
1

Sampling-on-Demand in SDN
Reuven Cohen Evgeny Moroshko

Department of Computer Science
Technion–Israel Institute of Technology

Haifa 32000, Israel

Abstract—Sampling is an expensive network resource, because
switches and routers are able to sample only a small fraction of
the traffic they receive. Modern switches and routers perform
uniform packet sampling, which has several major drawbacks:
(i) the same flow might be unnecessarily sampled multiple times
in different switches; (ii) all the flows traversing a switch whose
sampling module is activated are sampled at the same rate;
(iii) the sampling rate is fixed, even if the volume of the traffic
changes. For the first time, we propose a sampling-on-demand
monitoring framework. The proposed framework, presented as a
component of SDN (Software Defined Network), adds a Sampling
Management Module to the SDN controller. This module allows
the controller to determine the sampling rate of each flow at
each switch according to the monitoring goals of the network
operator, while taking into account the monitoring capabilities of
the switch. As part of the proposed framework, the paper defines
a new optimization problem called SAP (Sampling Allocation
Problem), which has to be solved by the Sampling Management
Module in order to maximize the total sampling utility. The paper
presents online and offline algorithms for solving this problem.
It also presents three real network management applications,
executed over Mininet, which are shown to significantly benefit
from the proposed framework.

I. I NTRODUCTION

Network monitoring plays a significant role in network
management. It is used for a variety of applications such
as QOS, billing, traffic engineering, security and anomaly
detection. While some of these applications require only flow
statistics, many require more specific packet-level information.
This requirement is fulfilled by having the network switches
copy a fraction of the packets of specific flows and forward
these packets to a monitoring device for further analysis. This
process is known as sampling.

Sampling is an expensive network resource, because each
switch is able to sample only a small portion of the traffic
it receives. In [32] it is shown that for a given input traffic
volume, there is a maximum sampling rate above which the
performance of the switch degrades. Although the sampling
function is usually performed by the switch’s ASIC, it also
consumes resources from the switch CPU. Hence, collecting
sampled data packets may become a scalability issue, espe-
cially in switches with high speed links.

Modern switches include monitoring modules, such as
sFlow [5] and NetFlow [3], which use uniform packet sam-
pling In both sampling methods, the sampling rate is deter-
mined per switch, usually while taking into account the link
speed. This approach has several major drawbacks:
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(i) The same flow might be sampled multiple times in dif-
ferent switches not because the management application
requires it, but because the flow traverses several switches
whose sampling module has been activated, resulting in
significant waste of resources.

(ii) All the flows traversing a switch whose sampling module
is activated are sampled at the same rate, although the
management application might only need to see samples
of certain flows, and not necessarily at the same rate.

(iii) The switch samples packets at a predetermined rate, but
the volume of the traffic may change. Consequently, when
low volume traffic traverses the switch, the switch may
not utilize its entire sampling capability, and when high
volume traffic traverses the switch, the switch sampling
resources may be exhausted. Hence, switch sampling
does not adapt to changing traffic volumes, and it is
usually activated at a much lower rate than its actual
capability.

Previous works evaluate the impact of sampling on specific
applications, such as volume anomaly detection and port
scans [12], [21], [24], [25], [27]. They show that the effect
of the sampling rate on important metrics, such as false
positive and false negative rates, is not linear. Hence, when
specifying monitoring goals, it could be beneficial to indicate
the importance of monitoring one flow over another, and the
impact of the monitoring rate on the monitoring goal. It would
also be beneficial for the monitoring application to determine
the sampling rate of each flow based on this information.

For the first time, we propose a sampling-on-demand
monitoring framework. The proposed framework allows the
controller to determine the sampling rate of each flow at
each switch according to the monitoring goals of the network
operator, while taking into account the monitoring capabilities
of each switch. The new framework is presented in the context
of SDNs (Software Defined Networks), because it is very well
suited to such networks. The current OpenFlow Specification
(1.5) [7] does not support sampling, but only flow-based
monitoring using theOFPAT OUTPUT action. Previous work
[30] has already proposed to add a new OpenFlow action
that asks specific switches to sample specific flows, but we
are the first to propose a model and a mechanism that allow
the controller todeterminewhich flows should be sampled in
every switch and in what rate.

In the proposed framework, every switch has asampling
capacity attribute, which indicates the number of packets
per second the switch can sample without compromising its
performance. For example, some Brocade switches are limited



to 50 samples per second, to avoid CPU bottlenecks [2], and
Juniper limits its EX series switches to 300 samples per second
per physical interface [4].

The proposed sampling-on-demand framework uses utility
functions to specify monitoring goals. These functions, as
well as the sampling capacity of all switches, are known to
the network (SDN) controller in advance. The controller uses
this information to make ongoing centralized decisions about
which flows to sample in each switch, and at what rate. The
flows to be sampled, the sampling rates, and the locations
are determined by the controller such that the total network
sampling utility is maximized without exceeding the sampling
capacity constraint of each switch. To save sampling resources,
the proposed framework guarantees that flows are sampled at
most once. An extension of the proposed framework allows
sampling the same flow by multiple switches, when this is
required by the monitoring application. Sampling before and
after a firewall, to see which flows are affected by the firewall’s
discard rules, is one example of such a case.

As part of the proposed framework, we define a new prob-
lem: the Sampling Allocation Problem (SAP), which should
be solved by the network controller in order to maximize the
total utility of the sampling. We propose online and offline
algorithms for solving this problem.

The rest of the paper is organized as follows. In Section II
we discuss related work. Section III presents the design of
the proposed framework. In Section IV we define and study
the sampling allocation problem, and present algorithms for
solving it. In Section V we evaluate the proposed framework
using Mininet. Section VI evaluates the performance of the
proposed algorithms. Finally, we conclude in Section VII.

