3.

The analysis above assumes that the HyperLogLog algorithm [18] is used as Procedure
1. Recall that the asymptotic relative efficiency (ARE) of cardinality estimator n̂ is defined
as the ratio ARE = n2

m
· 1
Var[n̂]

. For example, the ARE of bottom-m sketches [28] is 1.00,

and the ARE of the maximal-term sketch in [9] is 0.93. The following theorem generalizes
Theorem 2 for any cardinality estimation procedure.

Theorem 3
Algorithm 2 estimates n with mean value n and variance n2

u
2P0(1−P0)+P1

(1−P0)2
+ 1

ARE
n2

m
, namely,

n̂ → N
(
n, n

2

u
2P0(1−P0)+P1

(1−P0)2
+ 1

ARE
n2

m

)
, where ARE is the asymptotic relative efficiency of

Procedure 1. In addition, P0 and P1 can be estimated as described in Theorem 1.

The proof is identical to that of Theorem 2.

5 Simulation Results

This section validates our analysis for the asymptotic bias and variance of Algorithm 1 and
Algorithm 2, as stated in Theorems 1 and 2 respectively. Both algorithms are implemented
using the R programming language, and Procedure 1 is implemented using the HyperLogLog
algorithm [18]. Then, tests are performed on synthetic data streams of n distinct elements.
Each distinct element ej appears fj times in the original (unsampled) stream. These

frequencies are determined according to the following models:

1. Uniform distribution: The frequency of the elements is uniformly distributed between
100 and 10, 000; i.e., fj ∼ U(102, 104).

2. Pareto distribution: The frequency of the elements follows the heavy-tailed rule with
shape parameter α and scale parameter s = 500; i.e., the frequency probability function
is p(fj) = αsαf−α−1, where α > 0 and fj ≥ s > 0. The scale parameter s represents
the smallest possible frequency.

Pareto distribution has several unique properties. In particular, if α ≤ 2, it has infinite
variance, and if α ≤ 1, it has infinite mean. As α decreases, a larger portion of the probability
mass is in the tail of the distribution, and it is therefore useful when a small percentage of
the population controls the majority of the measured quantity.

Table 1 presents the simulation results for Algorithm 1 using uniformly distributed fre-
quencies. The number of distinct elements is n = 10, 000. Thus, the expected length of
the original stream X is 10, 000 · 100+10,000

2
= 50.5 · 106. We examine two sampling rates:

12

P = 1/100 (Table 1(a)) and P = 1/1000 (Table 1(b)). We use different m values, and for
every m average the results over 200 different runs. In each table row we present, for every
m, the bias and the variance. The bias column is only from the simulations and it is always
very close to 0, as proven in our analysis. For the variance we have two values: one from the
analysis (Theorem 1) and one from the simulations.

The results in Table 1 show very good agreement between the simulation results and our
analysis. First, as already said, the bias values are all very close to 0. Second, the simulation
variance is always very close to the analyzed variance.

m bias
variance

analysis simulation
50 0.0023 0.0200 0.0191
100 0.0134 0.0100 0.0116
150 0.0094 0.0067 0.0057

(a) P = 1/100

m bias
variance

analysis simulation
50 0.0141 0.0209 0.0174
100 0.0094 0.0114 0.0099
150 0.0036 0.0096 0.0087

(b) P = 1/1000

Table 1: Simulation results for Algorithm 1 using uniformly distributed frequencies

Next, we consider Algorithm 2 and seek to validate Theorem 2. Table 2 presents the
simulation results for uniform distribution of the frequencies. The total storage budget is
200 units, which are partitioned between m and u. The number of distinct elements is
n = 10, 000. We examine again two sampling rates: P = 1/100 and P = 1/1000. Table
3 presents results for the Pareto distribution of the frequencies, with α = 1.1, n = 10, 000,
P = 1/100, and a total storage budget of 2, 000 units. The results are averaged again over
200 runs, and the variance from the analysis is determined according to Theorem 2.

m u bias
variance

analysis simulation
10 190 0.0439 0.1000 0.1149
50 150 0.0025 0.0200 0.0217
100 100 0.0029 0.0101 0.0121
150 50 0.0037 0.0068 0.0075
190 10 0.0058 0.0060 0.0054

