
Scheduling Algorithms for a Cache Pre-Filling
Content Distribution Network

Reuven Cohen Liran Katzir Danny Raz
Department of Computer Science

Technion
Haifa 32000, Israel

Abstract—Cache pre-filling is emerging as a new concept for in-
creasing the availability of popular web items in cache servers. Ac-
cording to this concept, web items are sent by a “push-server” to
the proxy cache servers, usually through a broadcast-based or a
multicast-based distribution mechanism. One of the most difficult
challenges is to design the scheduling algorithm of the push-server.
This algorithm needs to determine the “broadcast scheduling map”,
namely which web items to broadcast and when. In this paper
we study the approach where every constant period of time each
proxy cache analyzes the requests it has received in the past and
determines which web item it prefers to receive by broadcast and
when. We formalize a related problem, called the “Cache Pre-filing
Push” (CPFP) problem, analyze its computational complexity, and
describe efficient algorithms to solve it.

I. I NTRODUCTION

Web caching is an important way to address the main
problems of the WWW: Internet congestion delays, trans-
mission cost and availability of web servers. A web proxy
cache sits between Web servers and clients and stores
frequently accessed web objects. The cache receives re-
quests from the clients and uses the stored objects when
possible in order to serve these requests. The traditional
approach for a proxy to fill its cache when the content for
a received request is not locally available was to access
the original server, or another cache, using some inter-
cache protocol like ICP [13], [14]. In such a case the
proxy delivers one copy of the requested object to the re-
questing user (or proxy) and stores another copy locally
for future requests.

In order to increase the availability of popular objects
at proxy cache servers, and to reduce the bandwidth con-
sumed by such servers, a new concept called Content Dis-
tribution Network (CDN) has been emerging. Loosely
speaking, a CDN is architecture of network proxy servers,
arranged for efficient delivery of web items. There are
several approaches for implementing a CDN. These ap-
proaches differ mainly in their business model: who pay
for the CDN and what for, and consequently in their im-
plementation details: where the proxy servers are de-
ployed, how are user’s requests routed to these proxy
servers, how do these servers get fresh web items, etc.
One business model for a CDN is to increase the availabil-
ity of web items distributed by certain content providers.
In this model the CDN is a service provided to a group

of subscribed content providers. Another business model
is to reduce the costly bandwidth consumed by ISPs. An
emerging CDN-based technology that serves this purpose
is referred to ascache pre-filling[7].

With cache pre-filling, web items are pushed to the
proxy cache servers, usually through a broadcast-based or
a multicast-based distribution mechanism. The idea is to
insert pre-selected URLs to the caches ofN proxies that
belong to a multicast group of the CDN, while encounter-
ing a cost which is significantly lower than the cost ofN
independent unicasts.

A popular distribution mechanism for acache pre-
filling is a satellite link, because such a link imposes a
broadcast’s cost of 1 unit, regardless how largeN is.
Figure 1 shows a typical satellite-basedcache pre-filling
system. The system consists of an intelligent “push-
server”, that collects web items from the Internet servers
and broadcasts these items to the various proxy caches
through a satellite link. The requests sent by the end users
are routed to the nearby proxy cache. If the requested ob-
ject is found, it is immediately sent back to the requesting
users. If it is not found, thecache proxy forwards the
request to the original server and receives the item from
this server, either in unicast through a terrestrial link or in
broadcast through the satellite link.

One of the most difficult challenges in this architec-
ture is the scheduling algorithm employed by the push-
server. This algorithm needs to determine the “broadcast
scheduling map”, namely which web items to broadcast,
and when. One approach is to have the push-server sit
on the data path between the proxy caches and the In-
ternet. The push-server analyzes all the requests received
from the various proxy servers and determines a broadcast
scheduling map accordingly. The main advantage of this
approach is that the proxy caches do not actively partici-
pate in the scheduling algorithm. Rather, they perform a
standard proxy cache task of forwarding to the Internet all
the requests that cannot be locally addressed. However,
it does require that all the data paths from the different
proxy caches will go through the push-server.

When this is not possible, the proxy caches must be in-
volved in the process. In this approach, every constant



satellite

push
server

cache
proxy

cache
proxy

cache
proxy

Internet

end users
web servers

cache
proxy

Fig. 1. A Satellite-based Cache Pre-filling CDN

period of timeλ (e.g.λ = 60 seconds),each proxy cache
analyzes the requests it has received in the lastδ time pe-
riod (e.g. δ=1 hour), and determines which web item it
prefers to receive by broadcast and when. For instance,
if a proxy cache recognizes a steady demand for a cer-
tain web item, it will request the push-server to broadcast
this web item immediately when the copy it already has
expires. The push-server then needs to compile all the
requests received from theN proxies into a single broad-
cast scheduling map. The problem in this case is how to
create the most profitable scheduling in light of possible
collisions in the requests made by different proxies.

In this paper we propose a scheme based on the latter
approach. In the proposed scheme the time axis is di-
vided into fixed intervals, where every interval consists
of T fixed time slots. Each time slot allows the push-
server to broadcast one web item or a portion thereof. Be-
fore a slot starts, each proxy cachel, denotedpl, sends
to the push-server a profit matrixMl. Entry [i, j] in this
matrix indicates the local profit for receiving by broad-
cast web itemi in slot numberj of the next time interval.
The profit takes values between 0 and 1. When the push-
server receives the matrices from all theN proxy caches,
it computes a single scheduling vectorF for the next time
interval. This vector indicates which web item will be
transmitted in every time slot of the next time interval.