II. RELATED WORK

In [18], the authors address some of the shortcomings
of Sampled NetFlow such as the static sampling rate and
the aggregation of flow records, which exhaust the memory
during flooding attacks. They propose an improved version
of NetFlow, which includes a mechanism for adapting the
sampling rate to the traffic mix.

In [32], the authors present OpenSample, a sampling-based
monitoring system. OpenSample uses sFlow to obtain packet
samples. It reconstructs flow statistics from the samples and
estimates port utilization. OpenSample creates a snapshotof
the network every 100ms. Each snapshot includes the utiliza-
tion for every switch port and the list of detected elephant
flows. Applications can query the snapshots through an API.
Since OpenSample only provides information regarding port
utilization and elephant flows, it is mostly suitable for traffic
engineering applications and not for applications that require
deep packet inspection. In addition, since OpenSample is
based on sFlow sampling, the sampling rate is predefined and
fixed for each switch. Hence, sampling resources are not well
utilized.

In [28], the authors present a framework called FlexSample.
FlexSample allows the network operator to specify character-
istics of traffic subpopulations, such as packets with a specific
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Fig. 1: The components of the proposed framework: the SDN
controller uses OpenFlow to control the various switches

source IP address, and define for each subpopulation a budget.
FlexSample uses fast counter arrays to determine whether a
packet belongs to a subpopulation. If it does, FlexSample
samples the packet with a probability proportional to the
subpopulations budget. FlexSample allows network operators
to define how the sampling rate is divided between different
subpopulations, but not to specify the sampling rate. Hence,
choosing a sampling rate that fits the sampling capability of
the switch remains a challenge. In addition, FlexSample uses
m-dimensional arrays for storing the sampling budget, where
m is proportional to the number of defined subpopulations,
which may exhaust the switch limited RAM.

In [29], the authors present cSamp — a system-wide
framework for flow monitoring. This framework computes a
sampling manifest, which states what fraction of each flow is
sampled in each switch. cSamp aims to maximize the flow
coverage while meeting the switch sampling constraints. It
also provides a hash based coordination method that ensures
that the same packet is not sampled by multiple switches. In
cSamp, all the flows and their rates are assumed to be known
in advance. In addition, cSamp allows the network operator to
specify the monitoring goal using a single parameterα, which
indicates the desired minimum coverage for each flow. Hence,
it does not support the specification of different monitoring
goals for different flows.

III. T HE PROPOSEDFRAMEWORK

We consider an SDN network with three components, as
shown in Figure 1. The first is a Sampling Management
Module (SMM), which is a controller application. The second
is a Sampling Module, which is added to some or all network
switches/routers. The third is a “collecting server”, one or
more of which are located in the network in order to collect
and process the sampled packets.

Each sampled packet is encapsulated in a UDP packet and
sent to a collecting server. Each switch is configured with the
IP address of the collecting server to which it sends its sampled
packets. A simple extension allows a different collecting server
to be defined per flow. The proposed framework performs
monitoring at the granularity of a flow table entry. This means
that all the packets corresponding to the same OpenFlow
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Fig. 2: Examples of different 5-tuple flow configurations, which are likely to result in different utility functions

table entry are sampled at the same rate. Sampling can be
deterministic or probabilistic. In the first case, one of every r
packets is sampled, wherer is the sampling rate. In the second
case, every packet is sampled with probability1

r
.

We define a new OpenFlow message called
OFPT RATE MOD. This message is sent by theSampling
Management Module (SMM)to the switches, and it indicates
which sampling rate should be used for each flow. This
new message is added to the OpenFlow implementation in
the switches and in the controller. To implement sampling-
on-demand in an OpenFlow switch, we need to add a new
Match/Action table that will include a key and one of the
following possible actions: replicate to port, replicate sample
to port and encapsulate. The “encapsulate” action should
include support for several tunneling mechanisms, including
VLAN, VxLan and IP.

Since the SMM is a controller application, it learns the exact
network topology using the OpenFlow Discovery Protocol
(OFDP). In addition, the controller learns which flows are
active by keeping track of the OpenFlowOFPT PACKET IN
and OFPT FLOW REMOVEDmessages, which are sent by
the switches when a new flow is added or removed.

The proposed framework uses a utility function [15] that
reflects the monitoring goal of each flow. As already indicated,
a flow can be sampled in one of many switches, and the utility
function of sampling a flow in one switch is not necessarily
identical to the utility function of sampling the same flow in
another switch.

Using OpenFlow, every 5-tuple connection can, in theory, be
considered as a different flow. However, this approach does not
scale because it requires allocating an OpenFlow switch entry
to every connection. Therefore, wildcards are commonly used
to represent most of the tuples associated with each flow entry,
in which case many TCP connections are mapped to the same
flow entry. For example, the Openflow entry associated with
[*,dest,*,80,TCP] handles all the TCP connections established
with a certain IP address (dest) in the same way1. In such a
case, an important network management task is estimating the
number of TCP connections (or micro-flows) “hidden” behind
each wildcarded flow [36]. With this task in mind, we will now
discuss the relationship between the monitoring application,
the network topology, and the utility function.

In Figure 2(a), a simple flow fromh1 to h2 traverses three
switches:s1, s2, ands3. For such a flow, it would make sense
to use the same utility function in all three switches, because

1The 5-tuple represents the source IP address, destination IP address, source
port number, destination port number and protocol field.

there should be no difference between the packets of the flow
as observed by each switch.

