Sampling-on-Demand in SDN

Reuven Cohen

Evgeny Moroshko

Department of Computer Science
Technion—Israel Institute of Technology
Haifa 32000, Israel

Abstract—Sampling is an expensive network resource, because (i) The same flow might be sampled multiple times in dif-

switches and routers are able to sample only a small fraction of
the traffic they receive. Modern switches and routers perform
uniform packet sampling, which has several major drawbacks:
(i) the same flow might be unnecessarily sampled multiple times
in different switches; (ii) all the flows traversing a switch whose

ferent switches not because the management application
requires it, but because the flow traverses several switches
whose sampling module has been activated, resulting in
significant waste of resources.

sampling module is activated are sampled at the same rate; (ii) All the flows traversing a switch whose sampling module

(i) the sampling rate is fixed, even if the volume of the traffic
changes. For the first time, we propose a sampling-on-demand
monitoring framework. The proposed framework, presented as a
component of SDN (Software Defined Network), adds a Sampling

is activated are sampled at the same rate, although the
management application might only need to see samples
of certain flows, and not necessarily at the same rate.

Management Module to the SDN controller. This module allows (iii) The switch samples packets at a predetermined rate, bu

the controller to determine the sampling rate of each flow at
each switch according to the monitoring goals of the network
operator, while taking into account the monitoring capabilities of
the switch. As part of the proposed framework, the paper defing
a new optimization problem called SAP (Sampling Allocation
Problem), which has to be solved by the Sampling Management
Module in order to maximize the total sampling utility. The paper
presents online and offline algorithms for solving this problem.
It also presents three real network management applications,
executed over Mininet, which are shown to significantly benefit
from the proposed framework.

I. INTRODUCTION

the volume of the traffic may change. Consequently, when
low volume traffic traverses the switch, the switch may
not utilize its entire sampling capability, and when high
volume traffic traverses the switch, the switch sampling
resources may be exhausted. Hence, switch sampling
does not adapt to changing traffic volumes, and it is
usually activated at a much lower rate than its actual
capability.

Previous works evaluate the impact of sampling on specific
applications, such as volume anomaly detection and port
scans [12], [21], [24], [25], [27]. They show that the effect

Network monitoring plays a significant role in networkof the sampling rate on important metrics, such as false
management. It is used for a variety of applications sug®sitive and false negative rates, is not linear. Hence,nwhe
as QOS, billing, traffic engineering, security and anomaBpecifying monitoring goals, it could be beneficial to irate
detection. While some of these applications require only flote importance of monitoring one flow over another, and the

statistics, many require more specific packet-level inftion.

impact of the monitoring rate on the monitoring goal. It webul

This requirement is fulfilled by having the network switcheglso be beneficial for the monitoring application to detereni
copy a fraction of the packets of specific flows and forwardie sampling rate of each flow based on this information.
these packets to a monitoring device for further analydiss T For the first time, we propose a sampling-on-demand

process is known as sampling.

monitoring framework. The proposed framework allows the

Sampling is an expensive network resource, because egentroller to determine the sampling rate of each flow at
switch is able to sample only a small portion of the traffi€ach switch according to the monitoring goals of the network
it receives. In[[32] it is shown that for a given input trafficoperator, while taking into account the monitoring capitied
volume, there is a maximum sampling rate above which tieé each switch. The new framework is presented in the context
performance of the switch degrades. Although the sampliffiSDNs (Software Defined Networks), because it is very well
function is usually performed by the switch’s ASIC, it alsguited to such networks. The current OpenFlow Specification
consumes resources from the switch CPU. Hence, collectifigh) [7] does not support sampling, but only flow-based
sampled data packets may become a scalability issue, edpenitoring using th@®©FPAT OUTPUT action. Previous work

cially in switches with high speed links.

[30] has already proposed to add a new OpenFlow action

Modern switches include monitoring modules, such dbat asks specific switches to sample specific flows, but we
sFlow [5] and NetFlow! [3], which use uniform packet samare the first to propose a model and a mechanism that allow
pling In both sampling methods, the sampling rate is detghe controller todeterminewhich flows should be sampled in
mined per switch, usually while taking into account the linkevery switch and in what rate.

speed. This approach has several major drawbacks:

This research was partially funded by the Office of the ChigEfist of
the Israel Ministry of Economy under the Neptune genericaeseproject.
Neptune is the Israeli consortium for network programming.

In the proposed framework, every switch hasampling
capacity attribute, which indicates the number of packets
per second the switch can sample without compromising its
performance. For example, some Brocade switches are éimite

to 50 samples per second, to avoid CPU bottlenecks [2], & -
Juniper limits its EX series switches to 300 samples perrsicd SDN Controller I\S,Iaar::é'gﬁent
per physical interface [4]. Module
The proposed sampling-on-demand framework uses utilky .
functions to specify monitoring goals. These functions, as S:witch : e
: ollecting

well as the sampling capacity of all switches, are known to : :
the network (SDN) controller in advance. The controllersuse : /\ : Server

this information to make ongoing centralized decisionsutbo Switch S E't - /
WItC

which flows to sample in each switch, and at what rate. The[sampling Modue] /
flows to be sampled, the sampling rates, and the locations —~— Switch /

are determined by the controller such that the total network

sampling utility is maximized without exceeding the samgli _.
ca sﬁ:it gconstyraint of each switch. To save san? lina r 9 ; Fig. 1: The components of the proposed framework: the SDN
pactty) Pling ’ on[troller uses OpenFlow to control the various switches

the proposed framework guarantees that flows are samplec? a
most once. An extension of the proposed framework allows

sampling the same flow by multiple switches, when this &, rce |p address, and define for each subpopulation a budget
required by the monitoring application. Sampling beforel an-je, sample uses fast counter arrays to determine whether a
after a firewall, to see which flows are affected by the f'rewa”packet belongs to a subpopulation. If it does, FlexSample
discard rules, is one example of such a case. samples the packet with a probability proportional to the
As part of the proposed framework, we define a new proQyppopulations budget. FlexSample allows network opesato
lem: the Sampling Allocation Problem (SAP), which shoulg, gefine how the sampling rate is divided between different
be solved by the network controller in order to maximize th§ubpopulations, but not to specify the sampling rate. Hence
total utility of the sampling. We propose online and offlingnqosing a sampling rate that fits the sampling capability of
algorithms for solving this problem. _ the switch remains a challenge. In addition, FlexSample use
The rest of the paper is organized as follows. In Section J}_gimensional arrays for storing the sampling budget, where
we discuss related work. Section Il presents the design of is proportional to the number of defined subpopulations,
the proposed framework. In Section/IV we define and studyhich may exhaust the switch limited RAM.
the sampling allocation problem, and present algorithmis fo |, 129] the authors present cSamp — a system-wide
solving it. In Section V we evaluate the proposed framewokamework for flow monitoring. This framework computes a

using Mininet. Section VI evaluates the performance of the,mping manifest, which states what fraction of each flow is
proposed algorithms. Finally, we conclude in Section VII. sampled in each switch. cSamp aims to maximize the flow

coverage while meeting the switch sampling constraints. It
Il. RELATED WORK also provides a hash based coordination method that ensures

In [18], the authors address some of the shortcomin hat the same packet is not _sampled by multiple switches. In
%amp, all the flows and their rates are assumed to be known

of Sampled NetFlow such as the static sampling rate a advance. In addition. cSamp allows the network operator t
the aggregation of flow records, which exhaust the memoly 24V ' adition, b aflow: w pe
ecify the monitoring goal using a single parametewhich

ggrmgtg:g\?vfjl&ghi?gaiﬂﬁﬁ d-lv—aieﬁ F:;z?:ﬁﬁi::] |fr(r)1 Prggzstixgrstfndicates the desired minimum coverage for each flow. Hence,
sampling rate to the traffic mix. !