The rest of the paper is organized as follows. In Sec-
tion II we discuss related work. In Section III we analyze
the problem of computing the most profitable scheduling
when all the web items are of equal size of one slot. We
than present an optimal algorithm for this problem, based
on the concept of graph matching. In Section IV we ex-
tend the problem to handle the more realistic case where

different web items have different sizes, and they there-
fore require different transmission times. We show that
the resulting scheduling problem is NP-Complete, and
propose efficient algorithms to solve it. In Section V we
present simulation results for the various algorithms dis-
cussed in Section III and Section IV. Finally, Section VI
concludes the paper.

II. RELATED WORK

The algorithms presented in this paper are proven to
be optimal, or optimal up to a constant factor, for the
problem introduced in Section I, namely cache pre-filling
through a broadcast channel. Many papers studied the
problem of “broadcast scheduling” in the past. However,
to the best of our knowledge none of them was in the con-
text of the problem we consider. In this section we discuss
some of these papers, and outline the differences between
the problems they address and the problem we do.

In [2], the authors consider a system where the broad-
casting station (the “push server” in our terminology)
does not always have all data items available for broad-
cast. They developed a set of mechanisms that coordinate
the process of broadcast scheduling with the process of
locating and retrieving the data items to be broadcasted.
However, since we consider in this paper a pre-filling sys-
tem, an inherent assumption in our model is that the cache
proxies tell the push server in advance what is the list of
the data items they wish to receive during the next time in-
terval. Moreover, in order to allow the push server to col-
lect the required information, the proxy servers can send
this information to the push server even 1 or 2 minutes in
advance. This is because this information is determined
based on long-period statistic collection, which is not af-



fected by events that take place during the time this infor-
mation is collected by the push server.

The model presented in [1] and [11] is also different
from the one we consider. Two main differences are as
follows. First, in [1] and [11] it is assumed that the re-
quests from the receivers are received by the broadcast-
ing station asynchronously, and they are processed ac-
cording to the order they are received. In contrast, in our
model it is assumed that the push server receives all the
requests before the beginning of each time interval, and
it processes these requests together. One important con-
sequence of this aspect is that in contrast to [1], there is
no need for preemption in order to optimize the benefit.
The second difference is that in [1] and [11] the broad-
cast channel is the only means through which information
can be delivered to the receiving parties. Therefore, the
penalty for delaying the broadcast of the data requested
by one of the receivers is proportional to the time elapsed
since the request is received. In contrast, in our system
each receiver can receive over its “private unicast chan-
nel” all the information the push server did not broadcast.
Therefore, the penalty for not broadcasting some infor-
mation is proportional to the number of receivers that re-
quest this information through their private unicast chan-
nel. Moreover, whereas in [1] and [11] the broadcasting
server must remember unsatisfied requests in order to ac-
commodate them in the future, in our model such requests
are ignored since they broadcasting server receives fresh
requests before each time interval.

In [12] the authors distinguishes between two models:
a pull-based and a push-based. In the former model, the
receiving parties inform the broadcastingnode about their
exact requirements. This is similar to the models dis-
cussed in [1] and [11]. In the latter model, the receiv-
ing parties cannot inform the broadcasting station about
their exact needs. In both cases, the target is to min-
imize the average delay of the receiving parties. Ref.
[12] formulates the push-based problem as a determinis-
tic Markov Decision Problem (MDP) and the pull-based
problem as a stochastic MDP. In earlier works, a stochas-
tic MDP model was used for designing periodic schedules
with near optimal performance for the push-based prob-
lem [3], and scheduling policies were for the pull-based
version were studied [9].

III. F IXED-SIZE WEB ITEMS

We consider the scenario described in the previous sec-
tion, where the push-server has to determine the schedule
for the next time interval given the benefit matrices from
all proxy caches. Let the number of proxy caches beN ,
and assume that all proxy caches refer to the same set of
web itemsW , whereW = {w1, w2, . . . , w|W |}. Each
proxy pl creates a benefit matrixMl, whose element in
theith row andjth columnMl[i, j] indicates the expected

benefit for proxyl from receiving web itemwi at timej,
where1 ≤ i ≤ |W | and1 ≤ j ≤ T . Recall thatT is
the length of the time period for which requests are re-
ceived from the various cache proxies and a schedule is
determined by the push-server. The expected benefit is a
number between 0 and 1, i.e.0 ≤Ml[i, j] ≤ 1. The over-
all benefit matrixM is a matrix in which every entry is
the normalized sum of the benefit values of all the proxy

servers, i.e.,M [i, j] =
PN
l=1 Ml[i,j]

N . Given this matrix
M , the server needs to decide which web item should be
broadcasted at each time interval such that the total bene-
fit is maximized.

One can consider a different scenario where a web item
that is not delivered through the satellite broadcast is re-
trieved using some other method, like unicast over a ter-
restrial link. In this case the objective is to minimized the
“external” cost of retrieving these web items. One can
set the benefit of an item to be this “extra” cost, and thus
for a given request maximizing the profit is the same as
minimizing the “extra” cost.

