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Abstract— In this paper we study the computational complex-
ity and effectiveness of a concept we term “N-hub Shortest-
Path Routing” in IP networks. N-hub Shortest-Path Routing
allows the ingress node of a routing domain to determine
up to N intermediate nodes (“hubs”) through which a packet
will pass before reaching its final destination. This facilitates
better utilization of the network resources, while allowing the
network routers to continue to employ the simple and well-known
shortest-path routing paradigm. Although this concept has been
proposed in the past, this paper is the first to investigate it in
depth. We apply N-hub Shortest-Path Routing to the problem
of minimizing the maximum load in the network. We show
that the resulting routing problem is NP-complete and hard
to approximate. However, we propose efficient algorithms for
solving it both in the online and the offline contexts. Our results
show that N-hub Shortest-Path Routing can increase network
utilization significantly even for

�����
. Hence, this routing

paradigm should be considered as a powerful mechanism for
future datagram routing in the Internet.

I. INTRODUCTION

Intra-AS routing in the Internet is based on the hop-by-hop
shortest-path paradigm. The source of a packet specifies the
destination address, and each router along the route forwards
the packet to a neighbor located “closest” to the destination.
Since the routing is usually static, i.e., the cost of a path
is dependent on the network topologies rather than on the
dynamics of the network traffic, a single route is used for
every source-destination pair.

The shortest-path routing paradigm is known to be simple
and efficient. It does not place a heavy processing burden on
the routers and usually requires at most one entry per destina-
tion network in every router. However, while this scheme finds
the shortest path for each pair of nodes and thus minimizes the
bandwidth consumed by every packet, it does not guarantee
full utilization of the network resources under high traffic
loads. When the network load is not uniformly distributed,
some of the routers introduce an excessive delay while others
are underutilized. In some cases this non-optimized use of
network resources may introduce not only excessive delays
but also incur a high packet loss rate.

Much research has been conducted in a search for an
alternative routing paradigm that would address this draw-
back of shortest-path routing. The sought paradigm should
utilize the network resources more efficiently and minimize
the probability of congestion, thereby achieving better delay-
throughput behavior than traditional shortest-path routing. In
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Fig. 1. An example of N-hub routing

addition, such a scheme should be practical in terms of the
volume of control information exchanged by the routers, the
memory requirement, the processing burden imposed by every
packet, and so forth. Finally, such a scheme should interoperate
seamlessly with network routers that continue to employ the
shortest-path routing paradigm.

Most of the routing schemes proposed in the past are
able to employ more than one path between every source-
destination pair. Generally, these schemes base their routing
decisions on the load imposed on every network link. When
a particular link, or an area, becomes congested, some of the
routes are modified. Some routing schemes find an alternate
data path only when the standard path is highly congested
[1]. In [2]–[4], alternate routes are found for every source-
destination pair even if the standard route is not heavily loaded.
Several loop-free paths are found in advance and the load is
distributed between them. However, due to the complexity of
these schemes, their increased processing burden, and their
considerable deviation from the conventional shortest-path
routing paradigm, not one of them has been adopted for the
Internet. A major drawback of many proposed routing schemes
is that they must be deployed over the lion’s share of the
routing domain in order to be effective.

This paper investigates a routing scheme that takes ad-
vantage of a concept we refer to as “N-hub Shortest-Path
Routing,” or simply N-hub routing. This concept can be
implemented using several existing IP mechanisms, as will be
discussed in Section II. N-hub routing allows the ingress router
of a routing domain to determine one or more intermediate
nodes (“hubs”) that a packet will traverse before reaching
its final destination. Fig. 1 illustrates this concept. The figure
shows three paths for a packet whose source and destination
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nodes are � and � . The first path, path-1, is the shortest path.
Path-2 uses node � as a single hub. Packets are routed first on
the shortest path from � to � and then on the shortest path
from � to � . Such a route is likely to improve the throughput
if the links �
	�� or �	�� are heavily loaded while the links��	�� , ��	�� and ��	�� are underutilized. Path-3 uses 2 hubs:�

and � . Packets are routed first on the shortest path from �
to
�

, then on the shortest path from
�

to � , and finally on
the shortest path from � to � . It is evident from the example
above that N-hub routing is a generalization of shortest-path
routing, because shortest-path routing is equivalent to N-hub
routing with ����� .

Using the concept of N-hub routing, the routing protocol
gains better control over the routing process, while the network
routers continue to employ the shortest-path paradigm for
building their routing tables. Although this concept is not
employed today in the Internet, we think it is a powerful tool
that should be investigated in the context of traffic engineering
and QoS.

It is important to note the practical benefits of N-hub
Shortest-Path Routing over virtual-circuit routing. First, N-
hub routing can be implemented in networks that usually
do not employ virtual-circuit routing technologies (such as
MPLS [5]). In particular, it can be implemented in sensor
networks and ad hoc (mobile) networks. Second, when virtual-
circuit routing is used, only one or two routes are usually
established between every two routers. Therefore, it is not
possible to react to changes in the traffic pattern before the
time-consuming and labor-intensive building of new routes.
In contrast, an N-hub route can be changed immediately
according to changes in the link loads, without having to set
up additional routes in advance. Third, N-hub routing imposes
additional processing and memory burden on the hubs and the
source edge routers only, while the other nodes employ regular
shortest-path routing. In virtual-circuit routing this burden is
imposed on all the nodes along the path. This is especially
significant when each node has to maintain several thousands
of explicit routes.

The ingress router of a routing domain should be responsible
for determining the intermediate router(s) through which the
packets of each flow will be routed. To this end, the router may
use information it acquires regarding the load distribution in
the network by means of a link-state flooding protocol like
OSPF-TE [6]. For a typical case scenario for N-hub routing
in an ISP AS, consider a DiffServ [7] domain, which supports
the Expedited Forwarding (EF) Per Hop Behavior. When an
edge router receives a packet of an EF flow (e.g., a Voice over
IP flow), and N-hub routing is not supported, the router has no
option but to forward the packet along the default (shortest)
path or to drop it. With N-hub routing support, however, the
edge router uses information about the load distribution in the
entire domain, as can be obtained using OSPF-TE [6], in order
to determine the hub(s) that define the least congested route.
This list of hub(s) is added to the packet, and is also kept
in the router’s local flow table. When subsequent packets of
the same flow are received by this router, it identifies them as
belonging to the same flow, e.g., using the flow label of IPv6,
and fetches from its table the list of hub(s) associated with this

flow. Once every time-out period, the router checks if there is
a better N-hub route that can be used by the considered flow.

To the best of our knowledge, this paper is the first to
propose a thorough theoretical and practical investigation of
N-hub Shortest-Path Routing. The contribution of this paper is
fourfold. First, we define the N-hub shortest-path problem as
an optimization problem, and show that from a computational
complexity perspective, N-hub is “closer” to virtual circuit
( � ��� -hub) routing than to shortest path (0-hub) routing. This
is because N-hub is NP-complete, and it has no polyno-
mial approximation scheme (PTAS). Second, we develop a
probabilistic approximation algorithm for the N-hub problem.
Third, we show that online algorithms originally designed for
multicommodity routing maintain their competitive ratio for
N-hub routing. Fourth, we show that in practice, one hub
for every flow is sufficient to obtain results that are almost
equal to those obtained by optimal algorithms for the splittable
multicommodity flow problem. These results are upper bounds
for the results that can be obtained by optimal algorithms for
virtual circuit routing.