In Figure 2(b), flowf2 traverses switchess1 ands2, and a
firewall (FW). Since the firewall may block or modify some of
the packets off2, sampling this flow before the firewall ins1 is
different than sampling it after the firewall ins2. In particular,
sampling ins1 could reveal connections that are dropped by
the firewall and are therefore not revealed by sampling ins2.
Hence, the controller should assign higher utility to sampling
f2 in s1 than in s2. In fact, if the management application
needs to know the number of connections that are dropped by
the firewall, it would be beneficial to sample this flow twice:
once before and once after the firewall. Sampling of the same
flow in multiple switches is discussed in Section IV-C.

In Figure 2(c), flowf3 is defined by a destination address
only, e.g., all the flows towards a certain web server located
in h3. Since switchess1 − s5 do not receive all the packets of
this flow, the only way to discover all the connections is by
sampling this flow ins6. Hence, the utility of sampling this
flow in switchess1 − s5 should be significantly smaller than
the utility of sampling it ins6.

The utility function is a mapping between a set of possible
sampling rates and the interval[0, 1]. More formally, a utility
function Uf(s,r) indicates the “utility to the system” for
sampling flowf in switch s using rater.

Deciding the utility to be assigned to each rate is a chal-
lenge. It usually requires evaluating the performance of the
application with different sampling rates and assigning a utility
in proportion to the evaluated performance. For example, con-
sider again a network management application that estimates
the number of micro-flows associated with a certain OpenFlow
entry. One can try different sampling rates and, for each
rate, run a statistical algorithm that estimates the numberof
micro-flows from the samples. Then, compare the estimate
corresponding to each sampling rate to the real number of
micro-flows, and assign a utility in reverse proportion to the
estimation error. We use this algorithm in our evaluation
section (Section V) with very good results.

Another approach is to understand the application, develop
several possible functions and compare their performance.In
general, a utility function is always a monotonically increasing
function, because high rate sampling is always better than
low rate sampling. We found that in most cases the utility
function can be represented by a piecewise linear function
(Figure 3), because increasing the sampling rate is translated
into proportional improvement in the precision of the estimated
parameter, but a higher sampling rate affects the precision
differently in different ranges: sometimes the improvement is
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Fig. 3: An example of two piecewise linear utility functions,
each suitable for a different monitoring goal

significant and sometimes it is marginal.
As an example, suppose that an OpenFlow entry corre-

sponds to all the packets that enter a certain Autonomous
System (AS) from a neighboring AS. Let the two ASs be AS1
and AS2 respectively. The operator of AS1 wants to verify
that AS2 does not violate the BGP peering relationship. To
this end, it needs to verify that the IP destination addresses
in the received packets belong to AS1 or its customers. This
can be done using a relatively low sampling rate, say 0.001.
Increasing the rate to 0.005 would improve the precision of the
detection algorithm, but increasing it beyond 0.01 would yield
little benefit. This utility function is shown in Figure 3(a).

On the other hand, the utility function in Figure 3(b) is more
suitable for a monitoring application that needs to detect port
scanning. In this case, the application will prefer high sampling
rates, because low rates will result in only some of the flows
being sampled. In Section V we study these and other utility
functions in greater detail.

IV. T HE SAMPLING ALLOCATION PROBLEM (SAP)

A sampling allocationis a mapping that indicates which
flow should be sampled by which switch and at what rate. In
this section we define an optimization problem for finding the
optimal sampling allocation, the one that maximizes the total
utility while not exceeding the sampling capacity constraints
of the switches. We define offline and online versions of the
problem and propose efficient algorithms for solving them. We
then address an extension for the case where it is beneficial
to sample the same flow in multiple switches.

A. Offline SAP

As indicated in Section III, in the proposed framework the
SMM determines which flows should be sampled by each
switch, and at what sampling rate. This is an online problem,
which has to be solved each time a flow enters or leaves
the network. We first define and study the offline version of
the problem, assuming that all the flows enter the network
together. Solving the offline version allows us to gain insight
into the problem and obtain a benchmark for the performance
of our online algorithm.

Problem 1 (The Offline Sampling Allocation Problem
(SAP))

Instance: A setS of network switches. For each switchs ∈
S, cs is the sampling capacity ofs in packets per second (pps).
Also given is a setF of flows, with the following information
for each flowf ∈ F :

• df - the estimated packet rate (packets per second, or
pps) sent byf .

• Pf - the path of flowf ∈ F , i.e., the set of switches it
traverses.

• R - a set of possible sampling rates supported by the
switches.

• a utility function Uf(s,r), which indicates the “utility to
the system“ for sampling flowf in switch s using rate
r ∈ R.

Objective: Find a feasible sampling allocation that max-
imizes the total utility. A feasible sampling allocation isa
collection of 3-tuples[switch, flow, rate] that fulfills the
following requirements:

(a) for every 3-tuple[s, f, r], s is a switch traversed by the
flow f .

(b) the total sampling rate required from each switchs ∈
S does not exceed its maximum sampling capability,
namely,

∑

[s,f,r]∈T (s)

df · r ≤ cs, whereT (s) is the set of

tuples for switchs.

We first assume that the rate of each flow is known to the
SMM, and then discuss how to handle rate uncertainties.

When the utility function is a discrete function, SAP can be
shown to be equivalent to MC-GAP [14], which is an extension
of the Generalized Assignment Problem (GAP). (GAP, in its
turn, is an extension of the well-known Knapsack problem).
The input for GAP is a setB of bins and a setI of items.
Each bin has a size, and each item has a size and a utility.
The objective of GAP is to find a subsetU ⊆ S of items
that have a feasible packing inB, such that the utility ofU
is maximum.