We start with a simple variant of the problem, where we
assume that the time axis is divided into fixed time slots,
and a broadcast of every web item takes exactly one slot.
To address the issue of web item freshness, we assume
that a new version of each web item is considered by the
system as a different item, and that each web item is valid
for at leastT time slots1. Throughout the paper we also
assume that all broadcasted web items during each time
interval are kept in all the caches. Therefore, there is no
merit in broadcasting a web item more than once during
the same time interval. This assumption simplifies the
computation of the local benefit matrices, because when a
proxy stationpl computes entryMl[i, j] of such a matrix,
it can assume that objectwi was not received during time
slots1 · · · j − 1.

Definition III.1: A schedule is a functionF from time
slots to{W}∪ {NIL}. F (t) indicates the Web item that
is broadcasted at timet. The value ofF (t) is NIL if no
item is scheduled for broadcast att.
We can now formally define the Cache Pre-filing Push
(CPFP) problem:

Definition III.2: Given a list of N cache proxies
p1, p2, . . . , pN , where each proxypl has a benefit ma-
trix Ml over a common set of web item{W} for a
period of T time units, find a scheduleF such that
each web item is selected at most once, andB(F ) =∑T
t=1

∑N
l=1 Ml[F (t), t] =

∑T
t=1 M [F (t), t] is maxi-

mized.
From the above discussion one can see that the only rel-
evant benefit functions are these in which at some time
stept0 the value goes above zero, and it is not increas-

1This is a realistic assumption because in a real system cache-able
web item are valid for at least 2 minutes whereas a typical value forT
is 30 seconds.



ing after timet0. However, the solution we present finds
the optimal schedule without any restriction on the benefit
functions.

A natural candidate to serve as a scheduling algorithm
is the following greedy approach, referred to as the “max-
imum local benefit algorithm”. Before each time stept,
this algorithm inspects all the web items whose transmis-
sion at t would yield some benefit, and broadcasts the
most profitable web item that has not yet been broad-
casted. However, it is easy to realize that this approach
does not yield the optimal strategy. Actually, for some
input instances this greedy approach may perform very
badly since it does not take into account the rate in which
the benefit function decreases, and thus can choose a
slightly higher value just to find out that the benefit of an-
other web item has dropped down to zero. As an example,
consider the following benefit matrix:

M =



ε 1 0 · · · · · · · · · 0
0 ε 0 · · · · · · · · · 0
0 0 ε 1 0 · · · 0
0 0 0 ε 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · · · · 0 ε 1
0 0 · · · · · · 0 0 ε


.

The optimal solution for this benefit matrix is to select
in time slot t = 2, 4, 6, 8, . . . item t − 1, and in
time slot t = 1, 3, 5, 7, . . . no item. Such a schedule
would achieve a total benefit ofT/2. However, the “max-
imum local algorithm” described above would select item
t in every time slott, achieving a total benefit ofT · ε
only. This implies that the worst-case performance ratio
of this algorithm isO(1/ε) whereε can be as small as
one chooses. Note that this argument can be generalized
to show thatanyon-line algorithm has anO(1/ε) worst-
case lower bound2.

Another possible algorithm is the “maximumglobal
benefit algorithm”. Like the “maximumlocal benefit al-
gorithm”, this algorithm can also be classified as a greedy
algorithm. However, this algorithm makes a greedy se-
lection based on the entire benefit matrix, rather than on
the information of a given time slot only. This algo-
rithm scans the whole benefit matrix and chooses the web
item with maximum benefit that has not been chosen yet,
provided that this transmission does not collide with the
transmissions of previously-selected web items. This pro-
cess is repeated until no more benefit can be achieved.
This algorithm may have a performance ratio of 2. For
instance, for the following benefit matrix

M =
(

1− ε 1
0 1− ε

)
,

2With respect to the considered problem, CPFP, an on-line algorithm
is an algorithm that knows att only thet’th row ofM .

the optimal solution yields a benefit of2(1 − ε) whereas
the “maximumglobalbenefit algorithm” yields a benefit
of only 1. To prove that 2 is theworst-caseperformance
ratio of this algorithm, note that each itemwi selected by
this algorithm to be broadcasted att prevents from this
algorithm the gain of at most two other transmissions: a
transmission ofwi at another time slott′ and the trans-
mission of another web itemwj at t. However,M [i, t] ≥
M [i, t′] because otherwise the “maximumglobalbenefit
algorithm” would chooseM [i, t′] rather thanM [i, t], and
for the same considerationM [i, t] ≥M [j, t].

However, the off-line problem can still be solved
in polynomial time using the well known maximum-
matching algorithm in bipartite graphs [8]. A matching
in a graphG(V, E) is a subset of edgesM ⊆ E such that
for all verticesv ∈ V at most one edge ofM is incident
onv. M is maximum-matching in a weighted graph if for
any other matchingM ′, the sum of the weights ofM is
not smaller than the sum of the weights ofM ′.

We first construct a bipartite graphGb as follows. The
nodes of one set are the web items and the nodes of the
second set are the time intervals. The set of edges is con-
structed such that eachnode that represents an itemwi is
connected to eachnode that represents a time intervalt.
The weight associated with such an edge isM [i, t]. We
can now prove the following Claim.

Claim III.3: There is a one to one correspondence be-
tween the matchings inGb and the schedulingF where
the cost of a matching is exactly the benefit of the corre-
spondence schedule.