The rest of this paper is organized as follows. In Section II
we discuss related work and the various mechanisms that can
be employed to implement N-hub routing. In Section III we
define the N-hub routing problem and review its computational
complexity. In Section IV we present several approximation
algorithms for the online context. The competitive ratio of
these algorithms is discussed, and one of them is shown to
have the best competitive ratio that can be obtained for this
problem. In Section V we present simulation results that show
the potential effectiveness of N-hub routing in general, and the
effectiveness of the various algorithms proposed in the paper.
Finally, Section VI concludes the paper.

II. N-HUB SHORTEST-PATH ROUTING IN IP NETWORKS:
IMPLEMENTATION AND RELATED WORK

N-hub Shortest-Path Routing can be implemented using
several existing mechanisms. A straightforward way is to take
advantage of the IPv4 Loose Source-Routing option [8]. When
this option is used, the IP header is extended by a list of the
addresses of the intermediate node(s) the packet must traverse.
However, this option, much like any other IPv4 option, is
rarely used, mainly because of the heavy processing burden
imposed on the general purpose CPU of the router when an
IPv4 header contains any optional field. Moreover, there are
some notable security issues related to this option [9]. In [10],
it is noted that only 8% of Internet routers are source-routing
capable.

As opposed to IPv4, IPv6 [11] has a more “built-in” support
for N-hub routing. The primary header of an IPv6 packet can
be followed by flexible extension headers. These headers can,
for example, indicate the IP addresses of the network routers
the packet should traverse en route to its destination.

Another way to implement N-hub routing in IPv4 is to use
IP-in-IP encapsulation [12]. In this case, an IP header indi-
cating the final destination is encapsulated in the payload of
another IP header. The latter header contains, in its destination
address field, the IP address of an intermediate router. The total



3

number of headers is therefore equal to the number of hubs
plus 1.

N-hub routing can also be implemented through an overlay
network [13]. In an overlay network the source sends a packet
to the first hub, while adding to its payload information that
identifies the next hubs and the final destination. Each hub
uses this information to route the packet to the next hub.

Another powerful way to implement the N-hub routing
paradigm is to use MPLS [5]. MPLS is a virtual circuit
technology that allows an MPLS ingress node to set up a
tunnel over the shortest path or over an explicit path to an
egress node. An explicit path contains a list of intermediate
nodes. The route between two consecutive nodes in the list is
either strict or loose. A loose route may contain other nodes.
Therefore, N-hub shortest path routing can be viewed as a
special case of the MPLS explicit route option. With respect
to MPLS, our results imply that an explicit strict route need
not be specified. Rather, it is sufficient for the ingress MPLS
node to include a single loose node in the RSVP-TE Path
message. If the tunnel should be established over the route
whose maximum load is minimized, the routing algorithms
we propose can be used.

We are not aware of any work that addresses the compu-
tational complexity and the potential effectiveness of N-hub
Shortest-Path Routing, which is the core of this paper. Several
routing schemes that are similar in one way or another to ours
have been leveraged in other works, e.g., [13]–[15], but their
focus is entirely different. In [16], [17], the authors present a
multi-path routing scheme called “two-phase routing.” In this
scheme, traffic originating at a source node is routed over a set
of routes in predetermined and static proportions. Each route
is diverted from the source to an intermediate node before
reaching the destination. This approach is shown to provide
load balancing and bandwidth efficiency even with highly
variable traffic. In [18] the authors explore the deployment of
this routing scheme in optical networks, in order to increase
routing resiliency. In [19] the authors study the throughput
performance of that routing scheme. Our paper1 investigates
the effectiveness and computational complexity of the general
form of two-phase routing. Furthermore, we consider non-
static routing in which intermediate nodes are determined
according to current traffic conditions, while addressing the
online setting of the problem.

In [20], the authors investigate the effectiveness of selfish
routing in Internet-like environments. Selfish routing allows
the host to determine the path according to a criterion that
maximizes its profit. This work specifically addresses a setting
where sources choose N-hub routes in an overlay network.
Their main conclusion is that selfish hosts can achieve results
similar to those achieved by routing with full control. There
are two notable differences between [20] and our work. First,
in our model, the host chooses routes that do not necessarily
maximize its profit. Second, [20] assumes absolute knowledge
of flow demands that do not change over time, while we deal
with the more practical online scenario where flow demands

1An early version of our paper, published in Infocom 2004, predates
Ref. [16]–[19]

are not known in advance.
As already said, the main benefit gained from determining

more intermediate nodes (hubs) for a route between a source-
destination pair is better control over network load distribution,
with little deviation from the traditional shortest-path routing
paradigm. More specifically, the routers continue building
their routing tables using the shortest-path information they
acquire through a conventional routing protocol. However, the
network is capable of routing a packet over less congested
areas. Moreover, it can be employed effectively even if a small
fraction of the network routers support it. This is because
traffic can be diverted to less congested areas without the
support of the core routers.

The trade-off between the simplicity of traditional datagram
(shortest-path) routing and the efficiency of virtual-circuit rout-
ing is well known. However, both schemes can be viewed as
special cases of � -hub routing: with ����� for shortest-path
routing and ����� ��� for virtual circuit routing. Hence, N-hub
routing, where �! "�# $� ��� , offers a compromise between
these two extremes (see Fig. 2). As the number of allowed
hubs grows, the number of possible routes between each
source-destination pair increases, and the flexibility/efficiency
of the routing scheme increases as well. However, we pay for
the increased efficiency by sacrificing some of the inherent
simplicity of shortest-path routing at each hub. In practice,
as shown in Section V, the performance achieved with a
single hub is very close to the optimal performance of virtual-
circuit routing. Hence, 1-hub routing can be viewed as a
routing protocol that offers the performance of virtual-circuit
routing with only slight deviation from traditional shortest-path
routing.

III. PROBLEM DEFINITION AND COMPLEXITY

A. Problem Definition

In this paper we focus on applying the N-hub Shortest-Path
Routing paradigm to a traffic engineering task. Our specific
aim is to minimize the maximum load in the network. We deal
with the routing problem of minimizing the maximum load
imposed on a single link by determining up to � intermediate
nodes through which the packets of each flow will be routed.
Note that we do not assume any constraint regarding the
criteria used for classifying packets to flows.

A similar objective – minimizing the maximum load im-
posed on a single link – was addressed in the past mainly in
the context of the multicommodity flow problem [21], [22] and
the Virtual Circuit Routing problem [23]–[25]. Maximizing
the load on a single link does not always guarantee perfect
load balancing and minimum average delay. However, it was
shown in the past to yield good performance because the delay
on a link grows exponentially with the load. Moreover, this
objective is easier to analyze from a theoretical point of view.
As a counter-example, consider the topology in Fig. 3 and
suppose there are 3 flows as follows:

1) A flow from node � to node % , with a bandwidth
demand of 1.

2) A flow from node � to node � , with a bandwidth
demand of 2.
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Fig. 2. N-hub routing as a compromise between efficiency and simplicity

3) A flow from node � to node % , with a bandwidth
demand of 1.

An algorithm that minimizes the maximum load may produce
a solution that routes flows 1 and 3 via node � . This solution
yields a greater delay of the packets of flow 1 and flow 3 than
a solution obtained by an algorithm that tries to minimize the
average delay. The latter solution might route flow 1 through
router � and flow 3 through router � .

One may consider the average load over all the edges in the
graph as a better objective for minimizing the average delay
of the packets. However, this objective is achieved with static
shortest-path routing which, as mentioned above, is known to
be inefficient for non-uniform traffic patterns in which some
areas in the AS are more congested than others. Another
possible objective is minimizing the variance of the loads on
the network links. However, this objective does not take into
account the actual load on the links. It may therefore yield
very long and possibly non-simple routes in order to ensure
that all the links will be equally utilized.

In our model the network is represented by a directed graph.
The routers in the network are represented by the vertices of
the graph and the links by the edges. The bandwidth of a link
is represented by the capacity of the corresponding edge. The
source and destination of each flow are represented by their
edge routers. For every flow there is a traffic demand.

