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Abstract—Cache pre-filing is emerging as a new concept for in- 0f subscribed content providers. Another business model
creasing the availability of popular web items in cache servers. Ac- s to reduce the costly bandwidth consumed by ISPs. An

cording to this concept, web items are sent by a “push-server” to . .
the proxy cache servers, usually through a broadcast-based or a emerging CDN-based teChnOIOQy that serves this purpose

multicast-based distribution mechanism. One of the most difficult 1S referred to asache pre-filling7].

challenges is to design the scheduling algorithm of the push-server. : g ;
This algorithm needs to determine the “broadcast scheduling map”, With cache pre ﬂmg’ web items are pUShed to the

namely which web items to broadcast and when. In this paper Proxy FaChe servers, Usual!ydmgh a brc.)adcaSt'based.or
we study the approach where every constant period of time each a multicast-based distribution mechanism. The idea is to

proxy cache analyzes the requests it has received in the past andinsert pre—selected URLSs to the cachesI\bbroxies that

determines which web item it prefers to receive by broadcast and bel Iti fthe CDN. whil
when. We formalize a related problem, called the “Cache Pre-filing elong to a muiticast group of the » while encounter-

Push” (CPFP) problem, analyze its computational complexity, and ing a cost which is significantly lower than the costMéf

describe efficient algorithms to solve it. independent unicasts.
A popular distribution mechanism for eache pre-
I. INTRODUCTION filling is a satellite link, ecause such a link imposes a

Web caching is an important way to address the ma@{oadcalstﬁ cost ?f 1 ulnlt, trclalgtarcgless thW Iayf%eqs.
problems of the WWW: Internet congestion delays, tran lgure 1 Snows a typical satetlite-ba € pre-ling

mission cost and availability of web servers. A web prox stem. The system consists of an intelligent “push-

cache sits between Web servers and clients and sto 8gver", that collects web items from the Internet servers

frequently accessed web objects. The cache receives d broadcasts these items to the various proxy caches

quests from the clients and uses the stored objects Wﬁ F]ough a satellite link. The requests sent by the end users

possible in order to serve these requests. The traditiofiay F°”‘ed to _the _nearby_proxy cache. Ifthe requested.ob—
ctis found, it is immediately sent back to the requesting

approach for a proxy to fill its cache when the content fdf ers. If it is not found, theache proxy forwards the

a received request is not locally available was to acces . . :
the original server, or another cache, using some intbfauest to the original server and receives the item from

cache protocol like ICP [13], [14]. In such a case thr%wis server, either in unicast t.hro_ugh a terrestrial link or in
proxy delivers one copy of the requested object to the roadcast through the satellite link.
questing user (Or proxy) and stores another copy |oca||yone of the most difficult Challenges in this architec-
for future requests. ture is the scheduling algorithm employed by the push-
In order to increase the availability of popular object8erver. '_I'his algorithm needs_to determine the “broadcast
at proxy cache servers, and to reduce the bandwidth c&§heduling map”, namely which web items to broadcast,
sumed by such servers, a new concept called Content 384 when. One approach is to have the push-server sit
tribution Network (CDN) has been emerging. Loosel@" the data path between the proxy caches and the In-
speaking, a CDN is architecture of network proxy servert€rnet. The _push—server analyzes all the requests received
arranged for efficient delivery of web items. There arlfom the various proxy servers and determines a broadcast
several approaches for implementing a CDN. These a'?gjweduling map accordingly. The main advantage of this
proaches differ mainly in their business model: who p(;@,pproach is that the proxy caches do not actively partici-
for the CDN and what for, and consequently in their imPate in the scheduling algorithm. Rather, they perform a
plementation details: where the proxy servers are gdandard proxy cache task of forwarding to the Internet all
ployed, how are user's requests routed to these protﬂ? requests that cannot be locally addressed. However,
servers, how do these servers get fresh web items, dtcoes require that all the data paths from the different
One business model for a CDN is to increase the availaditoxy caches will go through the push-server.
ity of web items distributed by certain content providers. When this is not possible, the proxy caches must be in-
In this model the CDN is a service provided to a groupolved in the process. In this approach, every constant
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Fig. 1. A Satellite-based Cache Pre-filling CDN

period of time\ (e.g. A = 60 seconds)each proxy cache different web items have different sizes, and they there-
analyzes the requests it has received in thedltiste pe- fore require different transmission times. We show that
riod (e.g. =1 hour), and determines which web item ithe resulting scheduling problem is NP-Complete, and
prefers to receive by broadcast and when. For instanpeppose efficient algorithms to solve it. In Section V we
if a proxy cache remgnizes a steady demand for a cempresent simulation results for the various algorithms dis-
tain web item, it will request the push-server to broadcastissed in Section Il and Section IV. Finally, Section VI
this web item immediately when the copy it already hasoncludes the paper.