In [32], the authors present OpenSample, a sampling-basqé)cg"1
monitoring system. OpenSample uses sFlow to obtain packet
samples. It reconstructs flow statistics from the samples an Ill. T HE PROPOSEDFRAMEWORK
estimates port utilization. OpenSample creates a snamghot We consider an SDN network with three components, as
the network every 100ms. Each snapshot includes the utilizhown in Figureg 1. The first is a Sampling Management
tion for every switch port and the list of detected elephamodule (SMM), which is a controller application. The second
flows. Applications can query the snapshots through an AR.a Sampling Module, which is added to some or all network
Since OpenSample only provides information regarding pawitches/routers. The third is a “collecting server”, one o
utilization and elephant flows, it is mostly suitable forffi@ more of which are located in the network in order to collect
engineering applications and not for applications thatiiregq and process the sampled packets.
deep packet inspection. In addition, since OpenSample isEach sampled packet is encapsulated in a UDP packet and
based on sFlow sampling, the sampling rate is predefined assht to a collecting server. Each switch is configured with th
fixed for each switch. Hence, sampling resources are not wiladdress of the collecting server to which it sends its $ednp
utilized. packets. A simple extension allows a different collectiagver

In [28], the authors present a framework called FlexSampke. be defined per flow. The proposed framework performs
FlexSample allows the network operator to specify charactenonitoring at the granularity of a flow table entry. This mean
istics of traffic subpopulations, such as packets with aifipecthat all the packets corresponding to the same OpenFlow

?does not support the specification of different monitgrin
Is for different flows.

flow f1 flow 2 > @ @ @
-
a = s ORC=E

* %

(@) A [src,dest,*,**] flow (b) A [src,dest,* * *] flow via a firewall (c) a [*,dest,***] flow

Fig. 2: Examples of different 5-tuple flow configurations,igare likely to result in different utility functions

table entry are sampled at the same rate. Sampling canthere should be no difference between the packets of the flow
deterministic or probabilistic. In the first case, one ofrgve as observed by each switch.
packets is sampled, wherds the sampling rate. In the second In Figure| 2(b), flowf, traverses switches, ands., and a
case, every packet is sampled with probabil}ty firewall (FW). Since the firewall may block or modify some of
We define a new OpenFlow message calletthe packets of,, sampling this flow before the firewall in is
OFPT_RATE MOD. This message is sent by tt&ling different than sampling it after the firewall k3. In particular,
Management Module (SMMY the switches, and it indicatessampling ins; could reveal connections that are dropped by
which sampling rate should be used for each flow. Thibe firewall and are therefore not revealed by sampling.in
new message is added to the OpenFlow implementation Hience, the controller should assign higher utility to sangpl
the switches and in the controller. To implement sampling> in s; than ins,. In fact, if the management application
on-demand in an OpenFlow switch, we need to add a neweds to know the number of connections that are dropped by
Match/Action table that will include a key and one of théhe firewall, it would be beneficial to sample this flow twice:
following possible actions: replicate to port, replicaterple once before and once after the firewall. Sampling of the same
to port and encapsulate. The “encapsulate” action shodldw in multiple switches is discussed in Section IV-C.
include support for several tunneling mechanisms, indgdi In Figure 2(c), flowf; is defined by a destination address
VLAN, VxLan and IP. only, e.g., all the flows towards a certain web server located
Since the SMM is a controller application, it learns the éxa@ h3. Since switches; — s5 do not receive all the packets of
network topology using the OpenFlow Discovery Protocdhis flow, the only way to discover all the connections is by
(OFDP). In addition, the controller learns which flows argampling this flow inss. Hence, the utility of sampling this
active by keeping track of the OpenFIG®FPT_PACKETIN flow in switchess; — s5 should be significantly smaller than
and OFPT_FLOW_REMOVED messages, which are sent byihe utility of sampling it inse.
the switches when a new flow is added or removed. The utility function is a mapping between a set of possible
The proposed framework uses a utility function [15] th&&ling rates and the intervigl, 1]. More formally, a utility
reflects the monitoring goal of each flow. As already indidatefunction Uy, .y indicates the “utility to the system” for
a flow can be sampled in one of many switches, and the utilidgmpling flowf in switch s using rater.
function of sampling a flow in one switch is not necessarily Deciding the utility to be assigned to each rate is a chal-
identical to the utility function of sampling the same flow idenge. It usually requires evaluating the performance ef th
another switch. application with different sampling rates and assigningjléy
Using OpenFlow, every 5-tuple connection can, in theory, t# proportion to the evaluated performance. For example; co
considered as a different flow. However, this approach does §ider again a network management application that estimate
scale because it requires allocating an OpenFlow switaly enthe number of micro-flows associated with a certain OpenFlow
to every connection. Therefore, wildcards are commonlylus&ntry. One can try different sampling rates and, for each
to represent most of the tuples associated with each flow,enf@te, run a statistical algorithm that estimates the nunatber
in which case many TCP connections are mapped to the safigro-flows from the samples. Then, compare the estimate
flow entry. For example, the Openflow entry associated wiiPrresponding to each sampling rate to the real number of
[*,dest,*,80,TCP] handles all the TCP connections esshielil Micro-flows, and assign a utility in reverse proportion te th
with a certain IP address (dest) in the same@.vduy such a estimation error. We use this algorithm in our evaluation
case, an important network management task is estimaténg ggction (Section V) with very good results.
number of TCP connections (or micro-flows) “hidden” behind Another approach is to understand the application, develop
each wildcarded flow [36]. With this task in mind, we will nowseveral possible functions and compare their performance.
discuss the relationship between the monitoring appticati general, a utility function is always a monotonically ineseng
the network topology, and the utility function. function, because high rate sampling is always better than
In Figure[2(a), a simple flow fronh, to h, traverses three low rate sampling. We found that in most cases the utility
switches:sy, s2, andss. For such a flow, it would make sensgunction can be represented by a piecewise linear function
to use the same utility function in all three switches, beeau(Figure[3), because increasing the sampling rate is triausla
into proportional improvement in the precision of the esiied