We now give a formal definition of the N-hub routing
problem. Let �&�&'(�*)+%-, be a directed graph. Each edge,.0/ % , has a capacity 12' . , , where 143�%65 798 . Let:<; �>=?� be a set of flows between pairs of source and
destination nodes. Each flow @ / : has a traffic requirement
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Fig. 3. An example of a network topology

A 'B@C, , where
A 3 : 5 7�8 . Let DFE and GHE denote the

source and destination of flow @ respectively. For each flow@ / : , find an ordered sequence of � hubs, denoted byI E J ) I EK )MLMLNLM) I EO , where
I EP / � , such that the packets of @

are routed over D E 5 I E J 5 I EK 5QLMLMLR5 I EO 5#G E , whereS 5UT denotes the shortest path from node S to node T on� , and the maximum relative load imposed on every edge in% is minimized. The relative load on edge . is defined asVXWZY []\M^ W`_`a Ecbd afe b , where g-E is the path chosen to route flow @ .
In Appendix II we prove that the N-hub routing problem is

NP-complete.

B. On the Approximation Hardness of N-hub

One common way to get around an NP-complete problem
is to develop a polynomial time algorithm that finds a near-
optimal solution for the problem, namely an approximation
algorithm. Usually, when the worst-case performance of an
approximation algorithm is bounded, the average-case perfor-
mance is very close to the optimum.

Algorithm � is an approximation algorithm for an optimiza-
tion problem h if for any input i it runs in polynomial time
in the length of i and outputs a feasible solution �j'kiH, for
the problem. In the context of N-hub, a feasible solution is a
solution where the route between each source-destination pair
traverses at most � hubs, while the route between two con-
secutive hubs is the shortest path between them. An algorithm� for a minimization problem (like N-hub, where we seek to
minimize the maximum load) is said to have an approximation
ratio of l , if for any input i , value(A(I))/value(OPT(I))  ml .

An algorithm � for a minimization problem is an approx-
imation scheme for h if it takes as an input not only the
instance i of the problem, but also a value n�o�� such
that for any fixed n , value(A(I))/value(OPT(I))  �prqsn . An
approximation scheme � is said to be a polynomial time
approximation scheme (PTAS) [26] if for each fixed n there
is a polynomial approximation algorithm derived from � with
an approximation ratio of ptqXn . If the running time of the
approximation algorithm is also polynomial in the value ofpFuvn , then � is said to be a fully polynomial approximation
scheme (FPTAS) [26].

It can be easily shown that there is no FPTAS for N-hub
unless w =xyw . However, in what follows we show a stronger
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inapproximability result.
Definition 1: Let h be a minimization problem. The de-

cision problem htz is the problem of deciding for a given
instance i whether the optimum value of htz{'kiH,| y} .

Corollary 1: Unless w =xyw , N-hub does not permit a
PTAS and cannot be approximated within ~t	?n for n�oy� .

Proof: Let h be an integer minimization problem. Sup-
pose that the decision problem h z is NP-hard for some
constant } . Then, from [26] we know that unless w =xyw ,
there is no PTAS for h and there is no polynomial algorithm
with an approximation ratio that is strictly less than p�q�p�u�} .
Consider the Integer N-hub problem defined earlier. Obviously,
in a feasible solution of this problem the maximum load has an
integer value equal to 1 or more. However, by Corollary 3 (in
Appendix II), the problem of deciding whether the optimum
value of Integer N-hub is equal to 1 is also NP-hard. Hence,
Integer N-hub, and subsequently N-hub, does not permit a
PTAS and cannot be approximated within ~�	�n for any n�oy� .

Appendix III presents an asymptotic PTAS for the problem.
The algorithm gives an approximation factor that decreases as
the congestion in the network increases.

IV. ONLINE APPROXIMATION ALGORITHMS

We now consider the more practical online version of N-
hub, where routing decisions for the flows are performed one at
a time without prior knowledge of future flows. We consider
three online approximation algorithms, originally developed
for the unsplittable multicommodity flow problem [26]. We
slightly modify these algorithms in order to apply them to
the N-hub Shortest-Path routing problem. We prove that their
competitive ratios for the unsplittable multicommodity flow
problem is the same as for the N-hub Shortest-Path routing
problem. The competitive ratio of an online algorithm is
defined as the worst case ratio, over all sequences of flows,
between the value of the solution found by the algorithm and
the value of the solution found by an optimal offline algorithm.
See [27] for further details.

For the sake of completeness we give a formal definition
of the unsplittable multicommodity flow problem. Let ���'���)�%-, be a directed graph. Each edge, .�/ % , has a capacity of1�' . , , where 1�3�%�5�7�8 . Let

:0; �?=�� be an ordered set of
flows between pairs of source and destination nodes. Each flow@ / : has a traffic requirement

A '�@C, , where
A 3 : 5�798 .

Route every flow @ / : , in the order the flows are received, on
a single arbitrary route in � , while minimizing the maximum
relative load imposed on every edge. This problem, also known
as Routing of Permanent Virtual Circuits, is NP-complete. The
splittable version of this problem, which allows the traffic of
each flow to be split over multiple routes, is known to be inw .

The only difference between the N-hub problem and the
unsplittable multicommodity flow problem is that in the former
the set of possible routes for each source-destination pair is
restricted while in the latter it is not. Hence, the unsplittable
multicommodity flow problem can be viewed as a � ��� -hub
routing problem.

Corollary 2: The best competitive ratio that can be
achieved by an online algorithm for N-hub has a lower bound
of ��'k������� ��� , .

Proof: In [23] this lower bound is proven for the unsplit-
table multicommodity flow problem. In this proof a specific
network and a specific sequence of flows are considered. For
this specific instance, the maximum load imposed on an edge
by an offline algorithm is 1, whereas the maximum load
imposed by an online algorithm is at least � �+�`� ���K . Since all
the routes in the considered network have a length of at most
three edges, each of them can be represented as a 1-hub route.
Hence, this proof is also valid for the 1-hub problem, and for
the general N-hub problem, as well.

However, if we consider a more practical variant of the
online version, where termination of flows is permitted, i.e.,
the lifetime of each flow is finite, we can show that no routing
algorithm can do better or worse than a competitive ratio of� '�� %�� , .

Theorem 1: For the online version of N-hub, when flow
termination is allowed, the competitive ratio that can be
achieved by any algorithm is

� '�� %�� , .
Proof: Let us consider a directed graph that has a single

source D , connected to a single target � via � directed edges,
each with capacity � . We construct a sequence of � K flow
requests, each with a traffic demand

A
. After all the � K flows

are routed, the maximum load in the network is � _� where�4�X� . Let . be the edge with the maximum load. We now
terminate all the flows that do not pass through . and some' �¡	¢�R, flows that do pass through . . The maximum load in
the network now is � _� . The optimal offline algorithm in this
situation can maintain a maximum load of

_� by routing each
of the � remaining flows on a separate edge. Hence, the best
competitive ratio a routing algorithm can achieve is at least��'�� %�� , .

We now show that the worst competitive ratio any routing
algorithm can achieve is £{'+� %�� , . Consider a graph with � %��
edges, each with capacity � , and a sequence of � flow
requests with traffic demand

A
. The maximum load that can

be produced by an online algorithm in the worst case is ¤ _� .
The maximum load that can be produced by the optimal offline
algorithm is at least ¤ _� ¥�� � . Hence, the worst competitive ratio
that can be obtained is £{'+� %�� , . Using Theorem 2, this result
can be extended to networks with non-uniform edge capacities.