expires. The push-server then needs to compile all the

requests received from thé proxies into a single broad- 1. RELATED WORK

cast scheduling map. The problem in this case is how to - ; -
create the most profitable scheduling in light of possibl; The algorithms presented in this paper are proven to

collisions in the requests made by different proxies e optimal, or optimal up to a constant factor, for the
q y P " problem introduced in Section I, namely cache ph@

In this paper we propose a scheme based on the lafi&lough a broadcast channel. Many papers studied the
approach. In the proposed scheme the time axis is @ioblem of “broadcast scheduling” in the past. However,
vided into fixed intervals, where every interval consist the best of our knowledge none of them was in the con-
of T fixed time slots. Each time slot allows the pushgext of the problem we consider. In this section we discuss
server to broadcast one web item or a portion thereof. B&sme of these papers, and outline the differences between
fore a slot starts, each proxy cachedenotedp;, sends the problems they address and the problem we do.
to the push-server a profit matrdd;. Entry[i, j] inthis |y [2] the authors consider a system where the broad-
matrix indicatgs the local profit for receivjng py broadcasting station (the “push server” in our terminology)
cast web item in slot number; of the next time interval. goes not always have all data items available for broad-
The profit takes values between 0 and 1. When the pughst. They developed a set of mechanisms that coordinate
server receives the matrices from all tNeproxy caches, the process of broadcast scheduling with the process of
itcomputes a single scheduling vectofor the nexttime |ocating and retrieving the data items to be broadcasted.
interval. This vector indicates which web item will beqowever, since we consider in this paper a pre-filling sys-
transmitted in every time slot of the next time interval. tem an inherent assumption in our model is that the cache

The rest of the paper is organized as follows. In Seproxies tell the push server in advance what is the list of
tion 1l we discuss related work. In Section Il we analyzéhe data items they wish to receive during the next time in-
the problem of computing the most profitable schedulirtgrval. Moreover, in order to allow the push server to col-
when all the web items are of equal size of one slot. Wect the required information, the proxy servers can send
than present an optimal algorithm for this problem, baséhlis information to the push server even 1 or 2 minutes in
on the concept of graph matching. In Section IV we exadvance. This is because this information is determined
tend the problem to handle the more realistic case whdyased on long-period statistic collection, which is not af-



fected by events that take place during the time this infdsenefit for proxyl from receiving web itemw; at timej,
mation is collected by the push server. wherel < ¢ < |[W]andl < j < T. Recall thatT is
The model presented in [1] and [11] is also differerthe length of the time period for which requests are re-
from the one we consider. Two main differences are &gived from the various cache proxies and a schedule is
follows. First, in [1] and [11] it is assumed that the redetermined by the push-server. The expected benefit is a
quests from the receivers are received by the broadcastmber between O and 1, i@< M;[i, j] < 1. The over-
ing station asynchronously, and they are processed afi-benefit matrix)/ is a matrix in which every entry is
cording to the order they are received. In contrast, in otlre normalized sum of the benefit values of all the proxy
model it is assumed that the push server receives all &rvers, i.e. M[i, j] = M Given this matrix
requests before the beginning of each time interval, ang, the server needs to decide which web item should be
it processes these requests together. One important d9fradcasted at each time interval such that the total bene-
sequence of this aspect is that in contrast to [1], therefisis maximized.
no need for preemption in order to optimize the benefit. One can consider a different scenario where a web item
The second difference is that in [1] and [11] the broadhat is not delivered through the satellite broadcast is re-
cast channel is the only means through which informati@fleved using some other method, like unicast over a ter-
can be delivered to the receiving parties. Therefore, thigstrial link. In this case the objective is to minimized the
penalty for delaying the broadcast of the data requestegternal” cost of retrieving these web items. One can
by one of the receivers is gportional to the time elapsedset the benefit of an item to be this “extra” cost, and thus
since the request is received. In contrast, in our systg} a given request maximizing the profit is the same as
each receiver can receive over its “private unicast Cha\'?ﬁnimizing the “extra” cost.
nel” all the information the push server did not broadcast. \ye start with a simple variant of the problem, where we
Therefore, the penalty for not broadcasting some infogssume that the time axis is divided into fixed time slots,
mation is proportional to the number aaeivers that re- anq a broadcast of every web item takes exactly one slot.
quest this information through their private unicast chafmy address the issue of web item freshness, we assume
nel. Moreover, whereas in [1] and [11] the broadcastingat a new version of each web item is considered by the
server must remember unsatisfied requests in order to &Gstem as a different item, and that each web item is valid
commodate them in the future, in our model such requesgs at leastT” time slotd. Throughout the paper we also
are ignored since they broadcasting sereeeives fresh 3ssume that all broadcasted web items during each time
requests before each time interval. interval are kept in all the caches. Therefore, there is no
In [12] the authors distinguishes between two modelgierit in broadcasting a web item more than once during
a pull-based and a push-based. In the former model, i@ same time interval. This assumption simplifies the
receiving parties inform the broadcastimgde about their computation of the local benefit matrices, because when a
exact requirements. This is similar to the models digroxy statiorp, computes entry\/;[i, j] of such a matrix,
cussed in [1] and [11]. In the latter model, the receivt can assume that objeat; was not received during time
ing parties cannot inform the broadcasting station aboglbts1 ---j — 1.
their exact needs. In both cases, the target is to min-pefinition I11.1: A schedule is a functio®’ from time
imize the average delay of the receiving parties. Refiots to{ W'} U {NIL}. F(¢) indicates the Web item that
[12] formulates the push-based problem as a determini§roadcasted at time The value ofF'() is NIL if no
tic Markov Decision Problem (MDP) and the pull-base@em is scheduled for broadcasttat
problem as a stochastic MDP. In earlier works, a stochagre can now formally define the Cache Pre-filing Push
tic MDP model was used for designing periodic schedulge pFp) problem:
with near optimal performance for the push-based prob-pefinition 111.2: Given a list of N cache proxies

