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Maximizing Restorable Throughput
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Abstract—MPLS recovery mechanisms are increasing in popu-
larity because they can guarantee fast restoration and high QoS
assurance. Their main advantage is that their backup paths are
established in advance, before a failure event takes place. Most
research on the establishment of primary and backup paths has
focused on minimizing the added capacity required by the backup
paths in the network. However, this so-called Spare Capacity
Allocation (SCA) metric is less practical for network operators
who have a fixed capacitated network and want to maximize their
revenues. In this paper, we present a comprehensive study on re-
storable throughput maximization in MPLS networks. We present
the first polynomial-time algorithms for the splittable version of
the problem. For the unsplittable version, we provide a lower
bound for the approximation ratio and propose an approximation
algorithm with an almost identical bound. We present an efficient
heuristic which is shown to have excellent performance. One of our
most important conclusions is that when one seeks to maximize
revenue, local recovery should be the recovery scheme of choice.

Index Terms—MPLS, optimization, restoration.

1. INTRODUCTION

P NETWORKS should support real-time applications that
I require stringent availability and reliability, such as Voice
over IP and virtual private networks. Unfortunately, failures are
still common in the daily operation of networks, for reasons
such as improper configuration, faulty interfaces, and accidental
fiber cuts [1], [2]. Therefore, mechanisms that restore the flow
of traffic quickly and efficiently after a failure are essential.
The IP routing protocols are not suitable for fast restoration.
Using these protocols, a node first detects a failure and then
disseminates routing updates to other nodes. These updates are
used for calculating new paths. This process takes several sec-
onds before proper routing of data can resume [1], [3]. During
this time, packets destined to some destinations may be dropped,
and applications might be disrupted. Moreover, when QoS is
supported, the routing protocol cannot guarantee that the alter-
nate path will provide the same QoS as the failed one.
For these reasons, many network operators do not rely only
on IP routing protocols to restore traffic, but also employ
recovery mechanisms in Layer 1 and Layer 2 protocols such as
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WDM, SONET/SDH, and MPLS. These recovery mechanisms
guarantee fast restoration and high QoS assurance because they
establish backup paths in advance, before a failure event takes
place. Such recovery mechanisms are usually referred to as
“protection” mechanisms, as opposed to “rerouting” mecha-
nisms, which establish backup paths only after a failure occurs.

In this paper we focus on MPLS-based protection mecha-

nisms [4], [5]. However, our results are also applicable to other
Layer 1 and Layer 2 protection mechanisms. In keeping with
MPLS terminology, we refer to the path that carries the traffic
before a failure as a primary LSP, and the path that carries the
traffic after the primary LSP fails as a backup LSP. Throughout
the paper we consider only bandwidth guaranteed protection.
For this kind of protection, the backup LSP must be able to pro-
vide the same amount of guaranteed bandwidth provided by the
primary LSP. To this end, resources should be reserved upon
the establishment of each backup LSP, to be used only when the
protected element—Ilink or node—Hfails.

Many MPLS recovery schemes have been proposed. We clas-

sify these schemes as follows (see Table II):

1) Global recovery (GR) schemes [5] [Fig. 1(a)]: In this class,
each primary LSP has one backup LSP. The primary and
backup LSPs share the same end nodes. The backup LSP
protects against all link/node failures along the primary
LSP, and it does not share any link/node with the primary
LSP. A failure notification must propagate from the node
that detects the failure to the head of the LSP. These re-
covery schemes are sometimes referred to as path recovery
schemes.

2) Local recovery (LR) schemes [5], [8] [Fig. 1(b)]: In this
class, a separate backup LSP is constructed to protect
against a possible failure of each element along the pri-
mary LSP. Each backup LSP starts at the immediate
upstream node of the protected element, and ends at the
tail of the primary LSP. If such a local path does not
exist, we assume that the LSP starts at the closest possible
upstream node. A backup LSP may share links with the
primary LSP upstream of the failure. The recovery in this
class is faster than in the GR class, since the node that
detects the failure is usually also the one that diverts the
traffic to the backup LSP. However, more backup LSPs
are needed to protect each primary LSP.

3) Restricted local recovery (RLR) schemes [Fig. 1(c)]: As
in the LR scheme, a backup LSP starts at the immediate
upstream node of the protected element but ends at the
immediate downstream node. This makes the recovery
process more local, since the route downstream of the
failure does not change. Hence, unlike in the LR scheme,
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Fig. 1. Illustrations of the various recovery schemes. (a) A global recovery scheme (GR). (b) A LR scheme. (c) A RLR scheme. (d) A FLR scheme. (e¢) An

extended k-facility local recovery scheme (EKFLR, k = 2). (f) An UR scheme.

resources need not be released downstream of the primary
LSP failure. The RLR schemes are sometimes referred to
as link recovery schemes.

4) Facility local recovery (FLR) schemes [8] [Fig. 1(d)]:
Backup LSPs are constructed as in the RLR schemes.
However, a single backup LSP protects all the primary
LSPs that traverse the protected element. This makes the
process of restoring the traffic to the backup LSP simpler,
using MPLS label stacking [4]. In addition, with this
recovery scheme, the number of backup LSPs and the
incurred state overhead are significantly reduced.

5) Extended k-facility local recovery (EKFLR) schemes [9]
[Fig. 1(e)]: Backup LSPs are constructed as in RLR. How-
ever, there might be up to k£ backup LSPs that protect each
element. Obviously, this scheme is more flexible than FLR,
and permits the preferred tradeoff between higher routing
efficiency (k is larger) and lower administration overhead
(k is smaller).

6) Unrestricted recovery (UR) schemes [Fig. 1(f)]: In this
class, each primary LSP may be protected by any number
of backup LSPs. Moreover, each backup LSP may start and
end at any point along the primary LSP, and may protect
against failures of any number of elements. This scheme
incurs the highest administrative overhead while being the
most flexible.

Table I summarizes the abbreviations and acronyms used
throughout the paper.

A failure is frequently limited to a single network element—a
link or a node. Hence, it is customary to compare recovery
schemes by measuring their performance under the assumption
that a failure may occur only after the network has recovered
from the previous failure. An important implication of this as-
sumption is that two backup LSPs protecting against different
failures may share their reserved bandwidth. The single failure
assumption may not hold in an optical WDM network, where the
MPLS links are circuit-switched optical channels, called light-
paths [10]. Since a single physical fiber link may carry several
lightpaths, a single failure in the optical layer may induce several
MPLS link failures, an event known as “failure propagation”.
Since the algorithms presented in this paper are complicated,
we prefer to present them under the single failure assumption.
However, in Appendix B we show how these algorithms can be
extended to address MPLS tunnels over WDM lightpaths.