1The 5-tuple represents the source IP address, destin&iaddress, source p.arameter,. bu_t a higher sampling rate aﬁec_ts the prgmsmn
port number, destination port number and protocol field. differently in different ranges: sometimes the improvetrien

Instance: A set S of network switches. For each switehe
S, ¢s is the sampling capacity afin packets per second (pps).
Also given is a set of flows, with the following information

1 ' 1

08 0.8

0.6 0.6

£ . g for each flowf € F:
. « dy - the estimated packet rate (packets per second, or
. , pps) sent byf.
o oouz ooos ouoe ouoe 001 o0tz oot ouie o ooz oo oo aos oo ooz oo os o P - the path of flowf € F, i.e., the set of switches it
Sampling Rate (fraction of sampled packets) Sampling Rate (fraction of sampled packets) trave rses .
@ (b) « R - a set of possible sampling rates supported by the
Fig. 3: An example of two piecewise linear utility functions ~ switches.
each suitable for a different monitoring goal « a utility function Uy, ., which indicates the “utility to
the system® for sampling flowf in switch s using rate
r € R.
significant and sometimes it is marginal. Objective: Find a feasible sampling allocation that max-

As an example, suppose that an OpenFlow entry coriglizes the total utility. A feasible sampling allocation &s
sponds to all the packets that enter a certain Autonomaeglection of 3-tuples{switch, flow,rate] that fulfills the
System (AS) from a neighboring AS. Let the two ASs be ASfbllowing requirements:
and AS2 respectively. The operator of AS1 wants to verifya) for every 3-tuplgs, f, 7], s is a switch traversed by the
that AS2 does not violate the BGP peering relationship. To flow f.
this end, it needs to verify that the IP destination addsessgb) the total sampling rate required from each switcke
in the received packets belong to AS1 or its customers. This S does not exceed its maximum sampling capability,
can be done using a relatively low sampling rate, say 0.001. namely, ds -7 < cs, whereT(s) is the set of
Increasing the rate to 0.005 would improve the precisiomef t [s,f,r]€T(s)
detection algorithm, but increasing it beyond 0.01 wouleldi tuples for switchs.
little benefit. This utility function is shown in Figufe 3(a) We first assume that the rate of each flow is known to the

On the other hand, the utility function in Figure 3(b) is more&MM, and then discuss how to handle rate uncertainties.
suitable for a monitoring application that needs to detect p When the utility function is a discrete function, SAP can be
scanning. In this case, the application will prefer high gting Shown to be equivalent to MC-GAP [14], which is an extension
rates, because low rates will result in only some of the flov the Generalized Assignment Problem (GAP). (GAP, in its

being sampled. In Section V we study these and other utilifyrn, is an extension of the well-known Knapsack problem).
functions in greater detail. The input for GAP is a seB of bins and a sef of items.

Each bin has a size, and each item has a size and a utility.
The objective of GAP is to find a subsét C S of items
that have a feasible packing ifi, such that the utility ofr/

A sampling allocationis a mapping that indicates whichis maximum.
flow should be sampled by which switch and at what rate. In MC-GAP extends GAP by associating multiple configura-
this section we define an optimization problem for finding théons with each item and seeking a collection of configuregjo
optimal sampling allocation, the one that maximizes thaltotat most one from each item, which can be packed into several
utility while not exceeding the sampling capacity consttsi bins (knapsacks) without exceeding their capacity. Fdgmal
of the switches. We define offline and online versions of than instance of MC-GAP is a triplét3, I, C') and a3D utility
problem and propose efficient algorithms for solving thens. Wnatrix P, where B is a set of bins (knapsacks),is a set of
then address an extension for the case where it is benefidiams,C' is a set of configurations, anfl is a |I| x |C| x |B]
to sample the same flow in multiple switches. matrix that indicates the utility and size for each item iclea
bin using each configuration. The objective is to find a subset
. U C (I x C) of [item, configuration] pairs that has a feasible
A. Offline SAP o ; - ;

packing inB, such that each item is chosen at most once, using

As indicated in Section Ill, in the proposed framework thene of its configurations, and the total utility is maximized
SMM determines which flows should be sampled by each To transform an instance of SAP to an instance of MC-GAP
switch, and at what sampling rate. This is an online problerand vice versa, we represent each SAP switch as an MC-GAP
which has to be solved each time a flow enters or leavem whose size is equal to the sampling capacity of the switch
the network. We first define and study the offline version af/fe represent each SAP flow as an MC-GAP item, and each
the problem, assuming that all the flows enter the netwo8AP sampling rate as an MC-GAP configuration. The utility
together. Solving the offline version allows us to gain ihsig of sampling a SAP flow in a switch using a specific sampling
into the problem and obtain a benchmark for the performanragte is represented by the value in the MC-GAP utility matrix

IV. THE SAMPLING ALLOCATION PROBLEM (SAP)

of our online algorithm. for the corresponding [bin, item, configuration].
Problem 1 (The Offline Sampling Allocation Problem The Multiple Choice Knapsack Problem (MCKP) is a
(SAP)) generalization of the classic Knapsack problem. In MCKP,

there are several classes of items, each having a weight and 3
a utility. The goal is to choose exactly one item from each
class, such that the total utility is maximized and the kaags
weight constraint holds. Although MCKP is NP-hard [23], it £ .
has efficient approximation algorithms [11] and an optimal /\
pseudo-polynomial time algorithm [23]. In particular, & i @ s2 @
shown in [14] that anya-approximation for the Multiple
Choice Knapsack Problem (MCKP) [23] can be transformed

into a (1 + «)-approximation for MC-GAP. e

A\ 4

We take advantage of the equivalence between SAP and
MC-GAP, and use AlgorithmALG yrc_gap from [14] to
solve the offline SAP. Algorithm 1 below gives a high-level
description of our proposed offline sampling allocation. ~ Fig. 4: A topology with 3 flows: flowf; is added to the
network and only the sampling assignmentssgfor s, can
Algorithm 1 Offline Sampling Allocation be modified

1. Transform the SAP instance into an MC-GAP instance.
2. Solve the MC-GAP instance using the algorithm proposed

\AJ

in [141. switches is minimized. This is because when a new flow is
3. Transform the solution for MC-GAP into a solution foradmitted, the SMM needs to send at most one control message.
SAP. This message is sent to the switch chosen for sampling the new

flow, and it may also ask this switch to reduce the sampling

The algorithm for solving MC-GAP in [14] is &1 + a)- rate of one or rr?o.r_e previously admltted flowg. .
approximation algorithm, which extends the one presemed i A formal definition of the Online Sampling Allocation
[16] for solving GAP. The algorithm can be implemente@roblem is as follows.
iteratively, with running time of)(|B|- Twcke(|C|, |I|) + | B|- Problem 2 (The Online Sampling Allocation Problem)