Proof: A feasible schedule in the given CPFP is
a matching inGb since at each time unit we broadcast
at most one web item, and no web item is broadcasted
more than once. On the other hand, a matching inGb is
an assignment of web items to time slot that satisfy the
definition of a schedule. Since we assign a weightM [i, j]
to the edge(i, j) inGb, the cost of the matching is exactly
equal to the benefit of the schedule.

Using Claim III.3 we can now define the following al-
gorithm for CPFP.
1. Construct the graphGb;
2. Find and return a maximum-matching forGb.
The complexity of the algorithm is essentially the com-
plexity of perfect matching, namelyO((T + |W |) ∗ T ∗
|W | ∗ log(T + |W |)). See [6] for a summary of the best
known algorithms for this problem.

IV. VARIABLE -SIZE WEB ITEMS

We now drop the assumption that all web items are of
equal size. We associate an integerTi with each web item
wi, that indicates the number of slots required for broad-
castingwi. In the profit matrixM , entryM [i, j] indi-
cates the profit gained fromstarting the transmission of
itemwi at timej. Since the transmission ofwi after time



T −Ti + 1 cannot be completed before the target timeT ,
M [i, t] = 0 for every t > T − Ti + 1. The goal of the
scheduler is to find a schedule that maximizes the gained
profit.

Definition IV.1: A scheduleF is a transmission vector
that indicates which item starts being transmitted in which
slot. If F (i) = j, then at time sloti the transmission
of itemwj starts. A feasible schedule is a transmission
vector that fulfills the following conditions:
(a) At each time slot at most one web item is transmitted.
(b) Each web item is transmitted at most once.
(c) Preemption is not allowed. This implies that the trans-
mission of a web item must be completed before another
item starts being transmitted. Namely, ifF [i] = j and
Tj > 1, thenF [i+ 1, · · · , i+ Tj − 1] = NIL.
The overall profit gained from a scheduleF is denoted
B(F ). As before, the problem is to find a scheduleF such
thatB(F ) =

∑T
t=1M [F (t), t] is maximized. However,

unlike in the fixed-size case, the problem of an optimal
schedule for the variable-size case is NP-Complete. The
proof is obtained using a reduction from the Sequencing
with Release Time and Deadline Problem (SRTD)[10].
Given an instance of the SRTD problem we construct an
instance of the variable-size CPFP problem as follows.
Let the set of jobs beW . For each jobi ∈W , 1 ≤ i ≤ n,
we construct a web itemwi with the following benefit
function

Bi(t) = M [i, j] =
{

1 if ri ≤ t ≤ di − pi
0 otherwise

,

whereri, di andpi are the release time, the deadline, and
the processing duration of jobi. In addition, the broadcast
time of web itemwi is equal topi. To finish the proof, it
is sufficient to show that all jobs can be scheduled while
satisfying the release time and deadline time constraints
if and only if the optimal cache scheduler has benefit of
|W |. Recall that|W | is the number of jobs and thus the
number of web items. If we have a web item scheduling
with benefit of|W |, it implies that every web itemwi is
broadcasted between timeri and timedi − pi, and there-
fore meets its scheduling constraints. On the other hand,
if there is a schedule that satisfies the constraints for every
job i, the web items can be broadcasted according to this
schedule, thereby achieving a benefit of|W |.

The “maximumlocal benefit algorithm” in this case is
very similar to the one described in Section III for the
fixed-size case. At timet, this algorithm scans the bene-
fit matrix M and locates all the web items that have not
been transmitted in the past whose transmissionstarting
at t would yield some benefit. The benefit of each item is
normalizedby the length of the web item. The item with
the maximum normalized benefit is selected for transmis-
sion. Assuming that the length of the selected item isδ,
the algorithm continues by selecting a new transmission

for timet+δ. The worst-case performance ratio of this al-
gorithm isO(1/ε), because the analysis in Section III for
the fixed-size case is applicable also for the variable-size
case.

The “maximum global benefit algorithm” for the
variable-size case works as follows. It scans the whole
benefit matrix and chooses the web item with maximum
normalizedbenefit that has not been chosen yet, provided
that this transmission does not collide with the transmis-
sions of previously-selected web items. This process is
repeated until no more benefit can be achieved. However,
the worst-case performance ratio of 2 of this algorithm for
the fixed-size case doesnot prevail for the variable case.
Consider for example two items: itemi whose length is
1 and profit is also 1, and itemj whose length isT and
profit isT − ε. Since the normalized profit ofi is larger,
it will be selected by the “maximumglobalbenefit algo-
rithm”, thereby achieving a total benefit of1 rather than
T − ε.

Next we present a 2-approximation algorithm to solve
the problem. The algorithm is an implementation of the
scheduling algorithm proposed in [4], which is based on
the “local ratio technique” presented in [5]. We begin with
two definitions.

Definition IV.2: A transmission instanceI = (wi, j)
indicates that a web itemwi starts being transmitted at slot
j. The merit ofI = (wi, j), namelyM [i, j], is denoted
M(I). A transmission instanceI = (wi, j) is said to end
at slotj + Ti − 1.