From Theorem 1 it follows that not much can be done if we
want to guarantee some competitive ratio when flow termina-
tion is considered. However, from Corollary 2 it follows that
when flow termination is not considered, it is possible to meet
the challenge of designing an algorithm that has a competitive
ratio of £{' �f�¦�t� ��� , . In what follows we present some online
algorithms for the problem.

These algorithms are similar in structure, as follows. Let @
be a new flow to be routed. Let

A E be the bandwidth demand of@ . Let § e and ¨ e be the current load and capacity of link .r/% , respectively. From all feasible N-hub routes, the algorithm
chooses the one that satisfies a given criterion as follows:
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© Algorithm-1: minimizeª
e+«¦¬ S2

[¯®�° WN±³² [´ 	 S  [´ )
where S�/ '³p�)+~�, and µ is as explained below© Algorithm-2: minimize

MAX
e+« ¥

¶ § e . u/ g§ e q _ W· [ .r/ g© Algorithm-3: minimize

MAX
e+«¦¬ § e q A E¨ e L

In all cases, g denotes a possible path for the considered flow.
These algorithms were presented in [23] (Algorithm-1) and

in [24] (Algorithm-2 and Algorithm-3) for the unsplittable
multicommodity flow problem, and are applied in this paper
for the N-hub routing problem. We next show that the compet-
itive ratios of the above algorithms for the N-hub problem are
the same as for the unsplittable multicommodity flow problem,
and that Algorithm-1 is the best online algorithm for the N-hub
problem.

In Algorithm-1, µ is an estimate for the value of the
optimal solution. A simple doubling technique is used to
estimate its value. The algorithm starts with some initial
estimate. If, during execution, the maximum load exceedsµ by �f�¦�¸'�� ��� , , the estimate is doubled and the algorithm
is reinvoked. The algorithm assigns to each edge a weight
that increases exponentially in the load that will be imposed
if this edge is part of the route selected for the considered
flow. The algorithm chooses from all possible routes for the
considered flow the one with the minimum weight. A route’s
weight is the sum of the weights of all its edges. The intuition
behind the exponential function weight is that as the load on an
edge increases, the weight of the edge increases exponentially.
Consequently, the algorithm prefers a long non-congested
route over an exponentially shorter, but congested, route. The
algorithm achieves a competitive ratio of £{' �f�¦��� ��� , for the
unsplittable multicommodity flow problem. To prove this, [23]
uses the following auxiliary potential function:¹ '�ºH,��

ª
e»« ¥
S  [�¼ ½B¾´ ' ¿�	!§|Àe 'fºH,�u�µ|,Á) (1)

where § e '�ºH, and § Àe 'fºH, are the load imposed on edge . by
Algorithm-1 and by an optimal offline algorithm, respectively,
after the first º flows are routed, and S �ÂpÃqÄpFuF¿ . Function¹ '�ºH, is non-increasing in º since the weight of the route
chosen by the algorithm for every flow is not greater than the
weight of the route chosen by an optimal offline algorithm.
Since

¹ 'k��,� Å¿*� %�� and § Àe '�ºH,�uvµÆ �p , ¿*� %��*� V e+« ¥ ' ¿	pc, S  [+¼ ½�¾´ holds, and the competitive ratio follows. For the N-
hub problem, the weight of the route chosen by Algorithm-1
is still not greater than the weight of the route chosen by
an optimal offline algorithm. This implies that the potential
function in Eq. 1 is also non-increasing in º . Hence, the
competitive ratio of £{'k�����¸'+� �9� ,�, holds for N-hub as well.

Algorithm-2 uses a simple greedy approach. It chooses a
route such that the maximum load imposed on any edge is

minimized after the flow is routed. When all edge capacities
are equal, this algorithm has a competitive ratio of £{'+Ç �¢� %�� , ,
where � is the maximum ratio, over all flows, between the
length of the longest and shortest routes that can be assigned
to the flow. We now show that this competitive ratio is also
valid for N-hub (when all the edges have equal capacities). In
[24], where this competitive ratio is proven for the unsplittable
multicommodity flow problem, the values of the loads are
divided into levels. The load § e on edge . is said to be in
the È ’th level if È�É A`Ê�ËÁÌ uFÍÎ �§ e  Ï' ÈRq�pc,2É ACÊ�ËÁÌ uFÍ , whereACÊ�ËÁÌ

is the maximum bandwidth requirement and Í is the
capacity of the edges. The level of route g is the maximum
level over all the edges in g . The crux of the proof is that
when the maximum load in the network moves up to levelÈ , then all the edges in the network, including the edges of
the route chosen by the optimal offline algorithm, are at least
in level ÈÐ	Äp . Since this claim is also valid for N-hub, the
competitive ratio is valid for N-hub as well. Theorem 2, which
will be presented later in this section, shows how to adapt this
competitive ratio to the general case where the edge capacities
are not necessarily equal.

Algorithm-3 always chooses the route with the minimum
load. The load of a route is defined as the maximum load
over all the route’s edges. The basic idea is to make the route
selection criterion stricter than in Algorithm-2. To understand
the difference between the two criteria, consider a network
with two nodes connected by three edges with equal capacities.
Suppose that the loads imposed on these edges by existing
flows are 1, 4 and 6. Suppose also that the next flow to be
routed has a bandwidth demand of 2. Algorithm-2 may route
this flow either on the first edge or on the second edge, because
in both cases the maximum load remains 6. In contrast,
Algorithm-3 chooses the first edge because it is the least
loaded. This implies that every route chosen by Algorithm-
3 is also a valid choice for Algorithm-2, but not vice versa. In
order to increase the attractiveness of Algorithm-2 over that
of Algorithm-3, we have modified it in the following way.
When Algorithm-2 finds several routes that do not increase
the maximum load imposed on any edge, it does not choose
one arbitrarily, as proposed in [24], but chooses the shortest
one.

When Algorithm-3 is employed in networks with equal
capacities, it has a competitive ratio of £{'�G*�f�¦�t� ��� , , whereG is the longest route that can be assigned to a flow. For
reasons similar to those stated earlier for Algorithm-2, and
others omitted here for lack of space, the same competitive
ratio is guaranteed when Algorithm-3 is used for N-hub. Once
again, we can use Theorem 2 to extend this competitive ratio
to the case where edge capacities are not necessarily equal.

Theorem 2: Let �-'�iÑ, be an online algorithm for N-hub that
achieves a competitive ratio of � in networks whose edges
have the same capacity. Then, �j'kiH, achieves a competitive
ratio of

dFÒRÓ¯Ôd Ò`Õ�Ö ÉN� in networks whose minimum edge capacity
and maximum edge capacity are 1 Ê P ¤ and 1 Ê�ËÁÌ respectively.

Proof: Let �×�×'���)�%j, represent a network, and let1�3Ã%<5Ø7�8 be the edge capacity function. Let £�g A be
the value of an optimal offline solution. Let �-Ù represent
another network with the same structure but with a different
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edge capacity function 1 Ù , such that for every edge . 1 Ù ' . ,��1�' . ,+u�Ú . Let £�g A Ù be the value of an optimal offline solution
for � Ù . We first prove that

£�g A Ù �XÚ2£�g A L (2)

Assume that £�g A ÙÛu�Ú×ÜÝ£�g A . Let Þ*Ù be the solution
corresponding to £�g A Ù . Since the capacity of each edge
in � is Ú times larger than the corresponding edge in � Ù ,
applying the solution Þ Ù to the original graph � would yield
a maximum load of £�g A Ù u�Ú . This maximum load is strictly
lower than £�g A , in contradiction to our assumption. A similar
contradiction applies when £�g A Ù uvÚ
o�£�g A .