TABLE I
ABBREVIATIONS AND ACRONYMS

Abbreviation Meaning

LSP Label Switched Path, an established route in an MPLS
domain
Label Switch Router, a routing device in an MPLS

LSR .
domain
Global Recovery, one of the studied MPLS recovery

GR .
schemes (see Section I)

Local Recovery, one of the studied MPLS recovery

LR .
schemes (see Section I)

Restricted Local Recovery, one of the studied MPLS

RLR .
recovery schemes (see Section I)

Facility Local Recovery, one of the studied MPLS

FLR -
recovery schemes (see Section I)

EKFLR Extended k Facility Local Recovery, one of the studied
MPLS recovery schemes (see Section I)

Unrestricted Recovery, one of the studied MPLS recov-

UR ’
ery schemes (see Section I)

SCA Spare Capacity Allocation, a widely used optimization
metric for restorable traffic (see Sections I and II)
Splittable/Unsplittable Primary-restricted Restorable

S/U-PRFP Flow Problem, a new optimization problem described
in this paper (see Sections III-A and I1I-B)
Splittable/Unsplittable Restorable Flow Problem, a new

S/U-RFP optimization problem described in this paper (see Sec-
tions I1I-C)

Splittable/Unsplittable Flow Problem, a well-known op-

S/U-FP ST
timization problem [6], [7]

S/U-PFP Splittable/Unsplittable Primary-restricted Flow Prob-
lem, a restricted version of S/U-FP (see Sections I1I-B)

Most past research on the selection of backup LSPs is
directed at minimizing the total bandwidth reserved for the
backup LSPs. To this end, backup LSPs are routed to maximize
their bandwidth sharing. This optimization metric is usually
referred to as Spare Capacity Allocation (SCA). Models that
seek to optimize SCA usually consider a network whose links
have unbounded capacity, and a cost function associated with
bandwidth usage. Their objective is to satisfy the entire set of
flow demands while minimizing the cost of the backup LSPs.
Such models are more suitable for network dimensioning or for
the capacity planning stage, during which the network operator
seeks to minimize the cost of the link capacities while satisfying
future bandwidth demands. However, while minimizing the
cost of building the backup LSPs is an important goal, network
operators usually face a different optimization problem when
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TABLE II
CHARACTERISTICS OF THE RECOVERY SCHEMES
Recovery Protected elements Start node End node Protected
scheme class primary LSPs
GR all elements of pri- head of primary LSP tail of primary LSP single LSP
mary LSP
LR single element immediately upstream of tail of primary LSP single LSP
protected element
RLR single element immediately upstream of immediately downstream of | single LSP
protected element protected element
FLR single element immediately upstream of immediately downstream of | all LSPs traversing
protected element protected element the element
single element immediately upstream of immediately downstream of | a subset of LSPs
EKFLR protected element protected element traversing the ele-
ment
UR arbitrary arbitrary arbitrary single LSP

they operate their networks: the networks have predetermined
link capacities and the operators seek to maximize their revenue
by maximizing the traffic the network can accommodate. In
this model, it is assumed that link capacities have already
been determined, and the goal is to maximize the revenue. In
contrast to the SCA model, here not every demand should or
can be satisfied. Another difference between our model and
SCA is load balancing. The SCA model maximizes resource
sharing and thus provides an incentive for load balancing.
However, when resource sharing is not possible, SCA provides
no incentive for load balancing since the cost associated with
an established LSP does not depend on the current load of the
selected route. This may result in traffic being concentrated on
few highly loaded links. In contrast, a link in our model will
not carry more than its predetermined capacity.

In light of the above, SCA is not the most practical criterion
for running a given network during the operational stage. Hence,
in this paper we present a comprehensive study of the problem
of constructing primary and backup LSPs in a given network
while maximizing throughput. The main contributions of paper
are as follows:

1) We show that the splittable version of the problem is in P
and we offer the first polynomial time algorithm for it. In
particular, we improve the results presented in [11], where
only an FPTAS was shown.

2) We show that the unsplittable version of the problem is
NP-complete and has no approximation algorithm with
a ratio of |E|'/?~.

3) We propose an approximation algorithm with the ratio of
O(|E|'/?) for the case where the traffic demand of an in-
dividual flow does not exceed half of the edge capacities.

4) We present efficient heuristic that is shown to have excel-
lent performance.

5) We compare the various recovery schemes with respect
to the throughput maximization criterion. We show that
UR, GR, and LR differ only marginally in their perfor-
mance. Since LR has the fastest restoration time of the
three schemes, it should be the scheme of choice.

6) We show that EKFLR with k& = 2 has almost the same
performance as RLR and should be preferred over it for its
lower administrative overhead (fewer backup LSPs).

The rest of the paper is organized as follows. Section II dis-

cusses related work. In Section III we formally define the prob-

lems addressed in the paper and discuss their computational
complexity. Section IV presents algorithms for the problems. In
Section V we conduct a simulative comparison of algorithm per-
formance for the various recovery schemes. In Section VI we ex-
tend the discussion to address node failures. Finally, Section VII
concludes the paper.

II. RELATED WORK

Research on the performance of recovery schemes for virtual
circuit routing has been conducted not only for MPLS, but also
for ATM and optical networks. The recovery principles in most
of these schemes are similar: a primary path is protected by one or
more preestablished backup paths to which the traffic is restored.
Asmentioned in Section I, most previous work is directed at min-
imizing the SCA metric. Many papers develop an Integer Linear
Program (ILP) whose output is the set of backup paths that can
fully restore the traffic on the primary paths. Since finding an op-
timal solution to an ILP is computationally hard, most of the pa-
pers focus on approximation algorithms or hueristics.

The heuristic algorithm in [12] chooses backup paths, one at
a time, according to a GR scheme, and updates them iteratively.
The algorithm in [13] uses a rounding process for the relaxed
LP. It then uses hop-limited restoration routes to round the LP
solution. Other algorithms that address the SCA problem using
the ILP formulation can be found in [14]-[17]. In particular, [17]
is concerned with the survivability of flows in ATM networks.
As in our work, the authors consider several restoration schemes
for splittable flows and formulates them as a linear program.
However, there are some major differences between [17] and
our paper.

* The optimization model is different, as already discussed.

e In [17], an uncapacitated network model is used. Thus, its

results are mostly relevant for network planning. In con-
trast, this paper considers strict capacity constraints. There-
fore, our results are more relevant for the admission of con-
nections in operational networks.

e In [17], the primary and backup LSPs are restricted to a

predetermined set of routes. We have no such restriction.

e In [17], the unsplittable case is not addressed, while in this

paper it is.

In [18], the work of [17] is extended by considering two ATM
path restoration schemes: state independent, which is equivalent
to our Global scheme, and state dependent, which is equivalent
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to our Unrestricted scheme. The optimization model of [18] is
still SCA, and the unsplittable case is addressed.

Some works use non-ILP methods to address the SCA
problem. The approach employed by [19] is based on a genetic
algorithm. The algorithm utilizes crossover and mutation op-
erators to evolve “good” solutions toward optimality. These
operators force disjoint backup paths to share their bandwidth.
The algorithm finds GR paths and can also deal with a nonlinear
cost function. In [20], a local search algorithm which adopts
the tabu search technique is proposed. In [21], a two-phase ap-
proach is proposed. First, a set of link-disjoint paths for a given
set of demands is found. Then, using this set, an ILP-based
selection of primary and backup paths is made.

Only a few papers have proposed approximation algorithms
with performance guarantees for the SCA problem or its vari-
ants. In [22], offline and online approximations for the FLR
scheme are presented. These algorithms are based on approx-
imation algorithms for the Steiner network problem. They
present an O(1) approximation for the case where the primary
paths are predetermined. They also propose an algorithm for
finding both primary and backup paths with an approximation
ratio of O(log(n)), where n is the number of nodes in the
network. An 14/15-approximation algorithm that finds several
backup paths for a single flow according to the GR scheme is
presented in [23]. This algorithm reserves an integral part of
the whole bandwidth for each of these backup paths, and it is
shown to be the best possible for the considered problem.

Other works concentrate on non-SCA criteria. In [24] and
[25], several heuristics based on the UR scheme are proposed
for minimizing restoration time and bandwidth consumption. In
[26], two additional parameters are introduced into the online
SCA problem. These parameters allow the length of the backup
paths to be reduced and bandwidth consumption to be reduced
further. In [27], the authors address the online SCA problem
while guaranteeing an upper bound on the delay of both the
primary and the backup paths. They use UR and show it to have
better performance than GR.