MC-GAP extends GAP by associating multiple configura-
tions with each item and seeking a collection of configurations,
at most one from each item, which can be packed into several
bins (knapsacks) without exceeding their capacity. Formally,
an instance of MC-GAP is a triplet(B, I, C) and a3D utility
matrix P , whereB is a set of bins (knapsacks),I is a set of
items,C is a set of configurations, andP is a |I| × |C| × |B|
matrix that indicates the utility and size for each item in each
bin using each configuration. The objective is to find a subset
U ⊆ (I ×C) of [item, configuration] pairs that has a feasible
packing inB, such that each item is chosen at most once, using
one of its configurations, and the total utility is maximized.

To transform an instance of SAP to an instance of MC-GAP
and vice versa, we represent each SAP switch as an MC-GAP
bin whose size is equal to the sampling capacity of the switch.
We represent each SAP flow as an MC-GAP item, and each
SAP sampling rate as an MC-GAP configuration. The utility
of sampling a SAP flow in a switch using a specific sampling
rate is represented by the value in the MC-GAP utility matrix
for the corresponding [bin, item, configuration].

The Multiple Choice Knapsack Problem (MCKP) is a
generalization of the classic Knapsack problem. In MCKP,
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there are several classes of items, each having a weight and
a utility. The goal is to choose exactly one item from each
class, such that the total utility is maximized and the knapsack
weight constraint holds. Although MCKP is NP-hard [23], it
has efficient approximation algorithms [11] and an optimal
pseudo-polynomial time algorithm [23]. In particular, it is
shown in [14] that anyα-approximation for the Multiple
Choice Knapsack Problem (MCKP) [23] can be transformed
into a (1 + α)-approximation for MC-GAP.

We take advantage of the equivalence between SAP and
MC-GAP, and use AlgorithmALGMC−GAP from [14] to
solve the offline SAP. Algorithm 1 below gives a high-level
description of our proposed offline sampling allocation.

Algorithm 1 Offline Sampling Allocation

1. Transform the SAP instance into an MC-GAP instance.
2. Solve the MC-GAP instance using the algorithm proposed

in [14].
3. Transform the solution for MC-GAP into a solution for

SAP.

The algorithm for solving MC-GAP in [14] is a(1 + α)-
approximation algorithm, which extends the one presented in
[16] for solving GAP. The algorithm can be implemented
iteratively, with running time ofO(|B| ·TMCKP(|C|, |I|)+ |B| ·
|I| · |C|), where TMCKP(|C|, |I|) is the running time of the
MCKP algorithm used in Step 2. Hence, the running time of
Algorithm 1 isO(|S| ·TMCKP(|F |, |R|)+ |S| · |F | · |R|). MCKP
can be solved using an efficient greedy algorithm [23] with
running time ofO(|F | · |R| · log(|R|)+ |F | · |R| · log(|F | · |R|)).

B. Online SAP

In the online version of SAP, flows are admitted one at a
time into the network. When a new flow is admitted, the SMM
needs to decide whether to sample it, in which switch, and
at what sampling rate. Such a decision has to be made while
taking into account all previously admitted flows. In particular,
the SMM may need to change the sampling location and/or
rate of previous flows in order to efficiently sample the new
one. Such a reconfiguration imposes extra overhead both on
the SMM and on the switches. To minimize this overhead,
we add a constraint where the SMM is allowed to change the
sampling rate of existing flows, even to 0 if needed, only in
the switch that the SMM assigns to sample the newly admitted
flow.

As an example, Figure 4 describes a simple topology
with 4 switches and 3 flows. Suppose that flowsf1 and f2

have already been admitted and are sampled ins2 and s4

respectively. Whenf3 is admitted, the SMM needs to decide
whether to sample it ins2 or in s4. If it decides to samplef3 in
s2, it can reduce the sampling rate off1, but it cannot change
the sampling location of eitherf1 or f2, although changing
the sampling location off1 to s1 or s4 is likely to increase
the total utility.

The above constraint guarantees that the number of sam-
pling control messages exchanged between the SMM and the

Fig. 4: A topology with 3 flows: flowf3 is added to the
network and only the sampling assignments ofs2 or s4 can
be modified

switches is minimized. This is because when a new flow is
admitted, the SMM needs to send at most one control message.
This message is sent to the switch chosen for sampling the new
flow, and it may also ask this switch to reduce the sampling
rate of one or more previously admitted flows.

A formal definition of the Online Sampling Allocation
Problem is as follows.

Problem 2 (The Online Sampling Allocation Problem)
Instance: A network as in Problem 1, and a set of flows

that are already admitted and sampled. The existing sampling
allocationC is feasible. In addition, we are given a new flow
f ′ and the path of this flow.

Objective: Find a feasible sampling allocationC ′ for the
flows in F ∪ {f ′}, which maximizes the total utility, such
that: (i) except for the new flowf ′, each sampled flow inC ′

is sampled in the same switch it was sampled inC; (ii) all the
switches use the same sampling rates as inC, except for the
switch that samples the new flowf ′.

Since online SAP allows changing only the sampling rate of
the flows in the switch that samples the new flow, an algorithm
for this problem needs to consider only the switches along the
path of the new flow. For each switch along this path, such an
algorithm determines the increase in total utility if this switch
is chosen to sample the new flow. Then, the algorithm chooses
the switch for which the utility increase is maximized.

Algorithm 2 presents a formal description of this idea. For
each switch traversed by the new flow, the algorithm computes
its optimal sampling allocation. To this end, the algorithm
solves an MCKP instance for the switch, while taking into
account all the flows that this switch already samples, the flows
that traverse this switch and are not sampled elsewhere, and
the new flow.