lem [3], and scheduling policies were for the puII—base}ql’p% ...,pn, Where each proxy, has a benefit ma-

version were studied [9]. trix M; over a common set of web itefiV} for a
period of T' time units, find a schedulé” such that
lll. FIXED-SIZE WEB ITEMS each web item is selected at most once, &{d") =

T N T . .
We consider the scenario described in the previous sect—1 21—1 Mi[F'(t), 1] = >,y M[F(t),1] is maxi-

tion, where the push-server has to determine the schedig€d- _ _
for the next time interval given the benefit matrices frorfifom the above discussion one can see that the only rel-
all proxy caches. Let the number of proxy caches\he €vant benefit functions are these in which at some time
and assume that all proxy caches refer to the same sef@Pto the value goes above zero, and it is not increas-
web itemsWW, whereW = {wy,wo,...,ww}. Each  _ . _ ,

This is a realistic assumption because in a real system cache-able

proxy b creatgs a benefit mf”‘trlMl' _Whose element in web item are valid for at least 2 minutes whereas a typical valugfor
theith row andjth column/;[i, 5] indicates the expectedis 30 seconds.



ing after timety. However, the solution we present findghe optimal solution yields a benefit 8f1 — €) whereas
the optimal schedule without any restriction on the benettie “maximumglobal benefit algorithm” yields a benefit
functions. of only 1. To prove that 2 is thevorst-casgperformance
A natural candidate to serve as a scheduling algorithmatio of this algorithm, note that each itam selected by
is the following greedy approach, referred to as the “mafhis algorithm to be broadcasted taprevents from this
imum local benefit algorithm”. Before each time stgp algorithm the gain of at most two other transmissions: a
this algorithm inspects all the web items whose transmigansmission ofw; at another time slot’ and the trans-
sion att would yield some benefit, and broadcasts thmission of another web itema; att. However,M i, t] >
most profitable web item that has not yet been broad{[i, '] because otherwise the “maximugiobal benefit
casted. However, it is easy to realize that this approaalyorithm” would choosé/[i, t'] rather than\/[¢, ], and
does not yield the optimal strategy. Actually, for soméor the same consideration [z, t] > M|j, t].
input instances this greedy approach may perform veryHowever, the off-line problem can still be solved
badly since it does not take into account the rate in whi¢h polynomial time using the well known maximum-
the benefit function decreases, and thus can choosenatching algorithm in bipartite graphs [8]. A matching
slightly higher value just to find out that the benefit of anin a graphG;(V, E) is a subset of edgel/ C F such that
other web item has dropped down to zero. As an exampfer all verticesv € V' at most one edge ad¥/ is incident
consider the following benefit matrix: onv. M is maximum-matching in a weighted graph if for
any other matchind/’, the sum of the weights o¥/ is