A few papers compare some of the various recovery schemes
presented in Section I. Most consider SCA as the optimization
criterion. In [14], [16], [17], and [28]-[31], the main focus is
on the GR and RLR schemes. Most of these papers use an ILP
for optimizing SCA, and then approximate it. Their consensus is
that GR outperforms RLR because global backup paths are more
flexible and generally traverse fewer links than RLR backup
paths. Hence, the GR scheme is more effective in decreasing the
extra bandwidth that has to be reserved to ensure restorability.

Only a few papers use throughput maximization as an op-
timization criterion for the selection of primary and backup
paths. In [11], an FPTAS based on the primal-dual approach is
developed. An FPTAS (fully polynomial-time approximation
scheme) is an approximation algorithm that takes a parameter
€ > 0 and produces a solution that is within a factor € of being
optimal. The running time of an FPTAS is required to be poly-
nomial in the problem size and 1/e. The proposed algorithm in
[11] deals with the splittable version of the problem, where each
demand can be split into several primary and backup paths.
This algorithm uses the RLR scheme. In [32], simple heuristics

that find backup lightpaths for the restoration of IP over WDM
are presented. This paper also compares the throughput and the
restoration time of each algorithm.

III. PROBLEM DEFINITION AND COMPUTATIONAL COMPLEXITY

Two types of event failures can be considered: a link failure
and a node failure. In [2] it was observed that link failures ac-
count for about 70% of the total network failures. Due to length
constraints, we focus our discussion here on link failures. In
Section VI we extend the discussion and explain how to apply
our results to node failures as well.

Throughout the paper, we deal with offline optimization.
Namely, we assume that the operator knows the characteristics
of the LSPs in advance. The justification for the offline model
is that most of the LSPs are reserved in advance. For instance,
a typical VoIP provider will reserve an LSP (VoIP trunk) with a
certain bandwidth between two VoIP gateways for certain hours
every day. Hence, the network operator can execute the offline
algorithms once in a while, in order to optimize its revenue for
the next hour(s).

In this paper, we address two cases. First, we assume that
the primary LSPs are predetermined and only the backup LSPs
need be established, while in the second case we need to es-
tablish both. Most of this paper is devoted to the former case,
for two reasons. From a practical viewpoint, it is difficult for
the network operator to retain joint optimization of primary and
backup LSPs because of the implication that existing primary
LSPs will require constant rearrangement to meet changing de-
mands. Rerouting backup LSPs when necessary has far less im-
pact on network operation than rerouting primary LSPs. It is
therefore more practical to set up the primary LSPs, and then
optimize the establishment of the backup LSPs separately. The
second reason is that by setting up the primary LSPs in advance,
we can focus our attention on comparing the performance of the
various recovery schemes.

We refer to the problem where both primary and backup LSPs
should be established as the Restorable Flow Problem (RFP).
The problem where primary LSPs are given and only backup
LSPs must be established is referred to as the Primary-restricted
Restorable Flow Problem (PRFP). For each of the two problems
we study the splittable and the unsplittable variants. In the split-
table variant, a flow demand can be arbitrarily split over an un-
bounded number of LSPs. This variant is particularly applicable
to MPLS networks, where traffic can be forwarded over multiple
LSPs according to some classification rules. For WDM optical
networks, this approach is less valid because the number of pre-
determined paths between two nodes is usually very limited. In
the unsplittable variant, a flow can only be routed over a single
LSP. In the next subsections we formally define these problems
and address their computational complexity. Table III summa-
rizes our main results in this section. For every problem and
every recovery scheme, the table indicates whether the problem
is N"P-complete, or in P, or its complexity is unknown (?). For
some of the N"P-complete problems we also give a lower bound
on their approximation ratio.
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TABLE III

SUMMARY OF THE COMPUTATIONAL COMPLEXITIES OF THE PROBLEMS

Recovery schemes
GR | LR [ RLR [ FLR [ EKFLR [ UR

S-PRFP P (Theorem 1) P (Theorem 1) P (Theorem 1) | P (Theorem 1) | P (Theorem 1) | P (Theorem 1)
(Sec. 11I-A)

NP-C NP-C NP-C NP-C NP-C NP-C
U-PRFP (Theorem 2) (Theorem 2) (Theorem 2) (Theorem 2) (Theorem 2) (Theorem 2)
(Sec. 11I-B) no |E|2 “apx. | no |E|Z -apx. ? ? ? no |E|2 “-apx.

(Theorem 3) (Theorem 3) (Theorem 3)
S-RFP ? ? P (Theorem 6) | P (Theorem 6) | P (Theorem 6) ?
(Sec. 11I-C)

NP-C NP-C NP-C NP-C NP-C NP-C
U-RFP (Theorem 4) (Theorem 4) (Theorem 4) (Theorem 4) (Theorem 4) (Theorem 4)
(Sec. 1I-C) no |E|Z “apx. | no |E|2 “-apx. ? ? ? no |E|Z ™ “-apx.

(Theorem 5) (Theorem 5) (Theorem 5)

A. The Splittable Primary-Restricted Restorable Flow
Problem (S-PRFP)

We now define the S-PRFP with respect to each recovery
scheme. For simplicity, we assume throughout the paper that
only one primary LSP is established for each flow. However,
the results of the paper can be easily extended for the case where
every flow has several primary LSPs. Let G = (V, E) be a di-
rected graph. Let u. be the bandwidth capacity of edge e € FE.
Let FF C V x V be a set of source-destination pairs representing
traffic flow demands. For every traffic flow f = (s¢,t5) € F,
let s¢ be the source node, ¢ the target node, dy the bandwidth
demand, P; the sequence of edges along the primary LSP, and
w ¢ the revenue for f. A feasible solution is one that admits some
of the traffic flows into the network while meeting the edge ca-
pacity constraints. Each admitted flow is routed on its primary
LSP and must be fully restorable in the face of any single link
failure. Hence, for every admitted flow f and edge e € Py, there
must exist a set of backup LSPs that satisfies the constraints of
the considered recovery scheme and can accommodate the ad-
mitted traffic of f when e fails. The objective is to maximize the
total revenue of the admitted traffic flows.

Note, the traffic demand of each admitted flow need not
be fully satisfied. Moreover, following a failure, the admitted
traffic of a flow may be split among several backup LSPs.
Therefore, this splittable version of the problem is more ap-
plicable to the case where the network can technically split
each flow into smaller subflows. A good example for this is a
VoIP trunk between two media gateways. Such a trunk should
carry thousands of low bandwidth VoIP calls at any given time.
Hence, when necessary, the flow carried by this trunk can be
divided into smaller subflows, each carrying only a portion of
the traffic. Allowing multiple LSPs to back up a single primary
LSP is especially attractive when no single backup LSP can ac-
commodate the entire flow demand. However, multiple backup
LSPs incur more signaling and state overhead.

Theorem 1: S-PRFP is in P for all recovery schemes dis-
cussed in Section L.

Proof: To show this, we formulate the problem as a linear
program. We first present the constraints of the problem that are
common to all recovery schemes. Then, we present additional
constraints for each individual scheme. We define the following
variables:

. yfee—the fraction of dy routed over edge e when edge e
fails; when no edge fails, € = ¢.
» x¢—the total routed fraction of d.
The target function is to maximize the total gained revenue

Maximize Z Wg-Tf
f
subject to the following constraints:

Ty, v =ty
(C1) D yhe— > vh= { —Tp, v =Sy
e=(u,v) e=(v,u) 0, else
Yv e V,Vf e F,Ve € {E, ¢}
(C2) Y df-yf <ue Ve € E,Ve € {E, ¢}
f
(C-3) y}. =0 Vfe FNeg Py
C-4) y5.=0 VfeFYeeFE
C-5) 0<ua;<1,0<y <1 VeeE\Vee{E, ¢}
VfePF.