Definition IV.3: Two transmission instancesI and I′

are said to have a conflict if they cannot appear together
in a feasible schedule.
We can now present the algorithm. Notice that the merit
matrixM is indeed a matrix sinceI is indicated by two
indices, so the value ofM(wi, j) isM [i, j]. The approx-
imation algorithm works as follows:
1. Let the original merit matrix beM . SetM1 ←M and
i← 1.
2. Find inMi the first transmission instance to end, and
add it asIi to a tentative scheduleF . If two or more
transmission instances meet the requirement select one of
them arbitrarily.
3. DecomposeMi into two new merit matricesM (1)

i+1 and

M
(2)
i+1 in the following way:

(a) Copy fromMi to M (1)
i+1 the transmission instanceIi

and all the transmission instances inMi that have a con-
flict with Ii. Set the rest of the matrix as0, namely:

M
(1)
i+1(I) =

{
M(Ii) I = Ii or I has a conflict withIi,

0 otherwise.

(b) Copy fromMi toM (2)
i+1, but decrease the merit of all

the transmission instances that appear inM
(1)
i+1 (namely,



the transmission instanceIi and all the transmission in-
stances inMi that have a conflict withIi) by the merit of
transmission instanceIi (Mi(Ii)).
4. Generate a new merit matrixMi+1. SetMi+1 ←
M

(2)
i+1 then remove fromMi+1 all the transmission in-

stances whose merit is≤ 0.
5. If Mi+1 is not empty, seti ← i + 1 and go to step 2,
otherwise letK = i and continue as follows.
6. Let the schedule created during this process beS =
[I1, I2, . . . , IK]. We now generate fromS a series of fea-
sible schedules[S0, S1, . . . , SK ] in the following way:
(a) Let SK ← φ andi← K − 1
(b) If Si+1∪{Ii+1} is feasible, thenSi ← Si+1∪{Ii+1}.
(c) If i ≥ 1, seti← i− 1 and go to step 6(b)
7. ReturnS0 as a feasible2-approximation schedule.
Note: matricesM (1)

i are not used by the algorithm. We
have added them in order to facilitate the correctness
proof later. The Algorithm needs to maintain only one
matrixM that will play the roll ofMi for every i. The
same argument holds forS0, S1, . . . , SK as well.

Figure 2 depicts one iteration of the algorithm. Without
lose of generality, let us assume that this is the first iter-
ation. Hence, Figure 2(a) shows the original meritM1.
There are two transmission instances in this matrix that
end before the rest of the instances: instance (a) whose
merit is 10, and instance (i) whose merit is 15. The al-
gorithm should choose one of them arbitrarily asI1, and
transmission instance (a) is selected. NowM (1)

2 andM (2)
2

are created (Figure 2(b) and Figure 2(c) respectively).
Matrix M (1)

2 contains all the transmission instances that
appear inM1. However, the merit of the transmission in-
stances that have a conflict with instance (a) is set to 10
and transmission instances that do not have a conflict with
transmission instance (a) is set to 0. MatrixM (2)

2 contains
all transmission instances that appear inM1. However,
the merit of the instances that have a conflict with trans-
mission instance (a) is decreased by the merit of transmis-
sion instance (a) (10). Finally, Figure 2(d) shows matrix
M2. It contains all the instances fromM (2)

2 , except those
that have a non-positive merit. The instance selected by
the algorithm asI2 is (i).

The algorithm always stops since transmission instance
Ii does never appear inMi+1. In a trivial implementation
the best bound on the running time would beO((|W |T )2)
since for each instance we may be required toupdate the
value of all other instances. This is still polynomial in the
input size since we have an explicit benefit value foreach
web item per each time in the matrixM which is part of
the input. The scheduleS0 returned by the algorithm is
feasible since we start from a feasible scheduleSK ← φ
and step 6(b) adds a transmission instanceIi to Si−1 if
Si ∪ {Ii} is feasible.

It remains to prove thatS0 is a 2-approximation. The
proof can be found in [4]. However, due to the importance

of the proof to the understanding of the algorithm, and
since the proof in [4] is somewhat complex, we adopted
it to our specific problem and present it in what follows.
The proof is based on the Local Ratio Theorem:

Theorem IV.4 (Local Ratio)Let F be a set of con-
straints and letP , P1 andP2 be profit functions such that
P = P1 + P2. LetX be anr-approximate solution with
respect toP1 andP2, wherer ≥ 1. Then,X is an r-
approximate solution with respect toP .
The proof for this Theorem can be found in [4], [5].

Claim IV.5: For everyi, 1 ≤ i ≤ K, Mi = M
(1)
i+1 +

M
(2)
i+1, holds.

Proof: There are three types of transmission in-
stances that should be addressed:
1. I = Ii: sinceM (1)

i+1(Ii) = Mi(Ii) (by step 3(a)) and

M
(2)
i+1 = Mi(Ii) −Mi(Ii) = 0 (by step 3(b)),M (1)

i+1 +
M

(2)
i+1 = Mi(Ii) holds.

2. I 6= Ii andI has a conflict withIi: sinceM (1)
i+1(Ii) =

Mi(Ii) (by step 3(a)) andM (2)
i+1 = Mi(I) −Mi(Ii) (by

step 3(b)),M (1)
i+1 +M

(2)
i+1 = Mi(I) holds.

3. I 6= Ii andI has no conflict withIi: sinceM (1)
i+1(Ii) =

0 (by step 3(a)) andM (2)
i+1 = Mi(I) (by step 3(b)),

M
(1)
i+1 +M

(2)
i+1 = Mi(I) holds.

Definition IV.6 (I-maximal) A scheduleS is calledI-
maximal if the following holds
1. S is feasible
2. (I ∈ S) or ((I /∈ S) ∧ (S ∪ {I} is not feasible)).