1 0 0 .
S . 0 e . 0 not smaller than the sum of the weightsiaf.
0 0 e 1 0 0 We first construct a bipartite gragk, as follows. The
nodes of one set are the web items and the nodes of the
0 0 0 € o --- 0 oo .
M= " - . second set are the time intervals. The set of edges is con-
L structed such that eactode that represents an item is
0 0 v i 0 € 1 connected to eachode that represents a time interval
0 0 i i 00 € The weight associated with such an edgd4§, t|. We

can now prove the following Claim.
The optimal solution for this benefit matrix is to select Claim 111.3: There is a one to one correspondence be-
in time slott = 2, 4, 6, 8,...item¢ — 1, and in tween the matchings i\, and the scheduling’ where

time slotz = 1, 3, 5, 7,... no item. Such a schedulethe cost of a matching is exactly the benefit of the corre-
would achieve a total benefit @f/2. However, the “max- spondence schedule.

imum local algorithm” described above would selectitem  proof: A feasible schedule in the given CPFP is
¢ in every time slot;, achieving a total benefit df' - ¢ g matching inG, since at each time unit we broadcast
only. This implies that the worst-case performance ratig most one web item, and no web item is broadcasted
of this algorithm isO(1/e) wheree can be as small as more than once. On the other hand, a matchingjris

one chooses. Note that this argument can be generalizgassignment of web items to time slot that satisfy the
to show thany on-line algorithm has af)(1/¢) worst-  definition of a schedule. Since we assign a weight, ;]

case lower bourfd to the edgdi, j) in Gy, the cost of the matching is exactly
Another possible algorithm is the “maximuglobal equal to the benefit of the schedule. [ ]
benefit algorithm”. Like the “maximuniocal benefit al- Using Claim 111.3 we can now define the following al-

gorithm®, this algorithm can also be classified as a greegyrithm for CPFP.

algorithm. However, this algorithm makes a greedy s§- construct the grapti;

lection based on the entire benefit matrix, rather than 9N Find and return a maximum-matching f6.
the information of a given time slot only. This algo- E

ith the whole benefit matri deh th The complexity of the algorithm is essentially the com-
rithm scans the whole benefit matrix and chooses the we@ i o b erfect matching, namelp(T + (W) + T «

item with maximum benefit that has not been chosen y | % log(T + [W])). See [6] for a summary of the best
provided that this transmission does not collide with thlgﬁown algorithms fo'r this problem

transmissions of previously-selected web items. This pro- '
cess is repeated until no more benefit can be achieved.

. : . IV. VARIABLE-SIZE WEB ITEMS
This algorithm may have a performance ratio of 2. For

instance, for the following benefit matrix We now drop the assumption that all web items are of
equal size. We associate an intejewith each web item
M = ( 1—e 1 ) , w;, that indicates the number of slots required for broad-
0 l—e castingw;. In the profit matrixM, entry M|, j] indi-

2with respect to the considered problem, CPFP, an on-line algorithﬁ:\@teS the Promb ga!nEd fromartmg.th? transmISSK_)n of
is an algorithm that knows atonly thet'th row of M. itemw; at timej. Since the transmission af; after time



T —T; + 1 cannot be completed before the target tie fortimet¢+4J. The worst-case performance ratio of this al-
MTi,t] = 0 for everyt > T — T; + 1. The goal of the gorithmisO(1/¢), because the analysis in Section Ill for
scheduler is to find a schedule that maximizes the gaindn fixed-size case is applicable also for the variable-size
profit. case.

Definition IV.1: A scheduleF’ is a transmission vector The “maximum global benefit algorithm” for the
that indicates which item starts being transmitted in whickariable-size case works as follows. It scans the whole
slot. If F(i) = j, then at time slot the transmission benefit matrix and chooses the web item with maximum
of item w; starts. A feasible schedule is a transmissiomormalizedbenefit that has not been chosen yet, provided

vector that fulfills the following conditions: that this transmission does not collide with the transmis-
(a) Ateach time slot at most one web item is traitsed. sions of previously-selected web items. This process is
(b) Each web item is transmitted at most once. repeated until no more benefit can be achieved. However,

(c) Preemptionis notallowed. Thisimplies that the tranghe worst-case performance ratio of 2 of this algorithm for
mission of a web item must be completed before anothidre fixed-size case doest prevail for the variable case.
item starts being transmitted. Namely,Afi:] = j and Consider for example two items: itefnwhose length is
T; > 1,thenF[i+1,---,i+T; — 1] = NIL. 1 and profit is also 1, and itethwhose length ig" and
The overall profit gained from a scheduleis denoted profitisT — e. Since the normalized profit éfis larger,
B(F). As before, the problemis to find a schedBlsuch it will be selected by the “maximurglobal benefit algo-
that B(F) = ZtT:1 M([F(t),1] is maximized. However, rithm”, thereby achieving a total benefit dfrather than
unlike in the fixed-size case, the problem of an optimdl — €

schedule for the variable-size case is NP-Complete. TheNext we present a 2-approximation algorithm to solve
proof is obtained using a reduction from the Sequencirige problem. The algorithm is an implementation of the
with Release Time and Deadline Problem (SRTD)[10$cheduling algorithm proposed in [4], which is based on
Given an instance of the SRTD problem we construct dfe “local ratio technique” presented in [5]. We begin with
instance of the variable-size CPFP problem as followvo definitions.