The set (C-1) of constraints ensures flow conservation. The
set (C-2) ensures that no edge carries more than its capacity.
The set (C-3) ensures that when no failure occurs, each flow is
routed only along its primary LSP. The set (C-4) ensures that
no flow is routed over a failed link. Finally, the set (C-5) of
constraints ensures that the total routed bandwidth of each flow
and the routed bandwidth on each backup LSP do not exceed
flow demand.

The above constraints do not restrict the backup LSPs to be
built according to a specific recovery scheme. The program
selects, for every routed flow and for every failed link, a set
of backup LSPs that can carry the flow’s demand following
a failure. Technically, according to these constraints, a flow
may be diverted to a set of backup LSPs even if it is not routed
through the failed edge. In fact, the above linear program
solves |E| different instances of the splittable flow problem,
one for each failed link. The only connection between these
| E| instances is the requirement that the routed demand of each
flow in every instance must be the same (i.e., xy). It is clear
that such a flexible “recovery scheme,” which has almost no
restriction, would yield the best performance.
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However, each of the recovery schemes presented in Section |
imposes a set of additional constraints on the backup LSPs. The
more constraints a recovery scheme imposes, the less flexible
and efficient it is. We now present the specific set of constraints
for each recovery scheme.

The specific set of constraints for the LR scheme is

(LR-1) y;Enyje VfeFVee E,{elec E,e#¢&

and e is not a downstream edge of € along Py }.

The above set of constraints ensures that the backup LSP of f
for € = (u,v), assuming & € Py, will follow the primary LSP
all the way from the source to . From node u to the destination
node, the backup LSP is not constrained.

The specific set of constraints for the RLR scheme is:

(RLR-1) yf. >y}, VfeFVeeE {elec E e#e}.

RLR-1 is similar to LR-1, except that it also ensures that if a
backup LSP protects against a failure of edge € = (u, v), it will
follow the primary LSP not only from the source to u but also
from v to the destination.

Since S-PRFP allows the traffic of the failed primary LSP
to be split between several backup LSPs, RLR may use an un-
bounded number of backup LSPs for each link failure. Hence,
it is easy to see that an optimal solution for the FLR scheme
and for the EKFLR scheme can be produced from an optimal
solution for the RLR scheme. Hence, there is no need to specify
special constraints for these two recovery schemes.

The specific set of constraints for the GR scheme is

=0, VeeE,{f|feF,ee PrlecPy

(GR-l) yfe{ > y}be_/ otherwise

(GR-2) o5, —y}. =Ayj. VfEFVeeck
(GR-3) Ayfl = AyP Vf € F,\Vey, e € Py
where e, immediately

follows e; on Py,Ve € .

The set (GR-1) of constraints ensures that the backup LSPs of
every flow whose primary LSP crosses the failed edge must be
edge disjoint with the primary LSP. The set (GR-2) introduces
auxiliary variables Ay;}R. Each of these variables represents the
difference between the bandwidth of f routed on the primary
LSP, and the bandwidth of f to be routed on the backup LSPs
that protect the flow against the failure of edge e. This difference
yields a circular traffic flow that traverses the backup LSPs from
the source to the destination and the primary LSP in the reverse
direction. The set (GR-3) of constraints ensures that for each
flow the same set of backup LSPs is used to protect all the edges
along the primary LSP.
Finally, the set of specific constraints for the UR scheme is

(UR-1) 5. >y}, VeeeEVfeFegP.
This set ensures that if the failed link is not included in the pri-
mary LSP of a flow, then the backup LSP is identical to the
primary LSP. Otherwise, the set of backup LSPs has no con-
straint. O

@ (®)

Fig. 2. Anexample of the reduction in the proof of Theorem 3. (a) An example
of G; (b) an example of G".

From the above discussion it is obvious that RLR imposes
more constraints than LR. Hence, we expect LR to perform
better. In addition, it is clear that UR outperforms all the other
recovery schemes. However, it is not clear from the above dis-
cussion whether GR outperforms LR, or vice versa. On the one
hand, LR is more restricted in that its backup LSPs must follow
the route of the primary LSP all the way to the failed link,
whereas the backup LSPs of GR must only avoid using the links
of the primary LSP. On the other hand, GR requires the same
set of backup LSPs to protect against all possible failures on the
primary LSP, whereas LR imposes no such restriction.

B. The Unsplittable Primary-Restricted Restorable Flow
Problem (U-PRFP)

We now address the U-PRFP. There are two differences be-
tween U-PRFP and S-PRFP. First, in U-PRFP, a revenue can
be obtained for a flow only when its entire demand is satisfied.
Second, in U-PRFP, the traffic of each flow can be restored using
only a single backup LSP. We now address the computational
complexity of U-PRFP. In the decision variant of this problem,
we are given a number K and ask whether there exists a feasible
solution that yields a revenue equal to or larger than K.

Theorem 2: U-PRFP is N 'P-complete for all recovery
schemes.

This can be shown using a simple reduction from the knap-
sack problem [33].

Theorem 3: U-PRFP for GR, LR, or UR schemes cannot be
approximated within | FZ|'/2~¢ unless P = N'P.

Proof: We start by showing that U-PRFP for GR, LR,
or UR schemes can be reduced from the Unsplittable Flow
Problem (U-FP) [6], [7]. An instance of U-FP contains
G = (V,E), ue, F, dy, wy, and K, which are all the same as
in U-PRFP. The target is to route a subset F/ C F of the flows
such that their demands are fully satisfied and the edge capacity
constraints are met. Each routed flow must use a single path.
The question is whether there exists such a subset F” whose
total revenue is greater than K.

We consider an instance of U-FP and show a reduction to an
U-PRFP instance for the GR scheme. In the following we add a
superscript 7 to all the parameters constructed for U-PRFP. Let
G" = (V",E") be a directed graph with V" = V U {uy, us}
and E" = EU{(v,u1), (uz,v)|v € V}U{(u1,us2)}. Forevery
e € E, letu] = u.; otherwise, let u, = oco. Fig. 2 depicts G".

Let F" = F. For each flow f € F", let d; = dy and why =
wy. Forevery f = (sy,ty) € F", let pPp = (sp,ur,us,tr).
Namely, for every flow we construct a primary LSP that passes
through the new vertices. Note that these paths do not pass
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through the original edges of G. Finally, we define K" = K. It
is easy to see that this U-PRFP instance can be constructed in
polynomial time.

In the constructed U-PRFP instance, the failed edge (uq,u2)
constrains the maximum revenue for any feasible solution. It is
easy to see that any feasible solution for U-FP is equivalent to a
feasible backup routing for U-PRFP under such failure. Hence,
the existence of a solution for U-FP with a revenue of more than
K implies the existence of a backup routing for the U-PRFP
instance with a revenue of more than K", and vice versa.

A similar reduction can be used to show that U-PRFP is
NP-complete for the UR or LR schemes.

The above reduction is an L-reduction with the constants o =
[ = 1 [34], because any feasible solution for a U-FP instance
has the same value as for the constructed U-PRFP instance. In
[34] it is shown that an L-reduction is an approximability pre-
serving reduction. Hence, using the above reduction, every ap-
proximation algorithm for U-PRFP can be translated to an ap-
proximation algorithm for U-FP with the same approximation
ratio. This implies that the best approximation ratio that can be
achieved for U-PRFP is not worse than the best approximation
ratio that can be achieved for U-FP. Since U-FP is N"P-hard to
approximate within |E|'/2~¢ (see [6]), U-PRFP with GR, LR,
or UR is also N/P-hard to approximate within |E|'/2~¢, d

C. The Unsplittable and Splittable Restorable Flow Problems
(U-RFP and S-RFP)

We now address the U-RFP and the S-RFP. Recall that the
goal of these problems is to establish not only the backup, but
also the original (primary) LSPs. U-RFP establishes one pri-
mary LSP for every flow, and one backup LSP for every failure
event along the selected primary LSP. A revenue is obtained
for an admitted flow only if its entire demand is satisfied. In
contrast, S-RFP can split the traffic over several primary LSPs.
Every edge along these LSPs can be protected by several backup
LSPs. The demand of every flow can be partially satisfied, in
which case only part of the revenue is obtained.