Let � Ê P ¤ be a graph similar to � whose edge capacities are
equal to 1 Ê P ¤ . Let � Ê P ¤ and £�g A Ê P ¤ be the values of the
solutions found by the online algorithm and the optimal offline
algorithm, respectively, for � Ê P ¤ . Since the edge capacities do
not increase, �Â Ï� Ê P ¤ , where � is the value of a solution
found by the online algorithm for � . Since the capacity of
each edge in � Ê P ¤ is divided by a factor that is not greater
than

d ÒßÓ¯ÔdFÒ`Õ�Ö , by Eq. 2 we get that £�g A`Ê P ¤  d ÒßÓ¯ÔdFÒ`Õ�Ö £�g A . Since� Ê P ¤  ��yÉ»£�g ACÊ P ¤ holds, we conclude that �Ï à�àÉ d ÒßÓ¯ÔdFÒ`Õ�Ö É£�g A .
We now discuss the time complexity of the three algorithms.

Each algorithm has to review the entire set of N-hub routes
before choosing one. There are £{'�� ��� O , such routes. In
a naive implementation, the algorithm metric is calculated
independently for each route. Assuming that the maximum
length of the shortest path between two nodes in the graph is� , the longest N-hub route is �m'k�?qjpc, . Hence, each algorithm
has to make £{'+� ��� O �m'k�áq"pc,�, metric calculations. When�â�ãp , and �ä�$£{'+� �9� , , the time complexity is £{'+� �9� K , .
A faster approach for algorithms 1 and 3 is to precalculate
the total metric for every possible shortest path between the
graph nodes, using Dijkstra’s algorithm, for example. In this
case, the time complexity is £{'�� �9� O 'k�¡qXpF,Rqs� ��� åF, , which
is smaller than the former time complexity for � ���æoX~ . The
dominant operations in the metric calculation of Algorithm 1
are division and exponential computations for real values. In
contrast, algorithms 2 and 3 require only division operations.
Hence, Algorithm 1 has a higher time complexity and a longer
expected running time.

V. SIMULATION STUDY

In this section we present simulation results for the routing
algorithms discussed in the previous section. We generated
router-level networks with random capacity edges, using Wax-
man’s model [28] and the BRITE simulator [29]. We randomly
chose a sequence of source-destination nodes. Each pair rep-
resents a flow to be routed in the network. The sequence of
flows was generated using Zipf. A random network topology
and a random sequence of flows form one instance of the N-
hub routing problem. Using an event-driven simulator, we find
for each instance the maximum load in the network under the
following schemes:

1) The standard shortest-path routing scheme (SP) used
today in IP. This is also known as minimum hop routing.

2) The hypothetical optimal routing (OPT) scheme. In this
scheme we find a solution for the splittable multicom-
modity flow problem presented in Section IV. Recall that
this version of the problem is in w . An algorithm for
OPT that is based on linear programming is presented
in Appendix I. This scheme allows the traffic of a flow
to be split over multiple routes. OPT’s performance is a
theoretical lower bound for N-hub, and therein lies its
importance.

3) Algorithm-1, Algorithm-2 and Algorithm-3, as presented
in Section IV.

To solve the linear programs for OPT, we used the Lp Solve
software [30].

Throughout the simulation study, we assigned a random
demand with a fixed average to each flow. Hence, there is
a strong correlation between the number of flows the routing
protocol has to handle and the load imposed on the network.
We therefore use the number of flows as our offered load
metric.

Figure 4 depicts simulation results of the routing schemes
OPT, SP, and the first online algorithm (Algorithm-1) pre-
sented in Section IV. These simulations were carried out in
a medium size backbone network (50 routers). Algorithm-1
is implemented with �ç�$p . The most important finding in
these graphs, and probably in the research so far, is that the
performance of 1-hub is very close to that of OPT, and the
improvement over SP is significant. Algorithm-1 reduces the
maximum load in the network by up to 73%. We also simu-
lated Algorithm-2 and Algorithm-3 with ���sp . However, the
performance of these algorithms is slightly lower than that of
Algorithm-1. The inferior performances of Algorithm-2 and
Algorithm-3 can be attributed to the fact that they do not take
into account the length of the chosen routes. Longer routes
impose, of course, greater load on the network.

We now compare the performance of the various algorithms
in networks with different topologies. Fig. 4(a) shows simu-
lation results for backbone networks with low link density
( � %�� uè� ����� ~ ), whereas Fig. 4(b) shows the results for
backbone networks with higher link density ( � %�� uè� ���*��é ).
Note that as the link density increases, the number of routes
between two nodes also increases. As expected, the maximum
load produced by all the routing schemes decreases as the link
density increases. However, while the maximum load produced
by the shortest-path routing decreases on the average by only
25%, the maximum loads produced by the optimal routing
scheme and by Algorithm-1 for 1-hub decrease by 65%. Since
the shortest-path routing scheme uses only one path for a
source-destination pair, the increase in the number of routes
between two nodes is insignificant. In contrast, the optimal
routing scheme and the 1-hub based routing algorithms can
route different flows of a source-destination pair over different
routes, in response to traffic conditions. Note that the ability
to use various routes for a single source-destination pair is
especially important for networks with hot-spots.

Figure 5 depicts simulation results for a small routing
domain having � ���ê�"pc� and � %��ê�Ï~v� . This routing domain
has the same link density as the routing domain corresponding
to Figure 4(a). This allows us to compare the performance of
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Fig. 4. Performance of Algorithm-1 for 1-hub for different link densities
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N-hub routing in routing domains with different numbers of
routers. Note first that the increase in the number of routers
has only a negligible effect on the difference in performance
between the 1-hub and the optimal routing schemes. This is
despite the fact that the number of unrestricted routes between
two end nodes increases exponentially with the number of
routers, whereas the number of 1-hub routes increases only
linearly. One might expect the maximum loads produced by
the various routing schemes to be higher in small routing
domains than in larger ones, and the relative difference in
the performances of the N-hub routing scheme and shortest-
path routing to decrease. Interestingly, however, the maximum
loads produced are actually smaller than in Figure 4(a) and the
relative difference between 1-hub and shortest-path is similar
to that of Figure 4(a). This is attributed to the fact that the
average number of links a flow has to traverse decreases
for smaller routing domains. Hence, each flow consumes
fewer network resources, thereby reducing the maximum loads
produced by the various routing schemes.
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Fig. 6. Performance of Algorithm-1 for 1-hub, 2-hub and 3-hub ( ë ì�ëÁí9òÁî
and ë ð�ë+í�ó»î )

We now examine the performance of the N-hub routing
scheme with different values for � , i.e., with different num-
bers of possible hubs. Figure 6 depicts simulation results of
Algorithm-1 for the 1-hub, 2-hub and 3-hub schemes for a
routing domain having � �����>év� and � %��2�>~¦év� . The most
important finding is that the differences in performance for
different values of � are negligible (less than 1%). We there-
fore use a single curve for �4�Åp , ����~ and ����ô . This
result is attributed to the flexibility of 1-hub routing. Adding
flexibility by allowing more hubs to the routing process does
not contribute to its effectiveness. However, for much larger
routing domains, we expect a visible performance difference
because the flexibility of 2-hub and 3-hub routing schemes
increases polynomially (by powers of 2 and 3 respectively)
with the number of routers, whereas the flexibility of a 1-hub
scheme increases only linearly.