Let the set of jobs b&/. For each jobi € W, 1 < i <n, Definition IV.2: A transmission instancé = (wj, j)
we construct a web iterw; with the following benefit indicates that a web item; starts being transmitted at slot
function j. The merit ofl = (w;, j), namelyM]i, j], is denoted
. M (I). Atransmission instanck= (w;, j) is said to end
Bz(t):M[Z,j]:{ 1 |sz'§7_f§di_Pi ’ a.tSIOtj-i—T‘z—l o .
0 otherwise Definition IV.3: Two transmission instances and I’

e said to have a conflict if they cannot appear together
a feasible schedule.
We can now present the algorithm. Notice that the merit

) . . .matrix M is indeed a matrix sincé is indicated by two
is sufficient to show that all jobs can be scheduled Whi|& i s <o the value Q¥ (w;, §) is M[i, j]. The approx-
;at|sfy|ng the releage time and deadline time constrfaui ation algorithm works as follows:

if and only if the optimal cache scheduler has benefit

|W|. Recall thaf| is the number of jobs and thus thec.l' L(let the original merit matrix ba/. SetM, « M and

. . .1 — 1.
nymber Of.Web 'tems.' vaye have a web |tem schec.iuhrg Find in M; the first transmission instance to end, and
with benefit of|1V|, it implies that every web iter; is . .
add it asl; to a tentative schedul&'. If two or more

broadcasted between timgand timed; — p;, and there- St .

X ) ; transmission instances meet the requirement select one of
fore meets its scheduling constraints. On the other har) o
) i o . them arbitrarily.
if there is a schedule that satisfies the constraints for every , ) ) )
job i, the web items can be broadcasted according to thiis P€COMPOséZ; into two new merit matrices?;,; and

schedule, thereby achieving a benefitdf|. Mii)l in the following way:

The “maximumlocal benefit algorithm” in this case is (a) Copy from M; to Mi(}r)1 the transmission instande
very similar to the one described in Section Il for theind all the transmission instanceslify that have a con-
fixed-size case. Attime this algorithm scans the benelict with I;. Set the rest of the matrix & namely:
fit matrix M and locates all the web items that have not

been transmitted in the past whose transmisstarting ) 1) = {M(IZ-) I = I, or I has a conflict with;,

wherer;, d; andp; are the release time, the deadline, arar
the processing duration of jabln addition, the broadcast
time of web itemw; is equal top;. To finish the proof, it

at ¢ would yield some benefit. The benefit of each item 8711 (1
normalizedby the length of the web item. The item with

the maximum normalized benefit is selected for transmis- @ ]
sion. Assuming that the length of the selected iter, is (b) Copy fromAZ; to M;1;, but decrease the merit of all

the algorithm continues by selecting a new transmissidime transmission instances that appeaf\éiﬁr)1 (namely,

0 otherwise



the transmission instandg and all the transmission in- of the proof to the understanding of the algorithm, and
stances inV/; that have a conflict with;) by the merit of since the proof in [4] is somewhat complex, we adopted
transmission instanck (M;(1;)). it to our specific problem and present it in what follows.
4. Generate a new merit matrid/; ;. SetM,;,; < The proofis based on the Local Ratio Theorem:

Mﬁ)l then remove from\/;,; all the transmission in-  Theorem IV.4 (Local Ratio)et F' be a set of con-

stances whose merit is 0. straints and le’, P, and P, be profit functions such that
5. If M;,; is not empty, set — i + 1 and go to step 2, P = P1 + P». Let X be anr-approximate solution with
otherwise letk’ = i and continue as follows. respect toP; and P, wherer > 1. Then, X is anr-
6. Let the schedule created during this proces$be approximate solution with respect ra

[I1, I, ..., Ix]. We now generate frorfl a series of fea- The proof for this Theorem can be found in [4], [5].
sible schedulegSy, S1, . . ., Sk] in the following way: Claim IV.5: For everyi, 1 <1 < K, M; = Mi(i)l +
(a) Let Sk — ¢pandi — K — 1 M holds.