(a) P = 1/100

m u bias
variance

analysis simulation
10 190 0.0093 0.1000 0.1081
50 150 0.0184 0.0200 0.0199
100 100 0.0114 0.0101 0.0118
150 50 0.0060 0.0068 0.0059
190 10 0.0142 0.0058 0.0053

(b) P = 1/1000

Table 2: Simulation results for Algorithm 2 using uniform distribution and m + u = 200
storage units

In both tables we see again that the bias is indeed practically 0 and that the variance of
the algorithm as found by the simulations is very close to the variance found by our analysis.
These results are very consistent, for both frequency distributions, both sampling rates, and
all m and u values. As expected, when m+ u increases (more storage is used), the variance
decreases.

The relative error of the variance is always less than 20% and usually less than 10%.
Although our analysis is asymptotic, the simulation results show fast convergence of the

13

estimator to the analysis. Table 4 shows this fast convergence for uniform distribution and
different values of n, where m = 100, u = 1, 000 and P = 1/100. The results in this table
are averaged over 200 runs.

m u bias
variance

analysis simulation
50 1950 0.00005 0.0200 0.0217
100 1900 0.0189 0.0100 0.0104
500 1500 0.0011 0.0020 0.0023
1000 1000 0.00001 0.0010 0.0009
1500 500 0.0107 0.0007 0.0006

Table 3: Simulation results for Algorithm 2 using Pareto distribution and m + u = 2000
storage units

n bias
variance

analysis simulation % error
500 0.0341 0.0101746 0.0083594 17.84
1,000 0.0308 0.0101744 0.0093550 8.05
10,000 0.0174 0.0101743 0.0094204 7.41
20,000 0.0158 0.0101741 0.0100634 1.09

Table 4: Simulation results for Algorithm 2 using uniform distribution showing the fast
convergence rate

We now want to compare the performance of Algorithms 1 and 2. Recall that Algorithm
2 is expected to have a higher variance, but with significantly less storage. In Theorems 1
and 2 we got the following closed expressions for the relative variance of the algorithms:

1. Algorithm 1: 1
l
P0(1−P0)+P1

(1−P0)2
+ 1

m
.

2. Algorithm 2: 1
u
2P0(1−P0)+P1

(1−P0)2
+ 1

m
.

Recall that m + l is the total storage used by Algorithm 1 (l is the sample length), and
m+ u is the total storage used by Algorithm 2. The probabilities P0 and P1 are determined
according to the sampling rate P and the frequency distribution of the distinct elements in
the stream (see Theorem 1). Therefore, in a given stream, the only parameters that need to
be determined by the user are m in Algorithm 1, and m and u in Algorithm 2. In order to
find the values of m and u that yield the minimal variance for a given input stream, one only
needs to know the sampling rate and then minimize the relative variance function stated
above.

Table 5 presents the simulation results for n = 10, 000, a uniform distribution of element
frequencies, and for several sampling rates. Table 5(a) presents the variance of Algorithm 1.
In each table row we present the sample length l, the value of m, the total storage used by
the algorithm (m+ l), and the simulation variance (averaged over 200 different runs). Recall

14

that in addition to m, Algorithm 1 uses O(l) storage units for the exact computation of |E1|.
Table 5(b) presents the minimal variance of Algorithm 2 as a function of B. B indicates
the total number of storage units we are willing to spend. In each table row we present the
optimal partition of B between m and u that minimizes the variance of the estimator, and
the simulation variance for these m and u values. For the case where P = 1 (no sampling),
we provide in both tables the simulation variance of HyperLogLog [18], which we use as
Procedure 1. This algorithm is the best known cardinality estimator and it has a relative
variance of Var

[
n̂
n

]
≈ 1.08/m [18]. In this case we do not provide the values of l, m and u

as there is no meaning to these parameters because sampling is not used.