1] - |C|), where Tucke(|C|, |1]) is the running time of the Instance: A network as in Problem 1, and a set of flows
MCKP algorithm used in Step 2. Hence, the running time diat are already admitted and sampled. The existing sagplin
Algorithm[1is O(|S|- Tvekp(|F|, |R]) +|S|-|F|-|R|). MCKP allocationC' is feasible. In addition, we are given a new flow
can be solved using an efficient greedy algorithm/ [23] witii" and the path of this flow.

running time ofO(|F|-|R|-log(|R|)+|F|-|R|-log(|F|-|R])). Objective: Find a feasible sampling allocatiafi’ for the
flows in F U {f'}, which maximizes the total utility, such
that: (i) except for the new flow’, each sampled flow id"’

B. Online SAP))]) o
))) is sampled in the same switch it was sampled’in(ii) all the
In the online version of SAP, flows are admitted one at &itches use the same sampling rates a€'jrexcept for the

time into the network. When a new flow is admitted, the SMMuitch that samples the new floy.

needs to dec",’e whether to samp!e. it, in which switch, an,dSince online SAP allows changing only the sampling rate of
at \{vha_t sampling rate. Sugh a demspn has to be ma‘?'e WQH@ flows in the switch that samples the new flow, an algorithm
taking into account all previously admitted f!OWS' In pantar, for this problem needs to consider only the switches alorg th

the SMM may need t°_ change the _sa_\mplmg location and/ﬁéth of the new flow. For each switch along this path, such an
rate of previous flows in order to efficiently sample the new,q i m getermines the increase in total utility if thigiteh

ohne. Such adreconfr;guratllonhlmposes g)ftrg ovir.head br?th{ﬁ hosen to sample the new flow. Then, the algorithm chooses
the SMM and on the switches. To minimize this overhea e switch for which the utility increase is maximized.

we add a constraint where the SMM is allowed to change the

sampling rate of existing flows, even to 0 if needed, only in Algorithm[2 presents a formal description of this idea. For

the switch that the SMM assigns to sample the newly admitt%gCh SWItCh traver;ed by the_new flow, Fhe algorithm com_putes
flow itS optimal sampling allocation. To this end, the algorithm

A le. Figurél4 d ib imole topol solves an MCKP instance for the switch, while taking into
_ths4an _?xr?mp e,d ég;:r S eschl esthat ?llmp € (;)po 9%count all the flows that this switch already samples, thvesflo
wi switches an OWS. Suppose tha 0yﬂ4_san fa that traverse this switch and are not sampled elsewhere, and
have already been admitted and are sampledsirand s,

respectively. Wherys; is admitted, the SMM needs to decidethe new flow.

Whgther to sample it iny or ip sq. Ifit decide; to samplg;s in Algorithm 2 Online Sampling Allocation
sq, it can reduce the sampling rate ff, but it cannot change
the sampling location of eithef; or f,, although changing
the samplmg location off; to s; or s4 is likely to increase obtained by sampling” in .
the total utility. . . A .

. 2. Choose the switch for which the extra utility is maximum,

The above constraint guarantees that the number of sam- and return its sampling allocation

pling control messages exchanged between the SMM and the i

1. For each switchs € Py, use a solution for MCKP
to compute the sampling allocation and the extra utility

Stepl 1 of Algorithm 2 can be performed using a greedy A formal definition for the offline version of E-SAP is as
MCKP algorithm [23]. Since Algorithm 2 solves MCKP forfollows.
each switch along the path of the new flow, its running time Problem 3 (The Offline Extended Sampling Allocation
is O(|Pf/| : /1—7|\/|C|(|:)(|F‘|7 |R|)), where TMCKP(‘F‘v ‘RD is the Problem (E-SAP))
running time of the MCKP algorithm. Instance: A network as in Problem 1, and a utility function
The sampling allocation for a certain switch also must bi;. In this function,Uy s, s, » indicates the utility for sam-
calculated when the controller learns about the expiratibn pling flow f in switchess; ands; using rater. If i = j, the
a sampled flow. In such a case, the controller re-computes foaction indicates the utility for sampling in a single switch
sampling allocation for the sampling switch using an MCKP.
algorithm. Thus free sampling resources can be assigned t@bjective: Find a feasible sampling allocation, which max-
other flows traversing the same switch. imizes the total utility. A feasible sampling allocation @
Recall that the sampling load imposed on a switch by allection of 3-tuples|[switchl, switch2], flow,rate] that
certain flow is the product of the flow rate and the samplin@ifills the following requirements:
rate. To compute the sampling allocation vector for eacfca) for every 3-tuple][s;, s;], f.7], s; ands; are switches
switch, the SMM needs accurate information regarding the * {aversed by the ﬂo\',’yej o ' !
rates of the flows. Such information can be obtained aftersﬂovv(b) the total sampling raté required from each switch S
are admitted into the network using OpenFlow counters. For° 44as not exceed its maximum sampling capability.

I i TM[34].
EXET)WVF\J/:\;G';'S:EEGJ ?aﬁgnof%i\}v is likely to change over time T%Ahe d-Dimensional Multiple-Choice Knapsack Problem (d-
' - MCKP) [23] is a combination of MCKP and the d-

cope with such changes, we propose to reduce the Sampm%ensional Knapsack Problem (d-KP) [23]. It is similar to

capacity of a switch by a factor of, where I” < 1. This I}{ICKP, except that there aré knapsacks, and each item

would enable the switches to cope with small bandwidﬁq : . . L
. . . ﬁs ad-dimensional weight vector. The objective is to pack
increases without making too many changes. To cope wit

exactly one item from each class such that the total utifity i

rapid changes, such as those taking place during a ﬂmmlm%ximized and the constraints on the size of all knapsacks
attack, we propose to use a watchdog timer in each switch

which resets every second. Each reset, the number of sam%glcg' Since it is a generalization of d'.KP’ which is one of the
. o . . ardest NP-hard problems, d-MCKP is not only NP-hard but
packets is compared to the switch’s sampling capacity, dnencl . :

. also very hard to approximate. It is also known to be NP-hard
guaranteeing that the switch will not exceed its maximum
desired capacity. in the strong sense [26].

To solve offline E-SAP, we note that it is a special case of d-
MCKP where the number of knapsacks is equal to the number

C. Extended SAP of switches in the network, and each item’s weight vector

SAP finds a sampling allocation in which every flow id1as at most 2 non-zero values. Algorithm 3 below is a high-
sampled at most once. However, sampling a flow in multiplevel description of offline E-SAP, which uses a procedure
switches is sometimes beneficial. Consider, for exampke, tpr solving d-MCKP. Many heuristics have been presented for
case where flows pass through a firewall. It would be helpfdtMCKP[10], [20], [26], but none provides a performance
to sample each such flow twice: once before the firewall aggarantee. In [35], a dynamic programming algorithm for
once after. The sampling data can help verify that the firew&0!ving d-KP is presented. Using similar ideas, a dynamic
rules are correct. programming algorithm for d-MCKP is presented|in [13]. The

We define an extended version of SAP, called E-SAP, whi¢ine complexity of this algorithm renders it impractical erh
enables sampling the same flow at most twice. A simildlre number of knapsacks is not small. Hence, it is suitable fo
extension can be defined for sampling a flow in more thansgIving offline E-SAP only when the number of switches in
switches, but the size of the input matrix grows exponelgtial the network is small.
and building this matrix becomes intractable. In addition - - - -
limiting the number of switches to 2 enables us to develop é&rllgonthm 3 Offline Extended Sampling Allocation

online algorithm for E-SAP that provides an optimal allgat 1. Transform the E-SAP instance into a d-MCKP instance,
in practical time. whered is the number of switches in the network.