. . 1+1
(b) If Sita U{Iiﬂ} is feasible, theis; «— Si.1 U{ZLiy1}- Proof: There are three types of transmission in-
(c) If i > 1, seti — i — 1 and go to step 6(b) stances that should be addressed:
7. ReturnSy as a feasibl@-approximation schedule. T o M) 1y oar (T
Note: matricesMi(l) are not used by the algorithm. We1' (é)__IZMsll(rf)eﬁ/!i\?E?; : é\élzélzlt(: Y :EE;;E,?R Td
have added them in order to facilitate the correctnessi(g)1 A A y step i+l
proof later. The Algorithm needs to maintain only ondZi11 = Mi(/;) holds.

matrix M that will play the roll of M; for everyi. The 2. I # I, andl has a conflict with/;: sinceMi(}r)l(Ii) =

same argument holds f&p, S1, .. ., Sk as well. M;(I;) (by step 3(a)) anMi(i)l = M;(I) — M;(I;) (by
Figure 2 depicts one iteration of the aIgorithm.Withoutt 3N MY - M@ — A1) hold

lose of generality, let us assume that this is the first itet- P ONMi + Mgy = Mi(I) holds. L

ation. Hence, Figure 2(a) shows the original madt. 3. I # I; andI has no conflict with;: sinceM}) (I;) =

There are two transmission instances in this matrix th@t(by step 3(a)) and?\/.li(i)1 = M;(I) (by step 3(b)),

end before the rest of the instances: instance (a) whogg1) @) _ar

merit is 10, and instance (i) whose merit is 15. The acfﬁ“ + Mgy = Mi(I) holds. -

gorithm should choose one of them arbitrarily/lasand Definition IV.6 (-maximal) A schedules is called -
transmission instance (a) is selected. Nui/’ and7S?) maximal if the following holds

are created (Figure 2(b) and Figure 2(c) respectively). g is feasible

Matrix Mél) contains all the transmission instances that (1 ¢ S) or (I ¢ S) A (SU{I} is not feasiblg).
appear in}M;. However, the merit of the transmission in- - claim IV.7: For everyi, 1 < i < K, a scheduleS

stances that have a conflict with instance (a) is set to Jfpich is an Z;-maximal solution is a 2-approximation
and transmission instances that do not have a conflict WW’ﬂ[h respect td‘/fi(ﬂ-

.. K . (2 .
transmission instance (a) is set to 0. MalMSé ) contains Proof: Let A(IL) be the set of all transmission in-

all transmission instances that appeari. However, stances inM; associated with the same web item that
the merit of the instances that have a conflict with trang- nsmission instancé is associated with. LeB(I;)
. )

”?iSSi.O” instance (a) is de_creaseq by the merit of transn}},%- the set of all transmission instanceshif that have
sion mstancg (@) (10)'_ Finally, Flgure(22)(d) shows matrix ¢ gjict with; and do not belong tel(Z;). Note that
M. It contains all the instances frofd,™, except those 4(1;) U B(I;) is the set of all instances that have a con-
that havg a non-positive merit. The instance selected ﬁ%t with T, Since M;(I,) = Mgl)l(li) by step 3(a),
the algorithm ad is (i). @) (SRR )

The algorithm always stops since transmission instants +1(1i) = 0 by step 3(b) . By the definition of/;, ;,
I; does never appear ;. In a trivial implementation Ol transmission instances< A(l;) U B(Ig) can con-
the best bound on the runningtime W0U|(m€(|W|T)2) tribute to the profit of a schedul§ for Mi(-i-)l' Recall
since for each instance we may be requiredpdate the that all these instances have the same mgfit/;). To
value of all other instances. This is still polynomial in théomplete the proof it is sufficient to show that (a) since
input size since we have an explicit benefit valuedach S is I;-maximal solution it contains at least one transmis-
web item per each time in the matrid which is part of Sion instance fromA(Z;) U B(1;) so it has a merit of at
the input. The scheduls, returned by the algorithm is least/;; and that (b) no feasible schedwiémay contain
feasible since we start from a feasible schedijjle— ¢ more that one transmission instance freifV;) and one
and step 6(b) adds a transmission instafhce® S;_; if transmission instance froM(1;), which implies that the
S; U{I;} is feasible. maximum profit from a feasible schedule tlbffi(}r)1 is at

It remains to prove thaf is a 2-approximation. The most2M;(I;). Part (a) follows directly from the fact that
proof can be found in [4]. However, due to the importancg is I;-maximal. To prove part (b), note that no feasi-
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Fig. 2. Example of one iteration of the algorithm

ble schedule may contain two transmission instances of | L |

the same web item and there {8t may contain at most ! !

one item fromA(Z;). Now suppose tha$’ contains two I

items fromB(I;): I’ andI” This implies that these two \ \
transmission instances do not intersect with each other. 1

However, since they both belong 18(1;), both of them } }

intersect withl;. Therefore, at least one of them ends be-
fore I; (see Figure 3), contradictory to the selection of Fig. 3. The proof thats’ contains at most one transmission instance

by step 2 of the algorithm. | from B(I;)

Theorem IV.8:The return scheduleS; is a 2-
approximation with respect taf.