We wanted to investigate not only the specific algorithms
proposed in the paper, but also the pure concept of N-hub
routing. To this end, we tested the performance of 1-hub
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Fig. 7. Performance of a random algorithm for 1-hub for different network sizes

routing with a random algorithm (RAND). This algorithm
does not take into account the aggregated load imposed on
every network link or the load imposed by every connection.
Rather, it selects a random hub for every new connection. We
compared the performance of RAND with the performance
of Shortest-Path (SP) and the performance of Algorithm-1 for
different routing domain sizes. Figure 7(a) depicts simulation
results for a small routing domain with 10 routers and 30 links.
It is evident that RAND performs poorly in such domains,
because the maximum load it imposes is even higher than the
maximum load imposed by SP. This is attributed to the fact
that like SP, RAND selects the routes without knowing the
distribution of link loads. Since the routes selected by RAND
are longer than those selected by SP, the bandwidth consumed
by RAND is higher and the maximum load imposed in the
routing domain increases. However, this is not the case for
a large routing domain. Figure 7(b) depicts the performance
of the various routing schemes for a domain with 200 nodes
and 4000 links. The maximum load imposed by RAND is
about ÷��Ñø lower than the maximum load imposed by SP. This
reduction is attributed to the fact that RAND is a symmetry-
breaking procedure which better balances an offered load
created with a Zipf distribution. This load reduction is not
possible in a small routing domain in which the load is
approximately uniform and there is no advantage in routing
through distant hubs.

To validate our findings regarding the effectiveness of N-
hub routing, we have also used for our simulations an actual
ISP topology as mapped by the RocketFuel project [31]. The
bandwidth for each link is determined according to [32].
Figure 8 depicts simulation results for the Exodus ISP from
[31]. It is evident that the results are similar to those achieved
using the Waxman model. Again, Alg-1 using 1-hub routing
performs very close to the theoretical optimum and achieves
80% improvement over the results achieved by shortest-path
routing. We found similar results when implementing other
ISP topologies from [31]. The graphs are omitted due to lack
of space.
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We conclude this section by looking at the problem from a

different angle. Figure 9 depicts the maximum number of flows
the network can accommodate under each routing algorithm
as a function of the maximum load that can be imposed on
a single link. Instead of routing all the flows and finding the
maximum load, we now determine the maximum number of
flows that can be routed, subject to a maximum load constraint.
A flow is rejected if routing it over the chosen route causes
the maximum load in the network to exceed the maximum
tolerated load. The simulation stops when the network is
saturated. The network is assumed to be saturated when
100 consecutive flows are rejected. Fig. 9 depicts simulation
results for networks with � ������é¦� and � %�����~�év� . We
can see that the 1-hub version of Algorithm-1 achieves the
best results: it can accommodate on the average 51% more
flows than SP. Algorithm-3 achieves 48% improvement over
SP, and Algorithm-2 achieves only 34% improvement. These
results suggest that although the three routing algorithms
produce similar maximum loads, as shown in the previous
simulation, the difference in the quality of their routing is
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distinct. The higher number of flows accepted by Algorithm-1
and Algorithm-3 indicates their ability to better balance the
load in the network, thereby achieving a higher throughput.

VI. CONCLUSIONS

In this paper we studied the effectiveness of the N-hub
Shortest-Path Routing concept in IP networks. We have
demonstrated that this concept offers an excellent compromise
between the simplicity of shortest-path routing and the effi-
ciency of virtual circuit routing. We applied this concept to the
problem of minimizing the maximum load in the network. We
defined the corresponding optimization problem, and proved
that it is NP-Complete even for �û�âp . We also showed
that it does not permit a PTAS and cannot be approximated
within ~*	�n for n�oy� . However, we present in Appendix III a
probabilistic asymptotic PTAS for the offline version of N-hub.

We have addressed the online version of N-hub, where the
set of the input flows is not known in advance. We showed
that the best competitive ratio an online N-hub algorithm may
achieve is ��' �f�¦��� ��� , . We then presented an online algorithm
that achieves this lower bound, and two additional online
algorithms that have less attractive competitive ratios, but are
also less computationally intensive.

We then used simulations to study the practical effectiveness
of N-hub routing in general, and of the specific algorithms
presented in the paper. Our main findings are as follows:© The performance of N-hub Shortest-Path Routing is very

close to the performance of a hypothetical optimal al-
gorithm that splits the traffic of the same flow among
multiple routes.© The N-hub Shortest-Path Routing scheme can produce
much better quality routing than shortest-path routing,
without the need to incorporate complicated logic into
the routing process or even make the effort to learn the
link load distribution throughout the routing domain.© The effect of � on the performance of � -hub is very
small. Hence, even the performance of 1-hub is very close
to optimal.© Although the competitive ratio of an online algorithm is��' �f�¦�t� ��� , , all three online algorithms proposed in this

paper perform very well in practice.
We therefore conclude that N-hub Shortest-Path Routing, and
in particular the �ü��p version, should be considered as
a powerful mechanism for future datagram routing in the
Internet.

APPENDIX I
A LINEAR PROGRAM FOR THE GENERAL ROUTING

PROBLEM

We describe a general routing problem, expressed in the
form of a linear program, for the optimal routing scheme
discussed in Section V. Let �Â�¡'���)�%j, be a directed graph
representing the network. Let

:
be a set of flows in the

network. Let
A E denote the bandwidth demand of flow @ , and

let DFE and GHE denote the source and destination of flow @
respectively. For every flow @ and link . , let ý(Ee represent the
traffic load imposed on link . due to flow @ .

The linear program is as follows:

Minimize §
subject to the following constraints:

(a)
V e»« ¥ ÕþÖÿ ýBEe 	 V e+« ¥�� ���ÿ ý�Ee �

�� � A E if �{�X@
		 A E if �{�X@
�� �F� I .� Í�È³D .� � / � and
� @ / :

where % P ¤� and %�� d��� are the sets of incoming and outgoing
links of vertex � respectively, and

(b)

ª
E « : ý E

e  à§ � .�/ %�L
The first constraint ensures that the traffic flow is conserved

in each vertex and it is routed from its source to its destination.
The second constraint ensures that the load on each link does
not exceed § .

APPENDIX II
AN NP-COMPLETENESS PROOF

The 1-hub routing problem is a special case of N-hub
routing. In what follows we formulate the p -hub problem
with uniform capacities as a decision problem and prove that
this problem is NP-complete. It is easy to see that if p -hub
with uniform capacities is NP-complete, then the more general
N-hub problem with arbitrary capacities is NP-complete as
well. An instance for the p -hub problem is a directed graph�<�ä'���)�%-, , a set

: ; ��=�� of flows, a function
A

of
bandwidth demand for each flow, and a positive real } . The
question is whether there exists a hub

I E / � for each flow@ / : such that if the required traffic volume for @ , namelyA 'B@C, , is routed over DFE�5 I E�5çGHE , the total traffic routed
through every link .r/ % does not exceed } .

Theorem 3: 1-hub is NP-complete.
Proof: It is easy to see that 1-hub / �mg . To prove

that 1-hub is NP-complete we will show a reduction from
SAT to 1-hub. Consider the following instance for SAT. Let¨ � �N1 J )¯1 K )NLMLNLM)¯1 O�� be a set of variables and � ���� J )�� K )MLNLMLZ)���� � a set of clauses. A valid hub assignment for
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Fig. 10. An instance for the 1-hub problem constructed from the instance
of SAT given in (3)

the 1-hub problem is an assignment that does not impose a
traffic volume greater than } on any edge. We shall now
transform the instance for SAT into an instance for the 1-
hub problem such that a valid hub assignment for the 1-hub
problem exists if and only if C is satisfiable.