Claim IV.7: For everyi, 1 ≤ i ≤ K, a scheduleS
which is anIi-maximal solution is a 2-approximation
with respect toM (1)

i+1.
Proof: Let A(Ii) be the set of all transmission in-

stances inMi associated with the same web item that
transmission instanceIi is associated with. LetB(Ii)
be the set of all transmission instances inMi that have
a conflict withIi and do not belong toA(Ii). Note that
A(Ii) ∪ B(Ii) is the set of all instances that have a con-
flict with Ii. SinceMi(Ii) = M

(1)
i+1(Ii) by step 3(a),

M
(2)
i+1(Ii) = 0 by step 3(b) . By the definition ofM (1)

i+1,
only transmission instancesI ∈ A(Ii) ∪ B(Ii) can con-
tribute to the profit of a scheduleS for M (1)

i+1. Recall
that all these instances have the same meritMi(Ii). To
complete the proof it is sufficient to show that (a) since
S is Ii-maximal solution it contains at least one transmis-
sion instance fromA(Ii) ∪ B(Ii) so it has a merit of at
leastIi; and that (b) no feasible scheduleS′ may contain
more that one transmission instance fromA(Ii) and one
transmission instance fromB(Ii), which implies that the
maximum profit from a feasible schedule forM (1)

i+1 is at
most2Mi(Ii). Part (a) follows directly from the fact that
S is Ii-maximal. To prove part (b), note that no feasi-



(a)10 (b)7 (c)11
(d)9

(e)15

(f)5 (g)14
(h)7

(l)23(k)22(j)21(i)15

(m)6

(a)10 (b)10 (c)10
(d)10

(e)0

(f)10 (g)10
(h)0

(i)10 (j)0 (k)0 (l)0

(m)10

(a)0 (b)-3 (c)1
(d)-1

(e)15

(f)-5 (g)4
(h)7

(i)5 (j)21 (k)22 (l)23

(m)-4

(a) MatrixMi at the begining of step 2.

(b) MatrixM (1)
i+1 at the begining of step 4.

(c) MatrixM (2)
i+1 at the begining of step 4.

(d) MatrixMi+1 at the begining of step 5.

(c)1

(e)15

(h)7

(i)5 (j)21 (k)22 (l)23

(g)4

Fig. 2. Example of one iteration of the algorithm

ble schedule may contain two transmission instances of
the same web item and there forS′ may contain at most
one item fromA(Ii). Now suppose thatS′ contains two
items fromB(Ii): I′ andI′′ This implies that these two
transmission instances do not intersect with each other.
However, since they both belong toB(Ii), both of them
intersect withIi. Therefore, at least one of them ends be-
fore Ii (see Figure 3), contradictory to the selection ofIi
by step 2 of the algorithm.

Theorem IV.8:The return scheduleS0 is a 2-
approximation with respect toM .

Proof: Recall thatM = M1. We prove the the-
orem by showing that for everyi, 1 ≤ i ≤ K, Si is a

Ii

I′

I′′

Fig. 3. The proof thatS′ contains at most one transmission instance
fromB(Ii)

2-approximation with respect toMi+1. The proof is by
induction on i. We start withi = K. MK+1 is empty
andSK = φ. Therefore,SK is an optimal solution and



obviously a 2-approximation with respect toMK+1. The
induction hypothesis is that fori = t it holds thatSt is
a 2-approximation with respect toMt+1. We now prove
thatSt−1 is a 2-approximation with respect toMt. By
the induction hypothesisSt is a 2-approximation with re-
spect toM (2)

t+1 becauseMt+1 is generated by removing

from M
(2)
t+1 non-positive values, and such values cannot

increase the global merit.St−1 is equal either toSt or
St ∪ {It} and by step 3(a)M (2)

t+1(It) = 0. Thus,St−1 is

a 2-approximation with respect toM (2)
t+1. By step 6(b)

St−1 is an It-maximal solution. Thus, by claim IV.7
St−1 is a 2-approximation with respect toM (1)

t+1. Since

Mt = M
(1)
t+1 +M

(2)
t+1 (claim IV.5), to conclude using Lo-

cal Ratio (theorem IV.4)St−1 is a 2-approximation with
respect toMt.

M
(1)
i+1

Mi+1M
(2)
i+1

Mi

Remove all non-positive
transmission instances

Fig. 4. Illustration of steps 3 and 4 of the algorithm

V. SIMULATION RESULTS

In this section we present simulation results for the var-
ious algorithms presented in Section III and in Section
IV for the fixed-size and variable-size web items respec-
tively. Since for some of the discussed algorithms the the-
oretical analysis provides only worst-case guarantees, it is
important to study the actual performance under realistic
scenarios. In our simulation model, one can choose the
following parameters:
• T - the size, in time units, of an interval.
• |W | - the number of web items.
• N - the number of proxy caches.
• M - the benefit matrix.
As explained before,Ml[i, t] represents the gain of proxy
cache if itemi is broadcasted at timet. Recall our as-
sumption that there is a gain only from the first transmis-
sion of an item. The matrixM is generated in the fol-
lowing way. For each web itemwi and for every cache
proxypl, we decide randomly ifl is interested in itemi or
not. If it is interested, we choose randomly the first time
t ∈ [1..T ] that the item is needed. In a real-system,t is
the time when the current copy of the requested object ex-
pires atpl. For this timet, we setMl[i, t]← m, wherem
is a random merit. For every timet′, t ≤ t′ ≤ T , we set
Ml[i, t′]← m(1−p)(t′−t). This implies that the merit de-

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

N
or

m
al

iz
ed

 P
ro

fit
 

Fig. 5. An example for a profit function

creases exponentially. The rationale behind this function
is that in a real system ifpl does not receive the requested
object by broadcast, it requests it by unicast as soon as
the object is requested by some end host. Therefore,p
indicates here the probability that the considered object is
requested by an end host during a given time slot.