2-approximation with respect tdf; 1. The proof is by
Proof: Recall thatM = M;. We prove the the- induction on i. We start with = K. Mg, is empty
orem by showing that for every 1 < i < K, S; isa andSk = ¢. Therefore,Sk is an optimal solution and



obviously a 2-approximation with respectiéy 1. The ! ‘ S
induction hypothesis is that far = ¢ it holds thatS; is osf i
a 2-approximation with respect td; ;. We now prove ol !
that S;_; is a 2-approximation with respect ttf;. By ' !
the induction hypothesis; is a 2-approximation with re- 071
spect toMt(fr)1 becausell;; is generated by removing

from Mﬁ)l non-positive values, and such values cannt
increase the global meritS;_; is equal either taS; or

Sy U {I,} and by step 3(a)1?, (I;) = 0. Thus,S;_; is

Normalized Profit
o )
w )

o
>

a 2-approximation with respect @f,>). By step 6(b) 7| (i

S;_1 is an I;-maximal solution. Thus, by claim IV.7 ozt ;d', “@1 ]

Sy—1 is a 2-approximation with respect Mt(}r)l. Since ..} ! \ ! o]
A

M, = Mt(}r)l + Mﬁ)l (claim IV.5), to conclude using Lo-
cal Ratio (theorem IV.4),;_, is a 2-approximation with
respect ta\/;. [ |

Fig. 5. An example for a profit function

creases exponentially. The rationale behind this function
is that in a real system if; does not receive the requested
Mz‘ object by broadcast, it requests it by unicast as soon as

(2) the object is requested by some end host. Therefore,
Mz‘+1 Mi—i—l indicates here the probability that the considered object is
requested by an end host during a given time slot.
Remove all non-positive As explained before, in order to get the global bene-
transmission instances fit matrix M we sum up the benefit matrices of all caches.
Fig. 4. lllustration of steps 3 and 4 of the algorithm An example of the resulting benefit matrix for N = 30

cache proxies is depicted in Figure 5. One can see the ef-
fect of the different “peaks”, for different proxies, and the
V. SIMULATION RESULTS sharp decrease in the benefit after this point. Clearly, if the
In this section we present simulation results for the valimber of cache proxy increases for a gi#&rthe ben-
ious algorithms presented in Section Il and in Sectiofit function levels up, and for very larg€s it becomes
IV for the fixed-size and variable-size web items respefUch “smoother.
tively. Since for some of the discussed algorithms the the-WWe start with the simulation results for the fixed-size
oretical analysis provides only worst-case guarantees, if@se. We simulated the Following three algorithms:
important to study the actual performance under realissicThe “maximum-matching algorithm”, as presented in
scenarios. In our simulation model, one can choose thection Ill. Recall that this algorithm yields the optimal

following parameters: solution.

o T -the size, in time units, of an interval. « The “maximumlocal benefit algorithm”, as described

o |W| - the number of web items. in Section lll. We have seen that this algorithm has an un-
o N -the number of proxy caches. bounded worst-case performance. However, its main ad-
o M - the benefit matrix. vantage compared to the “maximum matching algorithm”

As explained beforel/;[i, t] represents the gain of proxyis that it does not require the push-server to know the
cache if itemi is broadcasted at time Recall our as- whole benefit matrix\/ in advance, but only the column
sumption that there is a gain only from the first transmigor the next time slot. This gives the proxy servers the
sion of an item. The matriX/ is generated in the fol- freedom to submit their requests almost in real-time.
lowing way. For each web iter; and for every cache « The “maximumglobalbenefit algorithm”, as described
proxyp;, we decide randomly ifis interested in iteror  in Section Ill. Like the “maximum matching algorithm”,
not. If it is interested, we choose randomly the first timand in contrast to the “maximum local benefit algorithm”,

t € [1..T] that the item is needed. In a real-systens the “maximum global benefit algorithm” is an off-line al-
the time when the current copy of the requested object egorithm. Recall that is has a worst-case performance ratio
pires atp;. For this timet, we setM;[i, t] « m, wherem 0f 2.