Algorithm 2 Online Sampling Allocation

1. For each switchs ∈ Pf ′ , use a solution for MCKP
to compute the sampling allocation and the extra utility
obtained by samplingf ′ in s.

2. Choose the switch for which the extra utility is maximum,
and return its sampling allocation.
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Step 1 of Algorithm 2 can be performed using a greedy
MCKP algorithm [23]. Since Algorithm 2 solves MCKP for
each switch along the path of the new flow, its running time
is O(|Pf ′ | · TMCKP(|F |, |R|)), where TMCKP(|F |, |R|) is the
running time of the MCKP algorithm.

The sampling allocation for a certain switch also must be
calculated when the controller learns about the expirationof
a sampled flow. In such a case, the controller re-computes the
sampling allocation for the sampling switch using an MCKP
algorithm. Thus free sampling resources can be assigned to
other flows traversing the same switch.

Recall that the sampling load imposed on a switch by a
certain flow is the product of the flow rate and the sampling
rate. To compute the sampling allocation vector for each
switch, the SMM needs accurate information regarding the
rates of the flows. Such information can be obtained after flows
are admitted into the network using OpenFlow counters. For
example, using openTM[34].

However, the rate of a flow is likely to change over time. To
cope with such changes, we propose to reduce the sampling
capacity of a switch by a factor ofF , whereF < 1. This
would enable the switches to cope with small bandwidth
increases without making too many changes. To cope with
rapid changes, such as those taking place during a flooding
attack, we propose to use a watchdog timer in each switch,
which resets every second. Each reset, the number of sampled
packets is compared to the switch’s sampling capacity, hence
guaranteeing that the switch will not exceed its maximum
desired capacity.

C. Extended SAP

SAP finds a sampling allocation in which every flow is
sampled at most once. However, sampling a flow in multiple
switches is sometimes beneficial. Consider, for example, the
case where flows pass through a firewall. It would be helpful
to sample each such flow twice: once before the firewall and
once after. The sampling data can help verify that the firewall
rules are correct.

We define an extended version of SAP, called E-SAP, which
enables sampling the same flow at most twice. A similar
extension can be defined for sampling a flow in more than 2
switches, but the size of the input matrix grows exponentially,
and building this matrix becomes intractable. In addition,
limiting the number of switches to 2 enables us to develop an
online algorithm for E-SAP that provides an optimal allocation
in practical time.

In E-SAP, the utility function for each flow is defined for
every pair of switches rather than for every single switch.
The utility function of flow f for switches[si, sj ] and rate
r defines the utility to the system of samplingf in switches
si and sj using rater. Theoretically, the model can allow
two different sampling rates: one forsi and one forsj .
However, this extension requires adding another dimensionto
the utility functions, which significantly increases the size of
the framework input and renders the model impractical. Hence,
we do not discuss it further.

A formal definition for the offline version of E-SAP is as
follows.

Problem 3 (The Offline Extended Sampling Allocation
Problem (E-SAP))

Instance: A network as in Problem 1, and a utility function
Uf . In this function,Uf(si,sj ,r) indicates the utility for sam-
pling flow f in switchessi andsj using rater. If i = j, the
function indicates the utility for samplingf in a single switch
i.

Objective: Find a feasible sampling allocation, which max-
imizes the total utility. A feasible sampling allocation isa
collection of 3-tuples[[switch1, switch2], f low, rate] that
fulfills the following requirements:

(a) for every 3-tuple[[si, sj ], f, r], si and sj are switches
traversed by the flowf .

(b) the total sampling rate required from each switchs ∈ S
does not exceed its maximum sampling capability.

The d-Dimensional Multiple-Choice Knapsack Problem (d-
MCKP) [23] is a combination of MCKP and the d-
Dimensional Knapsack Problem (d-KP) [23]. It is similar to
MCKP, except that there ared knapsacks, and each item
has ad-dimensional weight vector. The objective is to pack
exactly one item from each class such that the total utility is
maximized and the constraints on the size of all knapsacks
hold. Since it is a generalization of d-KP, which is one of the
hardest NP-hard problems, d-MCKP is not only NP-hard but
also very hard to approximate. It is also known to be NP-hard
in the strong sense [26].

To solve offline E-SAP, we note that it is a special case of d-
MCKP where the number of knapsacks is equal to the number
of switches in the network, and each item’s weight vector
has at most 2 non-zero values. Algorithm 3 below is a high-
level description of offline E-SAP, which uses a procedure
for solving d-MCKP. Many heuristics have been presented for
d-MCKP[10], [20], [26], but none provides a performance
guarantee. In [35], a dynamic programming algorithm for
solving d-KP is presented. Using similar ideas, a dynamic
programming algorithm for d-MCKP is presented in [13]. The
time complexity of this algorithm renders it impractical when
the number of knapsacks is not small. Hence, it is suitable for
solving offline E-SAP only when the number of switches in
the network is small.

Algorithm 3 Offline Extended Sampling Allocation

1. Transform the E-SAP instance into a d-MCKP instance,
whered is the number of switches in the network.

2. Solve the d-MCKP instance, e.g., using dynamic program-
ming [13].

3. Transform the solution for d-MCKP into a solution for
E-SAP.

Since Algorithm 3 solves offline E-SAP using a solution for
d-MCKP, its running time is equal to the running time of the
d-MCKP algorithm used in Step 2. LetTd-MCKP(d,C, I) be
the running time of the d-MCKP algorithm withd knapsacks,
C classes andI items. There are(

(

|S|
2

)

+ |S|) · |R| options
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for sampling each flow, where|S| is the number of switches
and |R| is the number of possible sampling rates. Hence, the
running time of Algorithm 3 isTd-MCKP(|S|, |F |, (

(

|S|
2

)

+ |S|) ·
|R|), where|F | is the number of flows in the network.