As explained before, in order to get the global bene-
fit matrixM we sum up the benefit matrices of all caches.
An example of the resulting benefit matrixM forN = 30
cache proxies is depicted in Figure 5. One can see the ef-
fect of the different “peaks”, for different proxies, and the
sharp decrease in the benefit after this point. Clearly, if the
number of cache proxy increases for a givenT , the ben-
efit function levels up, and for very largeNs it becomes
much “smoother”.

We start with the simulation results for the fixed-size
case. We simulated the Following three algorithms:
• The “maximum-matching algorithm”, as presented in
Section III. Recall that this algorithm yields the optimal
solution.
• The “maximumlocal benefit algorithm”, as described
in Section III. We have seen that this algorithm has an un-
bounded worst-case performance. However, its main ad-
vantage compared to the “maximum matching algorithm”
is that it does not require the push-server to know the
whole benefit matrixM in advance, but only the column
for the next time slott. This gives the proxy servers the
freedom to submit their requests almost in real-time.
• The “maximumglobalbenefit algorithm”, as described
in Section III. Like the “maximum matching algorithm”,
and in contrast to the “maximum local benefit algorithm”,
the “maximum global benefit algorithm” is an off-line al-
gorithm. Recall that is has a worst-case performance ratio
of 2.

Figure 6 depicts the profit vs. the numberN of prox-
ies. We consider two cases here: the case where the ra-



60 65 70 75 80 85 90 95 100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of servers

P
ro

fit

Max−Global−Benefit (|W|/T=1)
Max−Local−Benefit (|W|/T=1)
Perfect−matching (|W|/T=1)
Max−Global−Benefit (|W|/T=5)
Max−Local−Benefit (|W|/T=5)
Perfect−matching (|W|/T=5)

Fig. 6. The performance of the various algorithms for the fixed-size
case as a function of the number of proxy stations

tio between the length of the time period for which re-
quests are received (T ) and the size of the web item set
(|W |) is 1:1, and the case where this ratio is 1:5. Since
the maximum-matching algorithm yields the optimal so-
lution, we view the profit of this algorithm as “1”, and
normalize the profits gained by the other algorithms ac-
cordingly. It is evident from the graph that when the ra-
tio of |W |/T increases, namely the size of the web item
set increases, both the “maximum local benefit algorithm”
and the “maximum global benefit algorithm” perform bet-
ter. The explanation for this is as follows. When|W | is
large compared toT , the probability for these algorithms
to loose significant profit due to a wrong selection is low,
because there are always a lot ofgood choices. However,
as |W | → T , the effect of a wrong selection becomes
bigger because the number ofgood choices is smaller.

As expected, the performance of the “maximumglobal
benefit algorithm” is better than the performance of the
“maximum local benefit algorithm”. In fact, the “maxi-
mum global benefit algorithm” performs almost as good
as the “maximum-matching algorithm”. However, since
this algorithm requires the same information used by the
“maximum-matching algorithm”, namely knowing the
whole merit matrixM in advance, the only motivation
to prefer it over the “maximum-matching algorithm” may
be its simplicity. In contrast, the “maximum local benefit
algorithm” does not require the push-server to know the
wholeM matrix in advance, and is also working in linear
time (in the size ofM ). It therefore might be very useful
in many systems. Another interesting observation from
Figure 6 is that the number of proxies has no effect on the
performance of the various algorithms.

We have seen in Figure 6 that the results of the
two greedy algorithms are strongly affected by the ratio
|W |/T . In order to study this aspect better, we tested the

1 2 3 4 5 6 7 8 9 10
0.88

0.9

0.92

0.94

0.96

0.98

1

|W| / T

N
or

m
al

iz
ed

 P
ro

fit

Max−Global−Benefit 
Max−Local−Benefit 
Perfect−matching 

Fig. 7. The performance of the various algorithms for the fixed-size
case as a function of|W |/T

relative performance of the algorithms for more values of
|W |/T . Figure 7 shows the normalized profit as a func-
tion of |W |/T . It is evident that when|W |/T > 4, this
effect disappears, which indicates that at this point there
are “enough” good candidates to broadcast even by a non-
optimal algorithm.

Next we study the variable-size case. We considered
again three algorithms:

• The “2-approximation algorithm”, as described in Sec-
tion IV.
• The “maximum local benefit algorithm” for the
variable-size case, as described in Section IV.
• The “maximum global benefit algorithm” for the
variable-size case, as described in Section IV.