is a random merit. For every timg ¢t < ¢’ < T, we set Figure 6 depicts the profit vs. the numhbgrof prox-
Mi[i,t'] « m(1—p)*' =%, This implies that the merit de- ies. We consider two cases here: the case where the ra-
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Fig. 6. The performance of the various algorithms for the fixed-sizgig. 7. The performance of the various algorithms for the fixed-size
case as a function of the number of proxy stations case as a function ¢tV |/T

tio between the length of the time period for which retelative performance of the algorithms for more values of
quests are received’] and the size of the web item setW|/T. Figure 7 shows the normalized profit as a func-
(JW]) is 1:1, and the case where this ratio is 1:5. Sind#®n of [IW[/T" Itis evident that whenl'|/T > 4, this
the maximum-matching algorithm yields the optimal sceffect disappears, which indicates that at this point there
lution, we view the profit of this algorithm as “1”, andare “enough” good candidates to broadcast even by a non-
normalize the profits gained by the other algorithms aeptimal algorithm.
cordingly. It is evident from the graph that when the ra- Next we study the variable-size case. We considered
tio of |W|/T increases, namely the size of the web iteragain three algorithms:
setincreases, both the “maximum local benefit algorithng” The “2-approximation algorithm”, as described in Sec-
and the “maximum global benefit algorithm” perform bettion 1v.
ter. The explanation for this is as follows. Whgi'|is . The “maximum local benefit algorithm” for the
large compared t@', the probability for these algorithmsyariable-size case, as described in Section IV.
to loose significant profit due to a wrong selection is low, The “maximum global benefit algorithm” for the
because there are always a logaiod choices. However, variable-size case, as described in Section IV.
as|W| — T, the effect of a wrong selection becomes fjqre 8 and Figure 9 show the simulation results for
bigger because the numberggod choices is smaller. s case. Since no algorithm achieves the optimal per-
As expected, the performance of the “maximglobal  formance, the results are normalized according to those
benefit algorithm” is better than the performance of thechieved by the “2-approximation algorithm”. Figure 8
“maximum local benefit algorithm”. In fact, the “maxi- shows the normalized profit v§J¥|/T. In this graph,
mum global benefit algorithm” performs almost as googhe length of each web item isrdomly selected between
as the “maximum-matching algorithm”. However, sincg and 10 slots. It turns out that despite of their inferior
this algorithm requires the same information used by thigeoretical worst-case performance, both the the “maxi-
“maximum-matching algorithm”, namely knowing themum local benefit algorithm” and the “maximumlobal
whole merit matrixA/ in advance, the only motivation benefit algorithm” outperform the “2-approximation algo-
to prefer it over the “maximum-matching algorithm” mayrithm” for small values of W| /T, whereas for larger sets
be its simplicity. In contrast, the “maximum local benefibf web items the “2-approximation algorithm” performs
algorithm” does not require the push-server to know thgetter. The differences between the performance of the
whole M matrix in advance, and is also working in linearmaximum local benefit algorithm” and the performance
time (in the size of\). It therefore might be very useful of the “maximum global benefit algorithm” are bigger (up
in many systems. Another interesting observation frops 20%) for small values gfV|/T and almost disappear
Figure 6 is that the number of proxies has no effect on tier relatively large values gw|/T.
performance of the various algorithms. Figure 9 shows the results of the three algorithms as a
We have seen in Figure 6 that the results of tHenction of the maximum item size, foW|/T = 1. We
two greedy algorithms are strongly affected by the ratimave seen in Figure 8 that when the maximum item size
|W|/T. In order to study this aspect better, we tested thie 10, both the “maximum local benefit algorithm” and
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it prefers to receive by broadcast and when. We formal-
ized arelated problem, called the “Cache Pre-filing Push”
(CPFP) problem, and studied this problem for two cases:
the case where all web items are of fixed-size, and the case
where the web items are of variable size. For the fixed-
size items case, the CPFP problem can be solved in poly-
nomial time using the well known maximum-matching al-
gorithm in bipartite graphs. For variable-size web items
the problem is NP-complete, but we developed a poly-
nomial time approximation algorithm whose worst-case
performance ratio is 2.

We then used simulation study in order to test how var-
ious algorithms for the CPFP problem perform. For the
fixed-size case, we found the performance of the “max-
imum local benefit algorithm”, that does not require the
push-server to know the whol&/ matrix in advance, to

e very competitive to the optimal performance. There-

fore, this algorithm is probably the best choice for practi-
cal applications.

For the variable-size case, our simulations show that
when the ratigW| /T is not too big, both the “maximum
local benefit algorithm” and the “maximurglobal ben-
efit algorithm” perform better than the “2-approximation
algorithm”, and thus no worst than twice the optimal so-
lution.
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