Theorem 4: U-RFP is N"P-complete for all recovery schemes
discussed in Section I.

This is a trivial consequence of Theorem 2.

Theorem 5: U-RFP for GR, LR, or UR cannot be approxi-
mated within |E|'/2~¢ unless P = N'P.

A similar reduction to the one presented in Theorem 2 for
U-PRFP using GR, LR and UR can be used to reduce U-FP to
U-RFP. The only difference is that the reduction does not set the
primary LSPs for the flows. This is a suitable reduction, because
if there exists a solution for U-FP with a revenue greater than
K, then there must exist a solution for U-RFP with a revenue
greater than K" that routes all primary LSPs over (u1,u2) and
all backup LSPs over the routes used in the U-FP solution. If
there exists a solution for U-RFP that routes a set of flows whose
revenue is greater than K", there must exist a routing that does
not go through (uy,us) for the same flows. Hence, there is a
solution for U-FP with a revenue greater than K.

The above reduction is also approximability preserving.
Therefore, as for U-PRFP, this implies that U-RFP is A/P-hard
to approximate within | E|'/2~¢. d
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Theorem 6: S-RFP is in P for RLR, FLR, and EKFLR
schemes.

Proof sketch: The linear program constraints for S-PRFP
with RLR do not depend on the primary LSPs. Thus, we can use
this linear program for S-RFP without the set of constraints (C-3)
that restricts the primary LSPs. Hence, we get that S-RFP with
RLR canbe solved in polynomial time. Asnoted in Section ITI-A,
it can be easily shown that the optimal solutions for S-RFP with
RLR, FLR, and EKFLR are the same. This is because, in S-RFP,
there is no bound on the number of backup LSPs. O

Note that Theorem 6 improves the results presented in [11],
where only an FPTAS was shown for S-RFP with RLR.

To formulate the S-RFP using the other recovery schemes
(GR, LR, and UR) we need to use path-indexed variables,
namely variables that indicate for each flow the routed band-
width on every possible path in the graph. However, since the
number of such paths is exponential in the size of the graph,
it is not easy to solve this formulation in polynomial time. We
therefore leave the complexity of S-RFP with GR, LR and UR
open for future research.

IV. ALGORITHMS FOR U-PRFP AND U-RFP

A. Approximation Algorithms

We now present approximation algorithms for U-PRFP and
U-RFP for the case where edge capacities are all equal and the
bandwidth demand of each individual flow does not exceed half
of the edge capacities. While these assumptions are not always
realistic, these algorithms have theoretical value due to their worst
case performance guarantee. The presented algorithms guarantee
an approximation ratio of | F;|'/2. The algorithms are similar to
those presented in [ 7] for U-FP, but have a different analysis. The
algorithms can be used with every recovery scheme, and are based
on the following simple observation.

Observation 1: If the load on each edge does not exceed half
of the edge capacity, following a single failure every flow can
be fully restored using arbitrary backup LSPs.

We first present the algorithm for U-PRFP. The algorithm
begins by solving a similar problem, called the Splittable Pri-
mary-restricted Flow Problem (S-PFP). In this problem each
flow can only be routed along a primary LSP given in advance,
and restorability is not considered. Moreover, in this problem
a flow can be only partially satisfied. A linear program for the
problem follows. The edge capacities are denoted by u. We use
the same variables as defined in Section III

Maximize Z W§ - Tf
f
subject to the following constraints :

(S-PFP-1) Yo e V,Vf e F

.Tf, v = tf
I W
e=(u,v) e=(v,u) 0, else
(S-PFP-2) > df-yf. <u Ve € E
f
(S-PFP-3) 35, =0 Vf e F,Ye g Ps

(S-PFP-4) 0<z,;<1, 0<y5. <1 Ve € E,Vf € F.
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The approximation algorithm solves this linear program and
applies a randomized rounding procedure that yields a solution
for U-PRFP. Let 2’ be the value given by the optimal solution of
the linear program to the variable x ;. The algorithm then routes
each flow f over the primary LSP with probability =7 /7, where
« is a constant larger than 1.

Theorem 7: By choosing a proper value for -, there exists
a deterministic algorithm, based on the above randomized one,
which produces a solution in which the load imposed on every
link does not exceed half of the link capacity, and the total rev-
enue is lower bounded by Q(w% prp/|E|Y/?), where w_ ppp
is the value of the optimal solution for S-PFP.

The proof is presented in Appendix A.

By Observation 1, the flows routed by the algorithm can
be fully restored in the face of a single link failure using any
recovery scheme. It is obvious that wg_ppp is greater than
the optimal solution for S-PRFP with any recovery scheme.
Hence, w§_ppp is also greater than the optimal solutions for
U-PRFP with any recovery scheme. We can therefore conclude
that the algorithm can be used as an approximation algorithm
for U-PRFP with an approximation ratio of O(|E|'/?).

Next, we present an algorithm for U-RFP with an approxi-
mation ratio of O(|E|'/?). The algorithm begins by solving the
Splittable Flow Problem (S-FP). In this problem primary LSPs
are not given in advance, and restorability is not considered. The
linear program for this problem is the same as the one presented
above for S-PFP, but without the set (S-PFP-3) of constraints.
After finding an optimal solution for this linear program, every
flow f is routed over a possibly empty set of I' f LSPs. Each LSP
in Iy carries a fraction 2}, of the demand, where 1 < k < [['f|.
The algorithm chooses to route the entire demand of flow f on
the k-th LSP with probability 2}, /7, independently of the other
LSPs in I'y. If more than one LSP is chosen, only one is arbi-
trarily selected.

Theorem 8: By choosing a proper value for -y, there exists
a deterministic algorithm, based on the above randomized one,
which produces a solution in which the load imposed on every
link does not exceed half of the link capacity, and the total rev-
enue is lower bounded by Q(w¥_pp/|E|*/?), where w§_pp is
the value of the optimal solution of S-FP.

The proof is similar to the one presented in Appendix A for
Theorem 7. It is omitted for lack of space.

As for U-PRFP, by Observation 1, the flows admitted by the
algorithm can be fully restored in the face of a single link failure
using any recovery scheme. It can also be shown that wg_pp
must be greater than the optimal value for U-RFP with any re-
covery scheme. Therefore, the algorithm guarantees an approx-
imation ratio of O(|F|'/?) for U-RFP.

B. Heuristics

The algorithms presented earlier for U-PRFP and U-RFP
have theoretical value due to their worst case performance
guarantee. However, we expect that their average performance
will not be satisfactory, since they only utilize up to half of the
edge capacities. Moreover, since the algorithms do not depend
on a specific recovery scheme, performance of the various
schemes cannot be compared. Therefore, in this section we

present heuristics that are based on the above approximation al-
gorithms, but yield better average performance and allow us to
compare the performance of the various recovery schemes. Due
to lack of space we only present here the heuristic for U-PRFP.
However, it can be extended to U-RFP in a straightforward
manner.