The online version of E-SAP is defined in the same way
online SAP was defined earlier. It is solved by Algorithm 4,
which extends Algorithm 2. In step 1, the algorithm considers
each pair of switches[si, sj ] along the path of a new flow, and
determines the increase in total utility if the flow is chosen
to be sampled in these switches. For this task, the algorithm
calculates the optimal sampling allocation for each pair of
switches, which is equivalent to solving d-MCKP when the
number of knapsacks is 2. Sometimes it would be better to
sample the new flow only in one rather than two switches.
Such a solution cannot be found by step 1, because in this step
the sampling rate of the two switches must be equal. Thus, in
step 2 the algorithm also computes the utility gain when the
new flow is sampled only once, for each switch along the path.
The algorithm then chooses the best solution from steps 1 and
2.

Algorithm 4 Online Extended Sampling Allocation

1. For each pair of switchessi and sj along the path of
the new flow, use a solution for 2-MCKP to compute the
optimal sampling allocation and the extra utility obtained
by sampling the new flow in these switches.

2. For each switchsi along the path of the new flow, use
a solution for MCKP to compute the optimal sampling
allocation and the extra utility obtained by sampling the
new flow only in this switch.

3. Let S be the set of switches (a single switch or a pair of
switches) for which the extra utility found by the previous
steps is maximum.

4. Update the sampling rates in each switchs ∈ S according
to the new sampling allocation.

5. For each flowf , if f is sampled in a switchs ∈ S and
in a switchs′ /∈ S, update the sampling rate off in s′

according to the new sampling allocation.

Since the algorithm requires that d-MCKP be solved for a
small number of knapsacks (d=2), the dynamic programming
algorithm presented in [13] can be used.

We now analyze the running time of Algorithm 4. Denote
by TMCKP(C, I) the running time of the MCKP algorithm with
C classes andI items. Letn be the number of switches on the
path of the new flow. Since there are

(

n
2

)

options for sampling
the flow in 2 switches, andn options for sampling the flow
in a single switch, the total running time of the algorithm is
(

n
2

)

· Td-MCKP(2, |F |, |R|) + n · TMCKP(|F |, |R|).

V. FRAMEWORK EVALUATION USING M ININET

A. Evaluation Testbed

We implemented a prototype of our framework using a
Mininet network emulator [6] running Openflow 1.3 software
switches2. We added our newOFPT RATE MOD message to

2Some of the code used in this section can be found in
https://goo.gl/HPsMjU.

switch

client

server

collector

Fig. 5: The Mininet topology for evaluating the proposed
framework

OpenFlow. Recall that this message allows the controller to
configure the sampling rate of each flow.

Two sampling methods are implemented by the switch: uni-
form packet sampling, and the proposed flow-based sampling
framework. Each switch is also configured with an address of
a collector to which the sampled packets are forwarded using
UDP encapsulation. Each encapsulated packet is pushed into
the switch’s pipeline for processing and is then routed towards
its collector.

The sampling allocation module is implemented as a stan-
dalone Python script. The script configures the switches via
the switch management utility (dpctl), which is also modified
to support the new OpenFlowOFPT RATE MOD message.
Scapy is used for generating TCP traffic at specific rates
between the network switches.

Our experiments are conducted on the topology depicted in
Figure 5, with 14 switches and 36 hosts. One of the hosts is
configured as a collector, 5 as servers, and 30 as clients.

In all our experiments, when our framework is used, the
switch maximum sampling rate is configured to 50 pps (packet
per second), because this is the maximum rate the switches in
our setup could sustain. When uniform sampling is used, the
sampling ratio is set to 1/60, which is the maximum ratio that
guarantees that no switch will have to sample more than 50
pps.

B. Estimating the Number of Connections in a Flow

In this section we evaluate the proposed sampling-on-
demand framework and algorithms. Our first application ex-
ample is estimating the number of connections carried by
each flow. This is an important management function, which
allows the detection of DDoS attacks, deciding whether more
resources are needed in the network, and many other network
tasks.

We define a connection as a 4-tuple:[src ip, dst ip,
src port, dst port]. Hence, the problem of estimating the
number of connections is translated into that of estimating
the number of distinct 4-tuples (micro-flows) “hidden” behind
each (OpenFlow) macro-flow. This problem is known as
the cardinality estimation problem (or as the count-distinct
problem) [33]. Since the collector receives only samples of
each flow, most cardinality estimation algorithms, such as [19],
cannot be used because they assume that the entire stream is
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Fig. 6: The utility function for estimating the number of
connections in each flow from the flow sample

given to the algorithm as input. For example, if the full stream
contains packets from connectionsc1, c2, c3 and c4, and the
sampled stream contains only packets from connectionsc1, c3

and c4, a naive algorithm would incorrectly estimate that the
number of connections in the full stream is3 rather than4.
A more sophisticated algorithm, such as the one proposed in
[17], is able to estimate the probability of unseen connections
and take them into account.

The algorithm in [17] combines sampling with any full-
stream cardinality estimation algorithm. We use this method
with the HyperLogLog cardinality estimation algorithm [19]
to estimate the number of connections in each flow, given only
samples from this flow.

The goal of our first experiment is to find a suitable utility
function. We use the packet trace from [8] and sample it using
multiple sampling rates. We count the number of connections
in the unsampled trace. We then apply the estimation algorithm
from [17] on each sampled trace. The output of the algorithm
is used as an estimation for the number of connections in
the unsampled trace. This output is then compared to the
real number of connections in the unsampled trace, and the
estimation error is calculated. We define the utility for each
sampling rate as1 minus this error. Figure 6 shows the
resulting utility function.