For every variable 1 P / ¨ of SAT, p� yÈ� y� , the following
three sets are defined:� dP � =¦1 JP )¯1 KP ) 1 JP ) 1 KP )¯1 �P )¯1
	P?>% dP � = ' 1 �P )¯1 JP ,Á)c' 1 �P ) 1 JP ,Z)N' 1 JP )¯1 KP ,Á)' 1 JP ) 1 KP ,Z)N' 1 KP )�1 	P ,Á)c' 1 KP )�1 	P , >: dP � = ' 1 �P )¯1
	P , > L
For every clause �A@ / � of SAT, p9 Äº! �§ , the following
three sets are defined:��B@ �C=D� �@ )��E	@ >%�B@ � = 'F� �@ )¯1 JP ,Á)c' 1 KP )��E	@ ,��F1 P / ��@ >HG= 'F� �@ ) 1 JP ,Á)c' 1 KP )��E	@ ,�� 1 P / � @ >: B@ �I= 'J� �@ )��E	@ , > .

An instance for the 1-hub problem is defined as follows:

���LK G OPNM J � dP7O G K G �@ M J ��B@ O%��PK G OPNM J % dPQO G K G �@ M J %�B@ O: �LK G OPNM J : dP O G K G �@ M J : B@ OA 'B@C,2� ¶ § if @ / : dP p� �È� y�p if @ / : B@ p� ?º� à§} ��§�L
As an example, Fig. 10 shows the graph of the corresponding
1-hub instance for the following SAT instance:

�Ï�R�S� J )�� K � ) (3)

where � J �T� Uß)WV � and � K �X�EUß) V )�Y � L
The flows of the 1-hub instance are:

: d J �Ï'FU � )�UZ	�, , : dK �'[V � )WV\	F, , : då �ã'FY � )�Y]	N, , : B J �ã'F� � J )���	 J , , and
: BK �ã'F� �K )��E	K , .

Their bandwidth demands are as follows:
A ' : dP ,��X~ for È2�p¦)+~è)�ô and

A ' : B@ ,*��p for ºj��p¦)+~ .

It is easy to see that an instance for the 1-hub problem can
be constructed in polynomial time.

We proceed by showing that a valid hub assignment for the
1-hub problem exists if and only if there exists a truth assign-
ment that satisfies � in the corresponding SAT problem. Let us
assume that � is satisfiable. Let ^�3Ñ¨s5_� TRUE, FALSE � be
a truth assignment for � . We now assign a hub for each @ / :
as follows. For each @ / : dP , where @���' 1 �P )�1Q	P ,�p� �ÈÐ �� ,
we assign the vertex 1 JP as a hub if ^C' 1 P ,t� FALSE and the
vertex 1 JP otherwise. For each @ / : B@ , where @X��'J� �@ )�� 	@ ,p  �º9 X§ , we assign the vertex Y JP as a hub, where Y P / ��@
and ^ 'JY P ,-� TRUE. Note that such a literal must exist since^ satisfies �A@ . Clearly, the traffic volume between the pairs
that correspond to the clauses is routed through the vertices
corresponding to the literal whose value, as determined by^ , is TRUE. Furthermore, the traffic volume of the pairs that
correspond to the variables is routed through the vertices that
correspond to the literals whose value is set to be FALSE.
Hence, no edge in � has a load greater than § .

Let
I 3 : 5ç� be a valid hub assignment in � . We now

show how to construct from
I

an assignment ^ that satisfies� . From the way � is constructed, it follows that the traffic
volume required for every flow @ / : dP , @9��' 1 �P )¯1
	P ,Ãp� �È* � can be routed in two ways: either through 1 JP or through 1 JP .
If this traffic is routed through 1 JP , we set ^C' 1 P ,|� � ��§ÐÞ % .
If this traffic is routed through 1 JP , we set ^C' 1 P ,j� A7` ¨�% .
Obviously, each variable in ¨ is assigned one value. From the
construction of � , it follows that the traffic volume required
for a flow @ / : B@ , @ �>'J� �@ )�� �@ ,�p� Xº �§ must be routed
through a vertex corresponding to a literal in ��@ . From the
construction of

A
, it follows that this literal is set by ^ to

TRUE. Otherwise,
I

would not be a valid hub assignment.
Hence, for every clause in � there is a literal whose value, as
determined by ^ , is TRUE. Therefore, ^ satisfies � .

Corollary 3: N-hub is NP-complete. Moreover, a restricted
version of N-hub referred to as Integer N-hub, where all the
capacities are 1 and all the bandwidth demands are integers,
is also NP-complete.

Proof: From the proof of Theorem 3 it follows that
Integer 1-hub is NP-complete. Integer N-hub is NP-complete
since it is a generalization of Integer 1-hub. Finally, N-hub is
NP-complete since it is a generalization of Integer N-hub.

APPENDIX III
A PROBABILISTIC APPROXIMATION ALGORITHM FOR THE

OFFLINE N-HUB PROBLEM

In section III we saw that N-hub is NP-complete and
difficult to approximate. In this appendix we describe a prob-
abilistic approximation algorithm for 1-hub. This algorithm
is based upon an approximation technique presented in [33].
This algorithm is then extended for the more general N-hub
problem. The algorithm is the basis of an Asymptotic PTAS
for N-hub. We begin by describing the general technique we
use in the algorithm and then present the algorithm itself.

A. The Approximation Technique

The idea is to formulate 1-hub as an integer program, and
then to transform it into a rational linear program that can
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be solved in polynomial time [34] by relaxing the integrality
constraints of its variables. After the relaxed program is solved,
the values of the relaxed variables are rounded either to 0 or to
1 in a randomized manner. Thus, with a certain probability, the
value of the objective function, namely the maximum load in
the network, is “close” to the optimum of the linear relaxation.
It is therefore “close” to the optimum of the original integer
programming problem. This concept was introduced in [33]. It
is effective for problems whose objective function is an upper
bound of sums of the problem’s binary variables.

Let h7a be an integer linear program and h4b be its rational
relaxation. Let the variables of the problem be U J )�U K )NLMLNLM)WU ¤ .
Note that in hca , U P / �N�è)Np � whereas in hcb , U P /ed � )MpEf . The
basic algorithm, as presented in [33], consists of the following
two phases:

1) Solve h b . Let the value assigned to every variable U P
be Ú P , where Ú P /gd �è)Np�f .

2) Set every variable U P to 1 or 0 randomly, such that
Prob 'FU P �spc,*�XÚ P .

In some problems the constraints dictate that the variables
should be partitioned into several sets, and the sum of the
variables of each set must be 1. In these problems the variables
in each set are still randomly rounded to 1, but in a mutually
exclusive manner.

As mentioned above, this technique is suitable for problems
whose objective function is an upper bound of the sums of
its binary variables. Therefore, in order to approximate the
objective function, an upper bound for these sums should be
found. It was observed in [33] that the sum of the rounded
variables is actually a sum of independent Bernoulli random
variables, where each variable may be associated with a
different probability. In order to find an upper bound for sums
of this kind, [33] uses results from [35] and [36]. From these
results the following is derived:

Prob 'ihÏ����,ÃÜ .Djlk�m�npoq
where h is the sum of the independent Bernoulli variables,� is the number of the variables and �>��'³p�qsrß,¯�ut , where�¢Üvr  0p and t�� V nw�x?y{z wO (tZ| is the success probability
for the } th Bernoulli variable).

This upper bound is applicable only for Bernoulli random
variables and not for other random variables with a more
general distribution. In the problem we consider the objec-
tive function is not necessarily an upper bound of sums of
Bernoulli variables; it is actually an upper bound for sums
of flow demands passing through the links. Hence, in the
following we use a different probabilistic analysis.