In E-SAP, the utility function for each flow is defined for 2 Solve the d-MCKP instance, e.g., using dynamic program-

every pair of switches rather than for every single switch. Ming [13]. _ . _

The utility function of flow f for switches|s;, s;] and rate 3. Transform the solution for d-MCKP into a solution for
r defines the utility to the system of samplirfgin switches E-SAP.

s; and s; using rater. Theoretically, the model can allow

two different sampling rates: one fof; and one fors;. Since Algorithm 3 solves offline E-SAP using a solution for
However, this extension requires adding another dimernsiond-MCKP, its running time is equal to the running time of the
the utility functions, which significantly increases theesiof d-MCKP algorithm used in Stepl 2. Lé&t.mckp(d, C, I) be
the framework input and renders the model impractical. ldendhe running time of the d-MCKP algorithm witth knapsacks,
we do not discuss it further. C classes and items. There aré(";') + |S|) - |R| options

for sampling each flow, wherg5| is the number of switches O switch
and |R| is the number of possible sampling rates. Hence, the 4 ::V”;
running time of Algorithm 38 isTu.mcke(|S|, [F], ((151) +1S])- !CD,IGM
|R|), where|F| is the number of flows in the network.

The online version of E-SAP is defined in the same way
online SAP was defined earlier. It is solved by Algorithin 4,
which extends Algorithm 2. In stép 1, the algorithm consider
each pair of switchep;, s;| along the path of a new flow, and
determines the increase in total utility if the flow is chosen
to be sampled in these switches. For this task, the algorithm
calculates the optimal sampling allocation for each pair &fig. 5: The Mininet topology for evaluating the proposed
switches, which is equivalent to solving d-MCKP when th&amework
number of knapsacks is 2. Sometimes it would be better to

sample the new flow only in one rather than two switches, .
Such a solution cannot be found by step 1, because in this s@ enFlow. Recall that this message allows the controller to

the sampling rate of the two switches must be equal. Thus,C| figure the_ sampling rate OT each flow. . .
wo sampling methods are implemented by the switch: uni-

stepl 2 the algorithm also computes the utility gain when the) .
new flow is sampled only once, for each switch along the pa%?.rm packet sampling, and the proposed flow-based sampling

The algorithm then chooses the best solution from steps 1 aFf'H“ework' Each switch is also configured with an address of

9 a collector to which the sampled packets are forwarded using
] UDP encapsulation. Each encapsulated packet is pushed into
Algorithm 4 Online Extended Sampling Allocation the switch’s pipeline for processing and is then routed tawa

1. For each pair of switches; and s; along the path of its collector.
the new flow, use a solution for 2-MCKP to compute the The sampling allocation module is implemented as a stan-
optimal sampling allocation and the extra utility obtaineglalone Python script. The script configures the switches via
by sampling the new flow in these switches. the switch management utility (dpctl), which is also modifie
2. For each switchs; along the path of the new flow, useto support the new OpenFlo@FPT_RATE MOD message.
a solution for MCKP to compute the optimal sampling>capy is used for generating TCP traffic at specific rates
allocation and the extra utility obtained by sampling theetween the network switches.
new flow only in this switch. Our experiments are conducted on the topology depicted in
3. Let S be the set of switches (a single switch or a pair dfigure[5, with 14 switches and 36 hosts. One of the hosts is
switches) for which the extra utility found by the previousonfigured as a collector, 5 as servers, and 30 as clients.

steps is maximum. In all our experiments, when our framework is used, the
4. Update the sampling rates in each switch S according switch maximum sampling rate is configured to 50 pps (packet
to the new sampling allocation. per second), because this is the maximum rate the switches in

5. For each flowf, if f is sampled in a switcls € S and our setup could sustain. When uniform sampling is used, the
in a switchs’ ¢ S, update the sampling rate gfin s’ sampling ratio is set to 1/60, which is the maximum ratio that
according to the new sampling allocation. guarantees that no switch will have to sample more than 50

pps.
Since the algorithm requires that d-MCKP be solved for a
small number of knapsacks (d=2), the dynamic programmimy Estimating the Number of Connections in a Flow

algorithm presented in [13] can be used. In this section we evaluate the proposed sampling-on-

We now analyze the running time of Algorithm 4. Denotgemand framework and algorithms. Our first application ex-
by Ticke(C, 1) the running time of the MCKP algorithm with 5516 s estimating the number of connections carried by
C classes and items. Letn be the number of switches on thegach flow. This is an important management function, which
path of the new flow. Since there afg) options for sampling 5jj0ws the detection of DDoS attacks, deciding whether more
the flow in 2 switches, and options for sampling the flow regqyrces are needed in the network, and many other network
in a single switch, the total running time of the algorithm ig;gys.
(Z) “Tamckp(2, |F'], |R]) +n - Tueke (| F], [R]).- We define a connection as a 4-tuplgsrc_ip, dstip,

V. FRAMEWORK EVALUATION USING MININET src_port, dst port]. _Henc_e, the proble_m of estimating th_e

A Evaluation Testbed number of conr)e(;tlons is translqted into tha'F of estlmgtlng

’ the number of distinct 4-tuples (micro-flows) “hidden” bedhi

We implemented a prototype of our framework using @ach (OpenFlow) macro-flow. This problem is known as
Mininet network emulator [6] running Openflow 1.3 softwargne cardinality estimation problem (or as the count-detin
switcheg. We added our ne®@FPT_RATE MOD message to problem) [33]. Since the collector receives only samples of

2Some of the code used in this section can be found iach flow, most cardinality estimation algorithms, suchlg,[
https://goo.gl/HPsMjU. cannot be used because they assume that the entire stream is

1 : ‘ : : error. In most cases the error in our framework is arodiheh,
09 1 | while without our framework it is typically arountl0.5%.