The heuristic begins by solving the linear program presented
in Section IV for S-PFP. Let z; be the value given to the variable
x ¢ by the optimal solution of the linear program. We then sort
the flows in a nonincreasing order of wy/dy. Then, for each
flow, we apply the randomized rounding procedure presented
above for the U-PRFP approximation algorithm. If the flow is
selected by the randomized rounding procedure, we verify that
(a) the flow can be routed on its primary LSP without violating
the capacity constraints, and (b) for the chosen recovery scheme,
feasible backup LSPs that do not violate the capacity constraints
also exist. If both conditions hold, the flow is admitted along
with its backup LSPs. If there are several feasible backup LSPs,
the shortest one is selected.

The version for U-RFP is the same as the version for U-PRFP.
However, for U-RFP the heuristic solves the linear program of
S-FP (as presented in Section IV) and continues with the ran-
domized rounding procedure presented above. If the flow is se-
lected by the randomized rounding procedure, we first verify
that there is a primary LSP over which the flow can be routed
without violating its capacity constraints. In addition, we verify
that for the primary LSP and chosen recovery scheme, feasible
backup LSPs that do not violate the capacity constraints also
exist. If both conditions hold, the flow is admitted along with its
primary and backup LSPs. If there are several feasible primary
or backup LSPs, the shortest ones are selected.

V. SIMULATION STUDY

In this section we evaluate the performance of the algorithms
presented in Sections III and IV for the various recovery
schemes. We use the BRITE simulator [35] to simulate MPLS
domain topologies according to the Barabasi-Albert model
[36]. This model captures two important characteristics of
network topologies: incremental growth and preferential con-
nectivity of a new label switch router (LSR) to well-connected
existing LSRs. These characteristics yield a power-law degree
distribution of the LSRs.

To validate our results, we also use actual ISP topologies,
as inferred by the RocketFuel project [37]. The bandwidth for
each link is based on the results reported in [38]. For each syn-
thetic or real topology, we generate a set of flows according to a
power-law distribution. A network topology and a set of flows
form together one simulation instance. In the case of PRFP, the
simulation instance also contains the primary LSP for each flow.
For the primary LSP of each flow, we select the shortest path.
For each simulation instance, we determine the backup LSPs
using the following algorithms:

1) An optimal algorithm for S-PRFP that solves the linear
program presented in Section III-A. In the following, this
algorithm is referred to as OPT-S-PRFP.

2) An optimal algorithm for S-PFP that solves the linear pro-
gram presented in Section IV. In the following, this algo-
rithm is referred to as OPT-S-PFP.
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Fig. 3. The relative performance for OPT-S-PRFP for various MPLS domains. (a) Num. LSRs = 20, average degree = 3. (b) Num. LSRs = 20,

average degree = 5. (c) Num. LSRs = 40, average degree = 3.

3) The heuristic for U-PRFP presented in Section IV-B, based
on the approximation algorithm for U-PRFP. In the fol-
lowing, this algorithm is referred to as HEU-U-PRFP.

4) An optimal algorithm for S-RFP that solves the linear pro-
gram presented in Section III-C (using RLR). In the fol-
lowing, this algorithm is referred to as OPT-S-RFP.

To solve the various linear programs, we use the Lp_Solve soft-
ware [39].

We start by evaluating the various recovery schemes using
the OPT-S-PRFP algorithm. Fig. 3 depicts the results for three
types of MPLS domains: (a) with 20 LSRs whose average node
degree is 3 links; (b) with 20 LSRs whose average node degree
is 5; and (c) with 40 LSRs whose average node degree is 3. To
compare the performance of the various recovery schemes, we
use a relative performance metric: the ratio between the revenue
of flows admitted by OPT-S-PRFP and the revenue of flows that
can be admitted when no backup LSPs have to be established
(OPT-S-PFP). This relative performance metric indicates the
“penalty” incurred by the restoration requirement. This metric
is represented by the y axis of all the graphs in Fig. 3, while
the offered load is represented by the x axis. The value of the
offered load is the average number of flows originated by each
router.

As expected, it is evident from all three graphs that UR yields
the best performance while RLR yields the worst. In addition,
Fig. 3 shows that GR yields higher revenue than LR. However,
the performance of UR, GR and LR differs only marginally (5%
on the average), whereas RLR lags behind by about 15%. It is
also evident that the performance differences for the domain
with 20 LSRs and average degree of 5 are small [Fig. 3(b)].
This is attributed to the very short length (usually one or two
links) of the primary LSPs, when established over shortest paths,
in such MPLS domains. Consequently, the differences between
the various recovery schemes cannot really be expressed. Since
the domain with 40 LSRs and average degree of 3 [Fig. 3(c)]
has longer primary LSPs, the differences between the recovery
schemes are much more visible. For instance, there is a differ-
ence of up to 20% between UR and RLR. In addition, in larger
domains there are more backup LSPs to choose from. This fur-
ther widens the gap between the more flexible and the less flex-
ible schemes.

It is also evident from all the graphs in Fig. 3 that the penalty
associated with building backup LSPs increases as the offered
load increases. This can be intuitively explained by the fact that

a more heavily loaded network requires that more flows be re-
jected in order for backup LSPs to be established. Moreover, the
penalty of the backup LSPs is much higher for smaller domains,
or for those with lower average degree. For example, the rela-
tive performance of UR in the domain with 20 LSRs and degree
of 3 ranges between 0.67 and 0.85, where in the other domains
it ranges between 0.73 and 0.95. This can be attributed to the
fact that in the larger or denser domains the number of possible
backup LSPs is higher, and the recovery scheme may be able to
choose backup LSPs that allow more flows to be admitted.

Next, we evaluate the performance of the heuristic for
U-PRFP. In this case, we use a different relative performance
metric: the ratio between the revenue of flows admitted by
the U-PRFP heuristic and the revenue of flows admitted by
OPT-S-PRFP using the same recovery scheme. This relative
performance metric indicates the penalty incurred due to the
inability to split the traffic following a failure. The metric is
represented by the y axis of the graph in Fig. 4, while the x
axis represents the offered load. Fig. 4 depicts the results for
the same three types of MPLS domains used for Fig. 3. For the
EKFLR scheme, we use k = 2.

Fig. 4 suggests that in most cases the relative penalty of
a single backup LSP while using the GR scheme is slightly
smaller than for the other recovery schemes, including the UR
scheme. This means that the performance difference between
the unsplittable and splittable cases is smaller for GR than
for the other recovery schemes. This may be explained by the
fact that GR is the only scheme that needs to find a single
unsplittable backup LSP for the entire primary LSP, whereas
the other schemes need to cope with the harder task of finding
several unsplittable backup LSPs.

For almost all recovery schemes the performance difference
is marginal, and the heuristic exhibit excellent performance and
yield an average of roughly 80% of the optimal revenue. This
implies that the cost of using a recovery scheme with a single
backup LSP rather than several is only about 20% of the rev-
enue. In particular, the avearge relative performance of EKFLR
with k& = 2 is almost the same as the average relative per-
formance of RLR. Since, as explained in Section III-A, both
schemes have the same performance for OPT-S-PRFP, there is
no real need to split the backup traffic into more than two LSPs.
In contrast, the average relative performance of FLR is only
about 0.65. The higher penalty implies that one backup LSP per
link may be too strict.
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For domains with 20 LSRs whose degree is 3 [Fig. 4(a)] we
see that when the offered load increases, the penalty of the re-
quirement not to split the flow decreases and the performance of
the heuristic is comparable to the performance of OPT-S-PRFP.
This result is surprising, because we expect that in a highly
loaded network the ability to split the traffic of each flow across
several paths would contribute both to the flexibility and to the
performance. This result can be explained by the fact that for
all flows we use the shortest path as a primary LSP. Due to
the power-law distribution of the flows, many primary LSPs tra-
verse a relatively small number of links. Hence, when the net-
work becomes congested, the primary LSPs create bandwidth
bottlenecks on these links. In a typical simulation instance, we
found that roughly 80% of the load on these links is attributed
to the primary LSPs. Thus, despite of the ability of the optimal
S-PRFP algorithm to back up more flows, many of these flows
cannot be admitted due to the lack of available bandwidth on
their primary LSPs. Hence, somewhat surprisingly, the effec-
tiveness of splitting the backup LSPs diminishes as the load on
the network increases.