We perform two experiments: one with uniform packet
sampling, and another with our framework, using the utility
function depicted in Figure 6. We define 30 [source, des-
tination] flows in the network. The source of each flow is
one of the clients, and the destination is a randomly chosen
server. Routing is performed over the shortest paths. Each flow
carries between 100 and 3,900 TCP connections between the
considered client-server pair. All the connections are initiated
roughly at the same time and last 2 minutes. Data packets are
sent at a rate of 100pps. We run the algorithm from [17] for
each packet trace obtained from the collector, and calculate
the percent error for each flow as

Error = 100 ·
|Real − Estimation|

Real
.

Each experiment is repeated 90 times. Figure 7 shows
the average estimation error as a function of the number of
connections in each flow, with and without our framework. We
can see that our framework yields a slightly smaller estimation

error. In most cases the error in our framework is around3.5%,
while without our framework it is typically around10.5%.
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Fig. 7: Estimating the number of connections in a flow: our
framework vs. uniform packet sampling

C. Detection of a Port Scanning Attack

Our second application example detects a port scanning
attack. In this attack, the attacker probes the victim server
for open ports. Such an attack is often used to reveal which
services are running on the server. The attacker then uses this
information to exploit vulnerable services.

In [22], the authors present a port scanning detection
algorithm, called Threshold Random Walk (TRW). In TRW,
each host in a packet trace is classified as either a port scanner
or benign. TRW requires flow traces that include bidirectional
packets, and it is shown to require an extremely low number
of observed events to make a decision [31].

For our evaluation, we use a port scanning detection algo-
rithm called TRWSYN [31]. TRWSYN is a variation of TRW,
which can work on unidirectional flow traces. We configure
each client in the network to establishN connections to one of
the servers and send legitimate data. All the connections from
a client to a server are considered a single flow, and each
flow is routed over its shortest path. From all the clients, 10
are configured to perform port scanning. These 10 hosts send
SYN packets to a range of server ports. Each client sends
packets at a rate of 100pps.

The experiment is executed 3 times. The first is with
uniform packet sampling, the second is with our framework
using the utility function depicted in Figure 8(a), and the third
is with our framework using the utility function depicted in

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

U
til

ity

Sampling Rate (fraction of sampled packets)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

U
til

ity

Sampling Rate (fraction of sampled packets)

(b)

Fig. 8: The utility functions for the second and third applica-
tions

8



 0

 20

 40

 60

 80

 100

3K 6K 9K 12K 15K 18K

T
ru

e 
P

os
iti

ve
s 

(%
)

Number of Legitimate Connections in the Network

Uniform Packet Sampling
Our Framework (a)
Our Framework (b)

Fig. 9: Comparison of port scanning detection

Figure 8(b). The TRWSYN algorithm is applied on the traces
sent to the collector during each experiment. The output of
this algorithm is a list of clients identified as port scanners. We
repeat these 3 experiments while changing the numberN of
legitimate connections each client established. This increases
the noise in the network and makes it harder to detect the port
scanners. We then compute for each experiment the number
of true positives, namely, clients correctly identified as port
scanners, as well as the number of false positives, namely,
innocent clients incorrectly identified as port scanners.

Figure 9 shows the true positive rate for different values
of N . First, we compare uniform packet sampling to our
framework with the utility function of Figure 8(a). The graph
shows that when the number of connections in the network is
relatively small (3K), both methods perform equally well, and
both detect all port scanners. When the number of legitimate
connections in the network increases to 6K and to 9K, the
ability of uniform sampling to detect the attack dramatically
decreases to40% and 20% respectively. In contrast, our
framework is still able to detect90% of the attacks!

We then compare our proposed framework using the utility
functions of Figure 8(a) and Figure 8(b). The former is better
when the number of connections is less than 15K; otherwise
the latter is better. This is because the percentage of packets
associated with port scanning activity decreases when the
number of connections is high. Hence, a high sampling rate
is required to detect the port scanners. The utility function of
Figure 8(b) samples flows at a high rate, at the cost of not
sampling other flows at all. Hence, it is able to detect port
scanners even when the number of connections is high.

We found no false positives in any of our experiments.
This is because TRW produces false positives only when it
observes multiple consecutive SYN packets from a benign
host, a scenario whose probability is low.

D. Maximizing Flow Visibility

Our third application example measures the flow visibility
achieved by the proposed framework. Thevisibility of a flow is
defined as the percentage of the flow’s packets received by the
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Fig. 10: Flow visibility of different sampling methods

monitoring application. Many monitoring applications, such as
DDoS detection, heavy hitter identification, and port scanner
detection, benefit from maximum network visibility [9], [37].

The performance of the proposed framework with respect
to flow visibility is compared to the performance of uniform
packet sampling, which is the approach used today by sFlow
and NetFlow. In uniform packet sampling, each switch samples
all received packets using the same sampling rate.

All the packets transmitted from a client to a server are
considered as a single flow. Each flow is routed over its
shortest path. The collector saves a trace of all the packetsit
receives. These traces are then used for analyzing the results.
The transmission rate of every flow is configured to 100pps.
We again perform 3 experiments: (i) using uniform packet
sampling; (ii) using our framework, with the utility function
depicted in Figure 8(a); (iii) using our framework, with the
utility function depicted in Figure 8(b).