0.8
0.7 1

0.6 | q 30 T T
Uniform Packet Sampling —s—
Our Framework ——

T

~ (*%%**MH*W*/* A e Sl

Utility

05
0.4
03
0.2 r
0.1

0

0 0.1 0.2 0.3 0.4 0.5
Sampling Rate (fraction of sampled packets)

Estimation Error (%)
-
@

Fig. 6: The utility function for estimating the number of
connections in each flow from the flow sample

1500 2000 2500 3000 3500 4000
Number of Connections in the Flow

Fig. 7: Estimating the number of connections in a flow: our
given to the algorithm as input. For example, if the full atve framework vs. uniform packet sampling

contains packets from connections, co, c3 and ¢y, and the
sampled stream contains only packets from connectipns;
andc,, a naive algorithm would incorrectly estimate that th
number of connections in the full stream 3srather thard.
A more sophisticated algorithm, such as the one proposed ifour second application example detects a port scanning
[17], is able to estimate the probability of unseen conoesti attack. In this attack, the attacker probes the victim serve
and take them into account. for open ports. Such an attack is often used to reveal which
The algorithm in [[17] combines sampling with any full-S€rvices are running on the server. The attacker then uses th
stream cardinality estimation algorithm. We use this meéthénformation to exploit vulnerable services.
with the HyperLogLog cardinality estimation algorithm [19 In [22], the authors present a port scanning detection
to estimate the number of connections in each flow, given orijgorithm, called Threshold Random Walk (TRW). In TRW,
samples from this flow. each host in a packet trace is classified as either a portscann
The goal of our first experiment is to find a suitable utilit®r Penign. TRW requires flow traces that include bidirection
function. We use the packet trace from [8] and sample it usifgckets, and it is shown to require an extremely low number
multiple sampling rates. We count the number of connectiofi 0bserved events to make a decision [31].
in the unsampled trace. We then apply the estimation algorit For our evaluation, we use a port scanning detection algo-
from [17] on each sampled trace. The output of the algorithfithm called TRWSYN[31]. TRWSYN is a variation of TRW,
is used as an estimation for the number of connections Which can work on unidirectional flow traces. We configure
the unsampled trace. This output is then compared to tB@ach clientin the network to establishconnections to one of
real number of connections in the unsampled trace, and the servers and send legitimate data. All the connectiama fr
estimation error is calculated. We define the utility for keac? client to a server are considered a single flow, and each
sampling rate asl minus this error. Figuré |6 shows theflow is routed over its shortest path. From all the clients, 10
resulting utility function. are configured to perform port scanning. These 10 hosts send
We perform two experiments: one with uniform packe®YN packets to a range of server ports. Each client sends
sampling, and another with our framework, using the utilifpackets at a rate of 100pps.
function depicted in Figure|6. We define 30 [source, des- The experiment is executed 3 times. The first is with
tination] flows in the network. The source of each flow isihiform packet sampling, the second is with our framework
one of the clients, and the destination is a randomly choséfing the utility function depicted in Figure 8(a), and therd
server. Routing is performed over the shortest paths. Eagh flis With our framework using the utility function depicted in
carries between 100 and 3,900 TCP connections between the
considered client-server pair. All the connections argated
roughly at the same time and last 2 minutes. Data packets are '
sent at a rate of 100pps. We run the algorithm from [17] for *°
each packet trace obtained from the collector, and cakulat, °°
the percent error for each flow as

?:. Detection of a Port Scanning Attack

1

Uil
Utility

0.2 0.2

|Real — Estimation)|

Error =100 -

. o 0
Real 0 01 02 03 04 05 0 01 02 03 04 05

Sampling Rate (fraction of sampled packets) Sampling Rate (fraction of sampled packets)

Each experiment is repeated 90 times. Figure 7 shows @) (b)
the average estimation error as a function of the number of -) _)
connections in each flow, with and without our framework. WEIG- 8: The utility functions for the second and third apalic
can see that our framework yields a slightly smaller esiionat 10NS

100

Uniform Packet Sampling £ T T T Unifor Packet Sampiing £
Our Framework (a) Ez=zzz21 The proposed framework using utility function (a) ez
Our Framework (b) === The proposed framewc k using utility function (b) ===
80 80
9 60 E 60
= =
3 2
c S
o 40 g 2 W |
=} K=
[= [
20 1 20
0 o ETEREELERED bhEE
3K 9K 12K 15K 18K 123456 7 8 910111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Number of Legitimate Connections in the Network Flow #
Fig. 9: Comparison of port scanning detection Fig. 10: Flow visibility of different sampling methods

Figure 8(b). The TRWSYN algorithm is applied on the tracemonitoring application. Many monitoring applicationschuas
sent to the collector during each experiment. The output BDoS detection, heavy hitter identification, and port seann
this algorithm is a list of clients identified as port scarsn&¥e detection, benefit from maximum network visibility|[9], [B7
repeat these 3 experiments while changing the numbef The performance of the proposed framework with respect
legitimate connections each client established. Thisemses to flow visibility is compared to the performance of uniform
the noise in the network and makes it harder to detect the ppacket sampling, which is the approach used today by sFlow
scanners. We then compute for each experiment the numbed NetFlow. In uniform packet sampling, each switch sasple
of true positives, namely, clients correctly identified astp all received packets using the same sampling rate.
scanners, as well as the number of false positives, namelyAll the packets transmitted from a client to a server are
innocent clients incorrectly identified as port scanners. considered as a single flow. Each flow is routed over its
Figure[9 shows the true positive rate for different valueshortest path. The collector saves a trace of all the padkets
of N. First, we compare uniform packet sampling to oureceives. These traces are then used for analyzing thesesul
framework with the utility function of Figure 8(g). The gfap The transmission rate of every flow is configured to 100pps.
shows that when the number of connections in the networkVWge again perform 3 experiments: (i) using uniform packet
relatively small (3K), both methods perform equally welida sampling; (ii) using our framework, with the utility funot
both detect all port scanners. When the number of legitimadepicted in Figure 8(a); (iii) using our framework, with the
connections in the network increases to 6K and to 9K, thaility function depicted in Figure 8(b).
ability of uniform sampling to detect the attack dramatical Using the traces from the experiments, we calculated the
decreases tol0% and 20% respectively. In contrast, our flow visibility for each of the 30 flows, that is, the percergag
framework is still able to deteci0% of the attacks! of each flow's packets received by the collector. Figure 10
We then compare our proposed framework using the utilishows the visibility of each flow in each experiment. Using ou
functions of Figuré 8(a) and Figure 8(b). The former is brettdramework with the utility function of Figure 8(a), the aage
when the number of connections is less than 15K; otherwilew visibility is 2.6 times greater than the average flow
the latter is better. This is because the percentage of fsackasibility with uniform packet sampling. Using our framerko
associated with port scanning activity decreases when thih the utility function from Figuré 8(b), the visibilityfdlow
number of connections is high. Hence, a high sampling rafe is 50% and the visibility of flow fy is 0% as opposed to
is required to detect the port scanners. The utility fumctd 8.2% for flow f; and9.8% for flow fy using uniform packet
Figure| 8(b) samples flows at a high rate, at the cost of ngampling. So while the visibility of flowf; is 6 times greater
sampling other flows at all. Hence, it is able to detect potthan with uniform packet sampling, the flow visibility of man
scanners even when the number of connections is high. other flows is0. Thus, we conclude that such a utility function
We found no false positives in any of our experimentss suitable for applications that benefit from high sampling
This is because TRW produces false positives only whenrittes, but do not benefit at all from low sampling rates.
observes multiple consecutive SYN packets from a benign

host, a scenario whose probability is low. E. Discussion

We showed in the previous subsections that the proposed
D. Maximizing Flow Visibility scheme outperforms uniform sampling. There are three main
Our third application example measures the flow visibilityeasons for this result:
achieved by the proposed framework. Migbility of a flow is (a) Sampling on-demand does not sample the same flow more
defined as the percentage of the flow’s packets received by the than once, unless sampling in two locations is profitable