B. The Approximation Algorithm

We now apply the approximation technique presented above
to the 1-hub problem. We start by formulating 1-hub as an
integer programming problem. For every flow @ , and for every
node È that can serve as a hub for the traffic of this flow, the
following binary variable is defined:U P E – A binary variable whose value is 1 if node È is assigned
as a hub for the traffic of flow @ and 0 otherwise.
Parameters:

© A E – For every flow @ ,
A E indicates the traffic volume

demanded by @ .© 1 e – For every edge . , 1 e indicates the capacity offered
by . .© Y eP E – For every flow @���'�D�)�GH, , node È and link . , letY eP E �sp if . is on the shortest path from D to È or from È
to G and 0 otherwise.

The target function, Minimize § , is subject to the following
constraints:

(a)
� @ V P U P E �Ïp

(b)
� . V P[~ E Ì Õ W�� � [Õ W � _ Wd [  à§

(c)
� È»)�@ U P E / �c� )Mp � L

Constraint (a) ensures that exactly one node serves as a
hub for @ . Constraint (b) ensures that no edge will carry a
relative traffic load greater than § . Constraint (c) ensures that
the traffic of each flow is not split (i.e., it is routed on a single
route).

The linear relaxation of the above program allows each
variable U P E to be assigned any real value in d �è)MpEf . This implies
that we actually relax the requirement that for every flow there
must be exactly one route that carries

A E (constraint (c)).
After obtaining an optimal solution for the relaxed linear

program, we have for every flow @s��'BD�)�GH, a set of hubs� E through which
A E is routed. Each hub

I / � E defines a
route from D to G , that consists of the shortest paths from D
to
I

and from
I

to G . Each such route carries a fraction of
the traffic volume,

A E . Each hub
I / � E is associated with a

weight equals to that fraction of
A E . The sum of the weights

for every
� E is, of course, 1.

The next step is to convert the solution of the relaxed linear
program into a solution of the original integer program by
rounding the weight of one selected hub in every

� E to 1
and rounding the weights of the other hubs to 0. In other
words, the entire traffic volume of @ will be routed through
the route defined by the selected hub from

� E . The hub is
selected randomly, with a probability that is equal to its weight.
Note that these random choices are made independently for
each flow @ . The following theorem shows that the presented
approximation algorithm has an absolute performance factor
of £y'�������'�� %�� ,�, . Namely, � �j'kiH,2	
£�g A 'kiH,M�è y£à' �f�¦��'�� %�� ,+, .

Theorem 4: Let n be a positive real such that �mÜ�n{Ü0p .
Let § � z � be the optimum value of § obtained by the relaxed
linear program. After a single hub is chosen for every @ using
the approximation algorithm, there is a probability greater thanp�	?n that the load on each edge is upper bounded by:

§ � z � q�� �����`'+� %���uvn»,~ � J�� K A Ê�ËÁÌ1 Ê P ¤ )
where � is the number of flows. % is the set of links in the
network,

A Ê|ËZÌ
is the maximum bandwidth demand of a flow,

and 1 Ê P ¤ is the minimum capacity of an edge.
Proof: Consider an edge .�/ % . Let § e be the relative

load imposed on . in the optimal solution as determined by the
linear program. The load imposed on . by the approximation
algorithm is a sum of � independent random variables, � e E
for p� �@y Ï� . The value of � e E indicates the contribution
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of the traffic generated by @ to the load imposed on . . Hence,
the distribution of � e E is as follows:� e E � ¶ � with probability p�	�t e EA E uF1 e with probability t e E )
where t e E is the fraction of flow @ routed over . according
to the solution found by the linear program. Recall that the
linear program is likely to split

A E between multiple routes.
Some of these routes (or none of them) might include link . .
Hence, t e E is equal to the aggregated traffic of flow @ carried
by these routes. Namely, t e E � V P U P E É�Y eP E .We know the following from [37]. Let � J )�� K )MLMLNLM)�� ¤ be
independent random variables, where �m v� P  Âp . Let �à�%�'�Þ*, , where ÞÏ��� J q�� K q LNLMLÑq�� ¤ . Then, for every � ,�{Ü��ÃÜÄp�	g�ßuF� , the following holds:

Prob '�Þ����C�`q��R,Ã . j K ¤ � m L
Let Þ e be a random variable such that Þ e � V E � e E . Note

that %�'�Þ e ,*��§ e . In order to use the upper bound of [37], the
random variables � e E should take values in the range [0,1].
We therefore multiply � e E by 1 Ê P ¤ u A Ê�ËÁÌ for every @ . Now,
the load imposed by the algorithm on link . is a sum of random
variables, �� e E , of the following type:�� e E ��� � with probability p�	�t e E_ Wd [ É d Ò`Õ�Ö_ ÒRÓ�Ô with probability t e E L
Let us denote this sum by �Þ e . Note that �Þ e �QÞ e d Ò`ÕþÖ_ ÒRÓ¯Ô .
Therefore, %�' �Þ e ,¢�<§ e d Ò`ÕþÖ_ ÒRÓ�Ô . This value does not exceed,
of course, § � z � d ÒRÕþÖ_ ÒRÓ¯Ô .

Applying the upper bound of [37] mentioned above yields:

Prob �"�Þ e ���C�`q�§ e 1 Ê P ¤A Ê�ËÁÌQ�  .Dj K ¤ � m
for � Üy�ÐÜ p�	 � [ d Ò`Õ�Ö¤ _ ÒßÓ¯Ô . Choosing

�*� � �N�R'�� %���uvnÁ,~v� � JW� K
where n is a positive real smaller than 1, yields

Prob � �Þ e �y�C�Cq�§ e 1 Ê P ¤A Ê�ËÁÌ �  n� %�� L (4)

Let �Þ?� MAX
e+« ¥ ���Þ e � . Hence, �Þ is the normalized maximal

load imposed on any link according to the solution obtained
by the approximation algorithm. Note that § � z � �s§ e . From
Eq. (4) we get:

Prob � �Þ�Üy�C�`q § � z � 1 Ê P ¤A Ê�ËÁÌ � oXp�	?ncL (5)

We now return to the original problem with the original
bandwidth demands. Let Þ?� MAX

e+« ¥ �FÞ e � . Hence, Þ is the
non-normalized maximal load imposed on any link according
to the solution obtained by the approximation algorithm. From
(5) we get:

Prob �(Þ�Ü��C� _ ÒßÓ¯Ôd Ò`Õ�Ö q�§ � z ��� �
Prob K��Þ�Ü��C�`q�§ � z � d Ò`ÕþÖ_ ÒRÓ¯Ô O o p|	
nN) (6)

which concludes the proof.
The presented approximation algorithm and Theorem 4 are

also applicable to the more general N-hub with the obvious
modifications. We consider an ordered N-tuple of nodes as a
supernode. Instead of assigning to every flow a single node as
its hub, we assign a supernode. There are � ��� O supernodes
in � �û'���)�%-, . The formulation of N-hub as an integer
programming problem is the same as 1-hub, except that U P E
equals 1 if supernode È is assigned as a “hub” to flow @ and
that Y eP E equals to 1 if . is on the route defined by the end
nodes of @ and supernode È . The rest of the analysis is similar
to the 1-hub analysis.

In some cases it would be desirable to guarantee with a high
probability that the solution of the approximation algorithm
will not exceed the optimal solution by a certain factor. Let us
consider the case where this factor is 2. From Eq. 6 it follows
that in order to ensure that the solution will not exceed the
optimal solution by this factor, �C� _ ÒRÓ�Ôd Ò`ÕþÖ  �§ � z � must hold.
This yields the following constraint on § � z � :� ���N�R'�� %���uvnÁ,~ � JW� K A Ê�ËÁÌ1 Ê P ¤  à§ � z � L
Note that this does not impose a rigid upper bound but rather
a probabilistic one. Furthermore, it should be noted that the
approximation ratio of the above algorithm will be as small as
we want it to be, provided that we increase the maximum load
in the network. It represents, therefore, an asymptotic PTAS
[26].
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