Figure 8 and Figure 9 show the simulation results for
this case. Since no algorithm achieves the optimal per-
formance, the results are normalized according to those
achieved by the “2-approximation algorithm”. Figure 8
shows the normalized profit vs.|W |/T . In this graph,
the length of each web item is randomly selected between
1 and 10 slots. It turns out that despite of their inferior
theoretical worst-case performance, both the the “maxi-
mum local benefit algorithm” and the “maximumglobal
benefit algorithm” outperform the “2-approximation algo-
rithm” for small values of|W |/T , whereas for larger sets
of web items the “2-approximation algorithm” performs
better. The differences between the performance of the
“maximum local benefit algorithm” and the performance
of the “maximum global benefit algorithm” are bigger (up
to 20%) for small values of|W |/T and almost disappear
for relatively large values of|W |/T .

Figure 9 shows the results of the three algorithms as a
function of the maximum item size, for|W |/T = 1. We
have seen in Figure 8 that when the maximum item size
is 10, both the “maximum local benefit algorithm” and



1 2 3 4 5 6 7 8
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

|W| / T

N
or

m
al

iz
ed

 P
ro

fit
Max−Local−Benefit 
Max−Global−Benefit 
2−Approx 

Fig. 8. The performance of the various algorithms for the variable-size
case as a function of|W |/T

1 2 3 4 5 6 7 8 9 10
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Max Item Size

N
or

m
al

iz
ed

 P
ro

fit

Max−Local−Benefit 
Max−Global−Benefit 
2−Approx 

Fig. 9. The performance of the various algorithms for the variable-size
case as a function of the maximum item size

the “maximum global benefit algorithm” perform better
than “2-approximation algorithm”. However, as the max-
imum item size decreases, the relative performance of the
“2-approximation algorithm” improves. This is explained
by the fact that as the maximum item size decreases, the
number of intervals belonging toM (1)

I decreases as well,
and thus the algorithm performance is reduced.

VI. CONCLUSIONS

Cache pre-filling is a new concept where web items
are sent by a push-server to multiple proxycache servers,
through a broadcast-based distribution mechanism. One
of the most difficult challenges with cache pre-filling is
to design optimal Scheduling algorithm for it. In this pa-
per we have studied the approach where every constant
period of time each proxy cache analyzes the requests it
has received in the past and determines which web item

it prefers to receive by broadcast and when. We formal-
ized a related problem, called the “Cache Pre-filing Push”
(CPFP) problem, and studied this problem for two cases:
the case where all web items are of fixed-size, and the case
where the web items are of variable size. For the fixed-
size items case, the CPFP problem can be solved in poly-
nomial time using the well known maximum-matching al-
gorithm in bipartite graphs. For variable-size web items
the problem is NP-complete, but we developed a poly-
nomial time approximation algorithm whose worst-case
performance ratio is 2.

We then used simulation study in order to test how var-
ious algorithms for the CPFP problem perform. For the
fixed-size case, we found the performance of the “max-
imum local benefit algorithm”, that does not require the
push-server to know the wholeM matrix in advance, to
be very competitive to the optimal performance. There-
fore, this algorithm is probably the best choice for practi-
cal applications.

For the variable-size case, our simulations show that
when the ratio|W |/T is not too big, both the “maximum
local benefit algorithm” and the “maximumglobal ben-
efit algorithm” perform better than the “2-approximation
algorithm”, and thus no worst than twice the optimal so-
lution.

REFERENCES

[1] S. Acharya and S. Muthukrishnan. Scheduling on-demand broad-
casts: New metrics and algorithms. InProceedings of the Fourth
Annual ACM/IEEE International Conference on Mobile Comput-
ing and Networking (MobiCom’98), pages 43–54, Oct. 1998.

[2] D. Aksoy, M. Franklin, and S. Zdonik. Data staging for on-demand
broadcast. InProceedings of the 27’th VLDB Conference, 2001.

[3] M. Ammar and J. Wong. On the optimality of cyclic transmission
in teletext systems.IEEE Transactions on Communications, 35(1),
Jan. 1987.

[4] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Shieber. A
unified approach to approximating resource allocation and sched-
ualing. In 32nd ACM Symposium on the Theory of Computing,
2000.

[5] R. Bar-Yehuda and S. Even. A local-ratio theorem for approx-
imating the weighted vertex cover problem.Annals of Discrete
Mathematics, 25:27–46, 1985.

[6] W. Cook and A. Rohe. Computing minimum-weight perfect
matchings.INFORMS Journal on Computing, 11:138–148, 1999.

[7] I. Cooper, I. Melve, and G. Tomlinson. Internet web replication
and caching taxonomy. RFC-3040, Jan. 2001.

[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to
Algorithms. The MIT Press, 1990.

[9] H. Dykeman, M. Ammar, and J. Wong. Scheduling algorithms for
videotex system under broadcast delivery. InProceedings of ICC,
pages 1847–1851, 1986.

[10] M. R. Garey and D. S. Johnson.Computers and Intractability;
A Guide to the Theory of NP-Completeness. W.H. Freeman and
Company, 1979.

[11] S. Hameed and N. H. Vaidya. Log-time algorithms for scheduling
single and multiple channel data broadcast. InMobile Computing
and Networking, pages 90–99, 1997.

[12] C.-J. Su and L. Tassiulas. Broadcast scheduling for information
distribution. InINFOCOM, pages 109–117, 1997.

[13] D. Wessels and K. Claffy. Application of the Internet Cache Pro-
tocol (ICP). RFC-2187, Sept. 1997.

[14] D. Wessels and K. Claffy. Internet Cache Protocol (ICP). RFC-
2186, Sept. 1997.