(which was not the case in any of our examples). Thieing online whereas Algorithin 1 is offline. The reason is
allows sampling-on-demand to sample more flows conthat Algorithm 2 is invoked for every flow, and its overall
pared to uniform sampling. This helped mainly in theomputational cost is higher than that of Algorithm 1.

second and the third applications. We repeated the same analysis when the number of flows

(b) The utility function ensures that flows are not samplearriving to and leaving the network at each iteration wasd an
using a rate that is higher or lower than necessary. &0, and received similar results.
particular, for some applications, not sampling at all is While Algorithm[2 yields slightly better results than Algo-
preferable to sampling at low rate because the samplirithmI1, it should be used only for the online problem, when
budget can then be spent only on management applicady one connection is admitted at a time. Solving the offline
tions that can benefit from it. This helped mainly in th@roblem for F flows using Algorithm 2 is impractical, since
first application. this would require executing this algorithm once per flow.

(c) When the traffic crossing a switch is lower than the max-
imum switch capacity, sampling-on-demand can sample ,,
more than uniform sampling. This mainly helps those ap-
plications that benefit from a high sampling rate, namely,
port scanning and maximizing flow visibility.

VI. THE PERFORMANCE OF THEALGORITHMS

Increase (%)

This section evaluates the performance of our online SAPZ
algorithm (Algorithni 2), by comparing its performance teth
performance of offline SAP (Algorithm 1), which is taken as
a benchmark. Since Algorithm 1 requires solving MC-GAP,
which is NP-hard, we use the 2-approximation to MC-GAP
proposed in[[14]. o . ‘ ‘ ‘ ‘ ‘ ‘

The evaluation is conducted by simulating a network with 01 02 03 04 05 06 07 08 09 1
100 switches, generated using Brité [1]. The sampling dgpac Fraction of Maximum Network Load
of each switch is defined as 100pps, and 100 [source, desfrig. 11: The performance advantage of Alg. 2 over Alg. 1
nation] flows are generated. The source and destinations of
each flow are randomly chosen, and the flow is established ofWe also evaluated the time required for the SMM to calcu-
their shortest paths. We generated 15 variations of thiyutillate the sampling allocation when a new flow arrives. Recall
function of Figure 8(a), 8(b) and 6. Each flow uses one diiat the sampling allocation is calculated using AlgoritBm
these utility functions. which solves MCKP for each switch in the new flow’s path.

We define the load on the network switches as the numkggurel 12 shows the average running time for solving MCKP
of packets sampled each second in the entire network. Tiee each switch on an Ubuntu Virtual Machine with 4 cores
maximal load is therefore defined as the total sampling cand 2GB of memory, when the utility function from Figure
pacity of all the switches, that is, the maximal number &(a) is used, and when MCKP greedy [23] is implemented.
samples that can be generated in the entire network ev@iye total running time required for the SMM to calculate a
second. To simulate a specific network load, we choose ts@mpling allocation is the sum of the time required to caitul
rates of the flows such that their total sum, multiplied by th&ICKP for each switch in the new flow's path. For example,
highest sampling rate, is equal to the required network.loadf each switch has a sampling capacity of 100pps, each switch

For each network load, we find a sampling allocation for thelready hosts 1K sampled flows, and the new flow traverses
100 flows using Algorithm[1 and Algorithin 2 and calculate th&0 switches, the sampling allocation calculation will cdete
total utility for each algorithm. Since Algorithm 2 is an v in 10 - 2.55 = 25.5 milliseconds.
algorithm, we assume that it receives the flows one at a time,
and we run it for each new flow. The arrival order of the flows VII. CONCLUSIONS
is random. This comparison is repeated 2,000 times. Eaeh tim __) o
10 flows are replaced by new flows without changing the total This paper presented a sampling-on-demand mqmtormg
load. Then, the average utility of each algorithm is calada framework. The proposgd framework alloyvs the sampllng rate

Figure[11 shows the average utility increase of Algorithrﬂf each flow at each switch to be determined according to the

2 vs. Algorithm[1, as a function of the network load. It ignonitoring goal of the network operator, while taking into a
computed as count the monitoring capabilities of each switch. As parthef

proposed framework, we defined a new optimization problem

called SAP (Sampling Allocation Problem), which has to be
OfftineAverage solved by the network controller in order to maximize thekot

It is evident that the two algorithms provide very similawutility of the sampling. The paper presented both online and

average utility when the load is low. Suprisingly, as thedloaoffline algorithms for SAP and evaluated their performance.

increases, Algorithmi 2 slightly outperforms 1, despite ité/e evaluated the proposed framework by presenting thrée rea

Average Ut

100 OnlineAverage — Offline Average

10

. L . . . [24
Fig. 12: Running time for solving MCKP for a single switch

Number of | Sampling Capacity Running Time
Flows (pps) (mSec)
10 100 oo
500 I® e
1K 100 2558
10K 100 9%

(19]

[20]

[21]

[22]

(23]

network management applications: counting the number [(2)?]
connections carried by each flow, detecting port scannatk, a
maximizing flow visibility. In these applications we showed?6]
that the proposed framework yields excellent performance,
significantly outperforming the naive sampling approacédus
today.

(1]
(2]

(3]
(4]

(5]
6]
(7]

(8]
(9]

[20]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

REFERENCES

Brite topology generator. https://www.cs.bu.edut#ti

Broacade sFlow configuration considerations. httmiwbrocade.com/
content/html/en/configuration-guide/fastiron-08040- itemmgguide/
GUID-F46B8130-C143-4BDD-AE04-E64821A1A288.html.

Cisco NetFlow. http://www.cisco.com/c/en/us/prodaict
i0s-nx-0s-software/ios-netflow/index.html.

Configuring sFlow technology to monitor network traffic &X series
switches. https://www.juniper.net/documentationid8/junos/topics/
example/sflow-configuring-ex-series.html.

InMon sFlow.| http://www.sflow.org/.

Mininet network emulator. http://mininet.org.

OpenFlow Switch Specification v1.5. https://www.opetworking.org/
images/stories/downloads/sdn-resources/onf-speaificstopenflow/
openflow-switch-v1.5.0.noipr.pdf.

UCLA computer science department packet trace. httpsrids.ucla.
edu/ddos/traces/public/tracel/tcp/filel.

Y. Afek, A. Bremler-Barr, S. Landau Feibish, and L. Schiampling
and large flow detection in SDN. IACM SIGCOMM Computer
Communication Revigwolume 45, pages 345-346. ACM, 2015.