Using the traces from the experiments, we calculated the
flow visibility for each of the 30 flows, that is, the percentage
of each flow’s packets received by the collector. Figure 10
shows the visibility of each flow in each experiment. Using our
framework with the utility function of Figure 8(a), the average
flow visibility is 2.6 times greater than the average flow
visibility with uniform packet sampling. Using our framework
with the utility function from Figure 8(b), the visibility of flow
f1 is 50% and the visibility of flowf9 is 0% as opposed to
8.2% for flow f1 and9.8% for flow f9 using uniform packet
sampling. So while the visibility of flowf1 is 6 times greater
than with uniform packet sampling, the flow visibility of many
other flows is0. Thus, we conclude that such a utility function
is suitable for applications that benefit from high sampling
rates, but do not benefit at all from low sampling rates.

E. Discussion

We showed in the previous subsections that the proposed
scheme outperforms uniform sampling. There are three main
reasons for this result:

(a) Sampling on-demand does not sample the same flow more
than once, unless sampling in two locations is profitable
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(which was not the case in any of our examples). This
allows sampling-on-demand to sample more flows com-
pared to uniform sampling. This helped mainly in the
second and the third applications.

(b) The utility function ensures that flows are not sampled
using a rate that is higher or lower than necessary. In
particular, for some applications, not sampling at all is
preferable to sampling at low rate because the sampling
budget can then be spent only on management applica-
tions that can benefit from it. This helped mainly in the
first application.

(c) When the traffic crossing a switch is lower than the max-
imum switch capacity, sampling-on-demand can sample
more than uniform sampling. This mainly helps those ap-
plications that benefit from a high sampling rate, namely,
port scanning and maximizing flow visibility.

VI. T HE PERFORMANCE OF THEALGORITHMS

This section evaluates the performance of our online SAP
algorithm (Algorithm 2), by comparing its performance to the
performance of offline SAP (Algorithm 1), which is taken as
a benchmark. Since Algorithm 1 requires solving MC-GAP,
which is NP-hard, we use the 2-approximation to MC-GAP
proposed in [14].

The evaluation is conducted by simulating a network with
100 switches, generated using Brite [1]. The sampling capacity
of each switch is defined as 100pps, and 100 [source, desti-
nation] flows are generated. The source and destinations of
each flow are randomly chosen, and the flow is established on
their shortest paths. We generated 15 variations of the utility
function of Figure 8(a), 8(b) and 6. Each flow uses one of
these utility functions.

We define the load on the network switches as the number
of packets sampled each second in the entire network. The
maximal load is therefore defined as the total sampling ca-
pacity of all the switches, that is, the maximal number of
samples that can be generated in the entire network every
second. To simulate a specific network load, we choose the
rates of the flows such that their total sum, multiplied by the
highest sampling rate, is equal to the required network load.

For each network load, we find a sampling allocation for the
100 flows using Algorithm 1 and Algorithm 2 and calculate the
total utility for each algorithm. Since Algorithm 2 is an online
algorithm, we assume that it receives the flows one at a time,
and we run it for each new flow. The arrival order of the flows
is random. This comparison is repeated 2,000 times. Each time
10 flows are replaced by new flows without changing the total
load. Then, the average utility of each algorithm is calculated.

Figure 11 shows the average utility increase of Algorithm
2 vs. Algorithm 1, as a function of the network load. It is
computed as

100 ·
OnlineAverage − OfflineAverage

OfflineAverage
.

It is evident that the two algorithms provide very similar
average utility when the load is low. Suprisingly, as the load
increases, Algorithm 2 slightly outperforms 1, despite its

being online whereas Algorithm 1 is offline. The reason is
that Algorithm 2 is invoked for every flow, and its overall
computational cost is higher than that of Algorithm 1.

We repeated the same analysis when the number of flows
arriving to and leaving the network at each iteration was 1 and
50, and received similar results.

While Algorithm 2 yields slightly better results than Algo-
rithm 1, it should be used only for the online problem, when
only one connection is admitted at a time. Solving the offline
problem forF flows using Algorithm 2 is impractical, since
this would require executing this algorithm once per flow.
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Fig. 11: The performance advantage of Alg. 2 over Alg. 1

We also evaluated the time required for the SMM to calcu-
late the sampling allocation when a new flow arrives. Recall
that the sampling allocation is calculated using Algorithm2,
which solves MCKP for each switch in the new flow’s path.
Figure 12 shows the average running time for solving MCKP
for each switch on an Ubuntu Virtual Machine with 4 cores
and 2GB of memory, when the utility function from Figure
8(a) is used, and when MCKP greedy [23] is implemented.
The total running time required for the SMM to calculate a
sampling allocation is the sum of the time required to calculate
MCKP for each switch in the new flow’s path. For example,
if each switch has a sampling capacity of 100pps, each switch
already hosts 1K sampled flows, and the new flow traverses
10 switches, the sampling allocation calculation will complete
in 10 · 2.55 = 25.5 milliseconds.

VII. C ONCLUSIONS

This paper presented a sampling-on-demand monitoring
framework. The proposed framework allows the sampling rate
of each flow at each switch to be determined according to the
monitoring goal of the network operator, while taking into ac-
count the monitoring capabilities of each switch. As part ofthe
proposed framework, we defined a new optimization problem
called SAP (Sampling Allocation Problem), which has to be
solved by the network controller in order to maximize the total
utility of the sampling. The paper presented both online and
offline algorithms for SAP and evaluated their performance.
We evaluated the proposed framework by presenting three real
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Number of Sampling Capacity Running Time
Flows (pps) (mSec)

10
50 0.038
100 0.035

500
50 1.458
100 1.617

1K
50 2.812
100 2.555

10K
50 29.126
100 28.932

Fig. 12: Running time for solving MCKP for a single switch

network management applications: counting the number of
connections carried by each flow, detecting port scanners, and
maximizing flow visibility. In these applications we showed
that the proposed framework yields excellent performance,
significantly outperforming the naive sampling approach used
today.
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