The results for the higher degree domains, depicted in
Fig. 4(b), demonstrate the opposite behavior: the penalty de-
creases as the offered load increases. This is attributed to the
fact that the offered load induced a lighter congestion in the
network compared to the former case. Therefore, the primary
LSPs do not create bandwidth bottlenecks, and the increased
flexibility of using several backup LSPs plays a more dominant
role. The results for domains with 40 LSRs with an average
degree of 3, depicted in Fig. 4(c), exhibit the same behavior as
in Fig. 4(a). By significantly increasing the offered load, we
created high congestion that leads to bottlenecks on the routes
of the primary LSPs.

To give a more complete picture, we examine the perfor-
mance of HEU-U-PRFP and OPT-S-RFP when the restriction
on the primary LSP is eliminated and the flows can be split both
for the primary and the backup LSPs. In such a case, the load
imposed by the shortest-path primary LSPs on the bottleneck
links is reduced. Fig. 5 depicts simulation results for a network
with 20 LSRs and an average degree of 3. It shows the ratio be-
tween the performances of HEU-U-PRFP and OPT-S-RFP for
the RLR scheme. As expected, as the offered load increases,
the penalty for using unsplittable primary and backup LSPs in-
creases, and splitting the flows is more profitable.
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Fig. 5. The relative performance of U-PRFP using RLR in a network with
20 LSRs and an average degree of 3.
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Fig. 6. The relative performance of S-PRFP using RLR.

We now evaluate the penalty of using a single primary LSP for
each flow. To this end we use the following relative performance
metric: the ratio between the revenue of flows that are admitted
by OPT-S-PRFP and the revenue of flows that are admitted by
OPT-S-RFP using the RLR scheme. This relative performance
metric indicates the penalty incurred when using a single pri-
mary LSP set in advance. This metric is represented by the y
axis of the graph in Fig. 6, which depicts the results for two
types of 20-LSR MPLS domains: one with average degree of 3
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Fig. 7. The relative performance of U-PRFP using the various recovery schemes for real ISP topologies and for traffic demands generated according to the Gravity
model. (a) Exodus ISP, 80 LSRs with average degree of 1.8. (b) Telstra ISP, 115 LSRs with average degree of 1.3.

and another with average degree of 5. It is evident that as the
offered load increases, so does the penalty for using a single
primary LSP set in advance. This relation is not surprising since
a highly loaded network requires the traffic to be split into sev-
eral paths in order to maximize the admitted traffic. It is also
evident that the penalty increases for a network with a higher
average degree. This is because a higher network degree gives
more options for splitting the traffic between two end nodes.

To validate the results from the synthetic graphs and

power-law traffic distribution, we also present results for real
AS topologies, inferred by the RocketFuel project [37], and
for traffic demand distribution based on the Gravity model
[40]. In this model, the offered load from node u to node v is
proportional to the product of the total volume of traffic exiting
u and the total volume of traffic entering v. The results for these
simulations are presented in Fig. 7. The topologies used are of
the Exodus ISP, which consists of 80 routers and 147 links, and
of the Telstra ISP, which consists of 115 routers and 153 links.
In Fig. 7 we compare the recovery schemes using the following
relative performance metric: the ratio between the revenue of
flows admitted by U-PRFP and the revenue of flows that can
be admitted when no backup LSPs have to be established. This
metric, represented by the y-axis of the graphs in Fig. 7, reveals
the penalty incurred by both the restoration requirement and the
use of a single backup LSP. It is evident that the comparative
performance of the various recovery schemes in both topolo-
gies is similar to what we found for the synthetic graphs and
power-law traffic distribution (see Figs. 3 and 4). Namely, GR
outperforms LR, and EKFLR (with k = 2) is close to RLR. It is
interesting to note that in the Telstra topology the performance
of the various recovery schemes is worse than in the Exodus
topology. Moreover, the difference in the performance gained
by the various schemes is less noticeable. This can be attributed
to the Telstra’s AS lower link degree, which substantially
reduces the path diversity in the network. This, in turn, reduces
the ability to construct diverse backup LSPs.

To summarize, the main conclusions we draw from the sim-

ulation study are:

* The performance differences between UR, GR, and LR are
only marginal (5% on the average) while RLR is consider-
ably worse. Hence, LR should be the recovery scheme of
choice due to its short restoration time.

* If low administrative overhead is the main goal, EKFLR
with k = 2 should be preferred over RLR.

» Heuristics U-PRFP achieves close to optimal revenue.

e When the primary LSPs are set in advance in congested
networks, splitting the backup LSPs yields only a small
added revenue (less than 10%).

* In noncongested networks, the added revenue is small for
joint optimization of primary and backup LSPs (less than
10%).

VI. NODE FAILURE

In this section we extend the results of the paper to the case
of node failures. A node failure causes the failure of all edges
incident to it. In particular, a failure of a single node may take
down two links along an LSP.

A. The Splittable Problems (S-PRFP and S-RFP)

S-PRFP for node failures is in P. To show this we change
the linear program for link failures presented in Section III-A in
the following ways. First, the variable y?e indicates the fraction
of demand of flow f routed over edge e after a failure of node
v. When no node fails, v = ¢. The constraints presented in
Section III-A are changed as follows:

Zyf, ifv= tf
(C-1) Z y?e— Z y?e: {—xf, ifv=sy
e=(u,v) e=(v,u) 0, otherwise
Yv e V\Vf € F,Vo € {V, ¢}
(C-2) > df-yf <wu Ve € E,Yo € {V, ¢}
f
-3) 5. =0 Vf e F,Ye ¢ Ps
-4) Y5, =0 Vie FY5eV,
e incident to v
(C-5) 0<uay<1,0<y} <1 VeeE,Vue{V,¢},
VfeF
(LR-1) yf. >yf. VfeFVoeV,

{e|e € E, e is not downstream upstream
neighbor of ¥ along Py}
(RLR-1) yj. >y}, VfEFVIEV,

{e|e € E, e is not incident to v}
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(UR-1) 9}, >yf. VoeVVee ENfeF v¢ Py
=0, VoeV,

eePf

> y}be, otherwise
(GR-2) 9% —yf. =Ayb, VfeFVoeV,
Vee &
Vf e F\No,,vs € Py

where v2 immediately

(GR-1> y;e

(GR-3) Ayjl = Ayg

follows v; on Py,
Ve e E.

As for link failures, S-RFP for the RLR scheme can be solved
using the constraints (C-1), (C-2), (C-4), (C-5), and (RLR-1).

B. The Unsplittable Problems (U-PRFP and U-RFP)

U-PRFP and U-RFP are N'P-complete. This can be shown
using the same reduction presented in Section III-B from U-FP.
The maximal revenue in the constructed instance of U-PRFP is
upper bounded by the maximal revenue when one of the nodes
added by the reduction fails. This revenue is bounded by the
maximal revenue for the U-FP instance, and vice versa. The re-
duction is also approximability preserving, implying that, in the
case of node failures, U-PRFP and U-RFP cannot be approxi-
mated within |F|'/2~¢.

Assume that all edge capacities are equal to u. Let us define

max — max{rmax rmaxy where v and r3* are the max-

r in out
imum in-degree and out-degree in GG, respectively.