M. M. Akbar, M. S. Rahman, M. Kaykobad, E. G. Manning, and@
Shoja. Solving the multidimensional multiple-choice knajspmblem
by constructing convex hulls. Computers & Operations Research
33(5):1259-1273, 2006.

M. Bansal and V. Venkaiah. Improved fully polynomial timepsoxima-
tion scheme for the 0-1 multiple-choice knapsack problerernational
Institute of Information Technology Tech Rep@®d04.

D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and Aakhina.
Impact of packet sampling on anomaly detection metricRroteedings
of the 6th ACM SIGCOMM Conference on Internet Measurengeges
159-164. ACM, 2006.

R. Cohen and G. Grebla. Multi-dimensional OFDMA schauylin a
wireless network with relay nodes. Infocom’2014, Toronto, Canada
Apr. 2014.

R. Cohen and G. Grebla. Joint scheduling and fast cddicien in
OFDMA wireless networks.IEEE/ACM Transactions on Networking
23(1):114-125, 2015.

R. Cohen and L. Katzir. A generic quantitative approaoh the
scheduling of synchronous packets in a shared uplink veisethannel.
IEEE/ACM Transactions on Networking (TQN)5(4):932-943, 2007.
R. Cohen, L. Katzir, and D. Raz. An efficient approximatifor
the generalized assignment problermformation Processing Letters
100(4):162-166, 2006.

R. Cohen, L. Katzir, and A. Yehezkel. Cardinality esttioa meets
good-turing.arXiv preprint arXiv:1508.0621,62015.

C. Estan, K. Keys, D. Moore, and G. Varghese. Building eitdr
NetFlow. In ACM SIGCOMM Computer Communication Review
volume 34, pages 245-256. ACM, 2004.

11

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

P. Flajolet,é. Fusy, O. Gandouet, and F. Meunier. Hyperloglog: the
analysis of a near-optimal cardinality estimation algoritimAnalysis
of Algorithms 2007 (AofAO7)pages 127-146, 2007.

M. Hifi, M. Michrafy, and A. Sbihi. Algorithms for the mulgile-choice
multidimensional knapsack problemLes Cahiers de la MSE:ésie
bleue 31, 2003.

K. Ishibashi, R. Kawahara, M. Tatsuya, T. Kondoh, and&ano. Effect
of sampling rate and monitoring granularity on anomaly detslitya
In 2007 IEEE Global Internet Symposiupages 25-30. IEEE, 2007.
J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnanst partscan
detection using sequential hypothesis testind?oceedings of the IEEE
Symposium on Security and Privapages 211-225. IEEE, 2004.

H. Kellerer, U. Pferschy, and D. Pisingé&tnapsack ProblemsSpringer,
Berlin, 2004.

] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang. &mpled

data sufficient for anomaly detection? Proceedings of the 6th ACM
SIGCOMM Conference on Internet Measuremeages 165-176. ACM,
2006.

J. Mai, A. Sridharan, C.-N. Chuah, H. Zang, and T. Ye. Iotpaf
packet sampling on portscan detectitBEE Journal on Selected Areas
in Communications24(12):2285-2298, 2006.

M. Moser, D. P. Jokanovic, and N. Shiratori. An algonittior the multi-
dimensional multiple-choice knapsack probleiaICE Transactions on
Fundamentals of Electronics, Communications and CompBitégnces
80(3):582-589, 1997.

|. Paredes-Oliva, P. Barlet-Ros, and J.&Bhreta. Portscan detection
with sampled netflow. Irinternational Workshop on Traffic Monitoring
and Analysis pages 26-33. Springer, 2009.

A. Ramachandran, S. Seetharaman, N. Feamster, and Vakazftast
monitoring of traffic subpopulations. IRroceedings of the 8th ACM
SIGCOMM Conference on Internet Measuremeages 257—-270. ACM,
2008.

V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Konlfze and
D. G. Andersen. cSamp: A system for network-wide flow monitgrin
In NSD|, volume 8, pages 233-246, 2008.

S. Shirali-Shahreza and Y. Ganjali. FleXam: flexible shngpextension
for monitoring and security applications in OpenFlow. Rroceedings
of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networkingpages 167-168. ACM, 2013.

A. Sridharan, T. Ye, and S. Bhattacharyya. Connectisslport scan
detection on the backbone. Froceedings of the Malware Workshop
(held in conjunction with IPCCG)2006.

J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter. @pample:
A low-latency, sampling-based measurement platform for comiynodi
SDN. InlEEE 34th International Conference on Distributed Compgti
Systems (ICDCSpages 228-237. IEEE, 2014.

Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadigpatio-temporal
aggregation using sketches. Rroceedings of the 20th International
Conference on Data Engineeringages 214-225. IEEE, 2004.

A. Tootoonchian, M. Ghobadi, and Y. Ganjali. OpenTMaffic matrix
estimator for openflow networks. International Conference on Passive
and Active Network Measuremeipiages 201-210. Springer, 2010.

H. M. Weingartner and D. N. Ness. Methods for the solutiof
the multidimensional 0/1 knapsack problemOperations Research
15(1):83-103, 1967.

P. Wette and H. Karl. Which flows are hiding behind my wildtaule?:
Adding packet sampling to openflonSIGCOMM Comput. Commun.
Rev.

A. Zaalouk, R. Khondoker, R. Marx, and K. Bayarou. OmtisAn
orchestrator-based architecture for enhancing netweckity using
network monitoring and SDN control functions. Network Operations
and Management Symposium (NOMS3ges 1-9. IEEE, 2014.

https://www.cs.bu.edu/brite/
http://www.brocade.com/content/html/en/configuration-guide/fastiron-08040-monitoringguide/GUID-F46B8130-C143-4BDD-AE04-E64821A1A288.html
http://www.brocade.com/content/html/en/configuration-guide/fastiron-08040-monitoringguide/GUID-F46B8130-C143-4BDD-AE04-E64821A1A288.html
http://www.brocade.com/content/html/en/configuration-guide/fastiron-08040-monitoringguide/GUID-F46B8130-C143-4BDD-AE04-E64821A1A288.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
https://www.juniper.net/documentation/en_US/junos/topics/example/sflow-configuring-ex-series.html
https://www.juniper.net/documentation/en_US/junos/topics/example/sflow-configuring-ex-series.html
http://www.sflow.org/
http://mininet.org
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://lasr.cs.ucla.edu/ddos/traces/public/trace1/tcp/file1
https://lasr.cs.ucla.edu/ddos/traces/public/trace1/tcp/file1

	Introduction
	Related Work
	The Proposed Framework
	The Sampling Allocation Problem (SAP)
	Offline SAP
	Online SAP
	Extended SAP

	Framework Evaluation using Mininet
	Evaluation Testbed
	Estimating the Number of Connections in a Flow
	Detection of a Port Scanning Attack
	Maximizing Flow Visibility
	Discussion

	The Performance of the Algorithms
	Conclusions
	References