P
storage variance

m l total (simulation)

1/100
100

505,000
505,100 0.0116

500 505,500 0.0018
1000 506,000 0.0009

1/500
100

101,000
101,100 0.0095

500 101,500 0.0021
1000 102,000 0.0008

1/1000
100

50,500
50,600 0.0099

500 51,000 0.0019
1000 51,500 0.0008

1
100 - 100 0.0101
500 - 500 0.0021
1000 - 1000 0.0010

(a) Algorithm 1

P
storage variance

B m u (simulation)

1/100
100 92 8 0.0112
500 460 40 0.0022
1000 921 79 0.0009

1/500
100 80 20 0.0126
500 401 99 0.0027
1000 803 197 0.0011

1/1000
100 72 28 0.0152
500 363 137 0.0031
1000 724 276 0.0013

1
100 - - 0.0101
500 - - 0.0021
1000 - - 0.0010

(b) Algorithm 2

Table 5: Simulation results for Algorithms 1 and 2 using uniform distribution

We can easily see from the tables that the storage-variance trade-off of Algorithm 2 is
significantly better than that of Algorithm 1. For example, the same variance (0.011) is
obtained by both algorithms in the first row of P = 1/100. However, in this row Algorithm
1 uses 505,100 storage units whereas Algorithm 2 uses only 100. For P = 1/500, we see that
the same variance (0.002) is obtained by the two algorithms when Algorithm 1 uses 101,500
storage units while Algorithm 2 uses only 500.

6 Conclusions

In this paper we studied the problem of estimating the number of distinct elements in a
stream when only a small sample of the stream is given. We presented Algorithm 1, which
combines a sampling process with a generic cardinality estimation procedure. The proposed
algorithm consists of two steps: (a) cardinality estimation of the sampled stream using
any known cardinality estimator; (b) estimation of the sampling ratio using Good-Turing
frequency. Then we presented an enhanced algorithm that uses subsampling in order to
reduce the memory cost of Algorithm 1. We proved that both algorithms do not affect the
asymptotic unbiasedness of the original estimator. We also analyzed the sampling effect
on the asymptotic variance of the estimators. Finally, we presented simulation results that

15

validate our analysis and showed how to find the optimal parameter values that yield the
minimal variance.

References

[1] http://www.sflow.org.

[2] S. Acharya, P. B. Gibbons, and V. Poosala. Congressional samples for approximate
answering of group-by queries. In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, pages 487–498.

[3] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. Join synopses for approxi-
mate query answering. In SIGMOD 1999, pages 275–286.

[4] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample selection for approximate
query processing. In Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, pages 539–550.

[5] S. Bhattacharyya, A. Madeira, S. Muthukrishnan, and T. Ye. How to scalably and
accurately skip past streams. In ICDE 2007, pages 654–663.

[6] P. Chassaing and L. Gérin. Efficient estimation of the cardinality of large data sets.
In Proceedings of the 4th Colloquium on Mathematics and Computer Science, pages
419–422, 2006.

[7] S. Chaudhuri, G. Das, and V. R. Narasayya. A robust, optimization-based approach for
approximate answering of aggregate queries. In Proceedings of the 2001 ACM SIGMOD
International Conference on Management of Data, pages 295–306.

[8] S. Chaudhuri, G. Das, and V. R. Narasayya. Optimized stratified sampling for approx-
imate query processing. ACM Trans. Database Syst., 32(2):9, 2007.

[9] P. Clifford and I. A. Cosma. A statistical analysis of probabilistic counting algorithms.
Scandinavian Journal of Statistics, 2011.

[10] E. Cohen and H. Kaplan. Tighter estimation using bottom k sketches. PVLDB,
1(1):213–224, 2008.

[11] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for massive
data: Samples, histograms, wavelets, sketches. Foundations and Trends in Databases,
4(1-3):1–294, 2012.

[12] G. Cormode, S. Muthukrishnan, and I. Rozenbaum. Summarizing and mining inverse
distributions on data streams via dynamic inverse sampling. In Proceedings of the 31st
International Conference on Very Large Data Bases, VLDB 2005, pages 25–36.

[13] N. G. Duffield. Sampling for passive internet measurement: A review. In Statistical
Science, volume 19, pages 472–498, 2004.

16

[14] N. G. Duffield, C. Lund, and M. Thorup. Charging from sampled network usage. In
Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement 2001, pages
245–256.

[15] N. G. Duffield, C. Lund, and M. Thorup. Estimating flow distributions from sampled
flow statistics. In Proceedings of the ACM SIGCOMM 2003 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, pages 325–
336.

[16] C. Estan, G. Varghese, and M. E. Fisk. Bitmap algorithms for counting active flows on
high-speed links. IEEE/ACM Trans. Netw., 14(5):925–937, 2006.