Observation 2: 1f the load on each edge does not exceed
u/(r™™* + 1), then each flow can be fully restored using ar-
bitrary backup LSPs.

This observation follows from the fact that if a node fails,
then the total amount of bandwidth that must be restored does
not exceed u- ™2 /(r™a* 4 1), This amount can be fully routed
on any edge. Hence, any arbitrary backup LSP can be used to
restore the traffic.

An approximation algorithm very similar to the one presented
in Section IV can be adapted for node failures. However, here
we assume that the bandwidth demand of each flow does not
exceed u/(r™**+1). Using analysis as in Appendix A, it can be
shown that the load imposed by the algorithm does not exceed
w/(r™* 4+ 1) and its maximum throughput is not lower than
Quw /| E1/2).

VII. CONCLUSION

We presented the first comprehensive study of maximizing
restorable throughput in MPLS networks. We focused on the es-
tablishment of backup LSPs when the primary LSPs are already
set. We showed that the splittable version of the problem is in
P while the unsplittable version is NP-complete and cannot
be approximated within |F|'/2~¢, We gave an algorithm with
an approximation ratio of | F|*/2 for the case where the band-
width demand of an individual flow does not exceed half of the
edge capacities. We developed two practical and efficient heuris-
tics that were shown to achieve excellent performance. Using

simulation, we compared the performance of the various MPLS
recovery schemes. We showed that LR should be the scheme
of choice since it has the fastest restoration time and almost
the same performance as the best (UR) scheme. In addition,
we showed that if reducing the administrative cost is the main
concern, EKFLR with k£ = 2 should be the recovery scheme of
choice.

APPENDIX A
A PROOF FOR THEOREM 1

The proof is similar to the proof of the approximation ratio
of |FE|*/? for U-FP presented in [7] except that our aim is to
bound the load on every edge to 1/2 rather than 1. We analyze the
randomized rounding process in the approximation algorithm
for U-PRFP. The purpose of this analysis is to show that by
choosing an appropriate -y, the load imposed on every edge does
exceed half the edge capacity, and the total revenue is not less
than Q(wi_ppp/| E|"/?).

Let Z¢ be a Bernoulli random variable for choosing flow f.
The success probability of ¢ is * /~. The expected total load
imposed on every link e € E by the end of this process is

ElL)=E| Y dsif| = Y dgzy/y<u/y. (1)

i|le€ Py ile€ Py

The inequality follows from constraints (S-PFP-2) in the linear
program. For the sake of simplicity, we scale the demands and
capacities such that u = 1.

Forevery e € I, let £; denote the “bad event” that L, > 1 /2.
We now construct well-behaved estimators for these events.
Consider first the case, where dy < 1/4 holds for every f.
Define dy = 4dy and L, = 3, . p, dyZ for all e € E. From
(1) it follows that = E[L!] < 4/~. From [7] we know that a
possible well-behaved estimator for £ is x?:

v lijeep, (1 + 8)tres
Xe ™ T (1 4 6)p(+9)

where § = 2/u — 1. From [7] we also know that
Exe] <GA/v,v/2-1)

where G(p,6) = (e? /(1 4 §)A+0)",

Next, consider the case where dy > 1 /4 for every f. In this
case, the event £ holds, if and only if more than 2 flows whose
primary LSP traverses e are chosen. From [7] it can be shown
that a well-behaved estimator for £¢ is x2:

X2 =2 ({Zgle € Pr})

Uy(z) = Y

1<iy <in<n

Z2iy Ziys fOr (21,22,...,2n) ER"

Since in this case (1) implies that Zi\eepf Elzs] < 4/,
E[x?] = 8/+?, must hold.

Next, we construct a proper estimator for the bad event
“w(T) < w*(T)/(2v)”, where w(T) = ) ;. wsTy, and
w*(T) = Y erwysr;. We know that . = Elw(T)] =
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w*(T) /7. From [7] follows that a proper estimator for the
above bad event is

Xw(T) = l_{'iET(l - 51)“’f$f

1— 51)H1(1—51)

where p11(1 — 61) = w*(T)/(2v). From [7], it is also known
that

Elxw] < H(w™(T)/7,1/2)

where H(y,8) = e=15°/2,
Before proceeding to the approximation ratio of the algo-
rithm, we present the following theorem from [7]:
Theorem 9: Let E1, Fs, . .., F, be events and r, s be nonneg-
ative integers with r + s < ¢ such that:
e Fy,FE,,..., E, are all increasing, with respective well-be-
haved estimators g1, g2, - - -, gr;
e E.y1,...,E.4 are all decreasing, with respective well-
behaved estimators g, 41, - - -, Grts;
e FE.ist1...,E; are arbitrary events, with respective proper
estimators Gr+s+1592, -+, 9t .
* For every ¢, F; and g; are completely determined by X.
Then, if

r

- ([a-Fl)
r+s t
+1-| I a-F) )+ > Elal<t
1=r+1 r+s+1

holds, where E’(-) = min{F(-),1}, we can efficiently con-
struct a deterministic assignment for X under which none of
FE,, E,, ..., E; holds. Note that: (a) empty products are taken
to be 1; (b) If there is g; such that F[g;] > 1, then the entire
product is equal to O.

We continue by showing the Q((w*)* /| E|) bound. Let I, be
the subset of flows for which traffic demand is at most 1/4 and
I, = I/Iy. We first assume that wy, < wi,ie, wy > w* /2.
Since the events &, are increasing, avoiding the bad events
would require

1= JIO-E[X]) | + F xw)] < 1. (@

(&

For a suitably large constant ¢, v = c|E|/w* satisfies the in-
equality of (2), since:

Exw(Io)] < H (w*(lo)/v,1/2) < H (w*/(27),1/2).

Thus, from Theorem 9 follows that if w*(1;) < w*(1p), we can
efficiently select feasible paths for Iy with objective function
N 2 12
value Q((w* (o))" /| E]) = Q((w")"/| E]).
Next, we consider the case where w*(I1) > w*(Ip). As in
the previous case, we must have

1= ([TC-EDE) |+ F bl <1. @)

e
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if we are to avoid all the bad events. Again, for a suitably
large constant ¢, and from the same considerations given
above, v = c|E|/w* satisfies the inequality of (3). Thus,
from Theorem 9 follows that if w*(I;) > w*(lp), we can
efficiently select feasible paths for I; with objective function
value Q((w* (1)) /| E]) = Q((w*)*/|E).

To conclude the proof we need to show the Q(w*/+/]E])
bound. If w* > \/m , this bound immediately follows from the
Q((w*)?/|E|) bound. If w* < V/|E|, we can simply choose to
admit a flow f for which wy = 1. O

APPENDIX B
EXTENSION TO MPLS OVER WDM LIGHTPATHS

Due to space constraints, we show here only how to extend
the linear program of Section III-A. The extension of the other
linear programs is similar. When a flow enters a lightpath, it
can leave it only at the lightpath’s egress node. Let [; denote the
set of (physical) links composing lightpath ¢, and y}i denote
the part of y5, traffic that traverses lightpath <. The following
constraints should be added to the linear program:

(0-1) > yf =yj. VfeFVeecckE

(0-2) Uf =y5,
(0-3) yfe=0

Vf € F,Ye € E,Vi,Ver, e € 1;
Vf € F,Yé € E,Vi,Ve ¢ 1.

Constraints (O-1) ensure that the sum of the traffic carried
over all the lightpaths on a certain link is equal to the total traffic
traversing this link. Constraints (O-2) ensure that the amount of
traffic carried by a lightpath is equal on all the links composing
this lightpath. Finally, constraints (O-3) ensure that no traffic
traversing a lightpath is carried over links that are not included
in that lightpath.
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