[17] W. W. Esty. A normal limit law for a nonparametric estimator of the coverage of a
random sample. The Annals of Statistics, 11(3):905–912, 1983.

[18] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. Hyperloglog: the analysis of a
near-optimal cardinality estimation algorithm. In Analysis of Algorithms (AofA) 2007.

[19] G. Frahling, P. Indyk, and C. Sohler. Sampling in dynamic data streams and applica-
tions. Int. J. Comput. Geometry Appl., 18(1/2):3–28, 2008.

[20] É. Fusy and F. Giroire. Estimating the number of active flows in a data stream over a
sliding window. In ANALCO 2007, pages 223–231.

[21] W. A. Gale and G. Sampson. Good-turing frequency estimation without tears. Journal
of Quantitative Linguistics, 2(3):217–237, 1995.

[22] S. Ganguly. Counting distinct items over update streams. Theor. Comput. Sci.,
378(3):211–222, 2007.

[23] S. Ganguly, M. N. Garofalakis, R. Rastogi, and K. K. Sabnani. Streaming algorithms
for robust, real-time detection of ddos attacks. In ICDCS 2007.

[24] P. B. Gibbons. Distinct sampling for highly-accurate answers to distinct values queries
and event reports. In VLDB 2001, pages 541–550.

[25] P. B. Gibbons. Distinct-values estimation over data streams. In Data Stream Manage-
ment - Processing High-Speed Data Streams, pages 121–147. 2016.

[26] P. B. Gibbons and Y. Matias. New sampling-based summary statistics for improving
approximate query answers. In SIGMOD 1998, pages 331–342.

[27] F. Giroire. Directions to use probabilistic algorithms for cardinality for dna analysis.
Journés Ouvertes Biologie Informatique Mathématiques, 2006.

[28] F. Giroire. Order statistics and estimating cardinalities of massive data sets. Discrete
Applied Mathematics, 157:406–427, 2009.

17

[29] S. Heule, M. Nunkesser, and A. Hall. Hyperloglog in practice: Algorithmic engineering
of a state of the art cardinality estimation algorithm. In Proceedings of the EDBT 2013
Conference.

[30] Z. B.-Y. T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting distinct
elements in a data stream. In Proceedings of the 6th International Workshop on Ran-
domization and Approximation Techniques, RANDOM 2002, pages 1–10.

[31] J. Lumbroso. An optimal cardinality estimation algorithm based on order statistics and
its full analysis. In Analysis of Algorithms (AofA) 2010.

[32] A. Metwally, D. Agrawal, and A. E. Abbadi. Why go logarithmic if we can go linear?:
Towards effective distinct counting of search traffic. In Proceedings of the 11th Interna-
tional Conference on Extending Database Technology: Advances in Database Technology,
EDBT 2008, pages 618–629.

[33] T. Mori, T. Takine, J. Pan, R. Kawahara, M. Uchida, and S. Goto. Identifying heavy-
hitter flows from sampled flow statistics. IEICE Transactions, 90-B(11):3061–3072,
2007.

[34] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto. Identifying elephant flows
through periodically sampled packets. In Proceedings of the 4th ACM SIGCOMM Con-
ference on Internet Measurement 2004, pages 115–120.

[35] C. Qian, H. Ngan, Y. Liu, and L. M. Ni. Cardinality estimation for large-scale RFID
systems. IEEE Trans. Parallel Distrib. Syst., 22(9):1441–1454, 2011.

[36] B. F. Ribeiro, D. F. Towsley, T. Ye, and J. Bolot. Fisher information of sampled packets:
an application to flow size estimation. In Proceedings of the 6th ACM SIGCOMM
Conference on Internet Measurement 2006, pages 15–26.

[37] J. Shao. Mathematical Statistics. Springer, 2nd edition, 2003.

[38] G. Valiant and P. Valiant. Estimating the unseen: an n/log(n)-sample estimator for
entropy and support size, shown optimal via new clts. In Proceedings of the 43rd ACM
Symposium on Theory of Computing, STOC 2011, pages 685–694, 2011.

[39] P. Valiant and G. Valiant. Estimating the unseen: Improved estimators for entropy and
other properties. In 27th Annual Conference on Neural Information Processing Systems
2013, pages 2157–2165, 2013.

[40] J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–57,
1985.

18

