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Abstract—In many modern networks, such as datacenters,
optical networks, and MPLS, the delivery of a traffic flow with
a certain bandwidth demand over a single network path is
either not possible or not cost effective. In these cases, it is wer
often possible to improve the network’s bandwidth utilization by
splitting the traffic flow over multiple efficient paths. While using
multiple paths for the same traffic flow increases the efficiency
of the network, it consumes expensivéorwarding resources from
the network nodes, such as TCAM entries of Ethernet/MPLS
switches and wavelengths/lightpaths of optical switches. In this Fig. 1. A simple example of a multi-path flow
paper we define several problems related to splitting a traffic
flow over multiple paths while minimizing the consumption of

forwarding resources, and present efficient algorithms for solvig ) ) )
these problems. network operators either impose a strict upper bound on

the number of lightpaths that can be established, or seek to
minimize this number subject to other constraints. In addijt
|. INTRODUCTION every lightpath requires a wavelength on each optical Iink i
In computer networks, a traffic flow is a flow of dateraverses. Since wavelengths are also a scarce resouise, it
packets sharing the same source and destination netwodsnaeften desirable to minimize not only the number of lightgath
(switches or routers). A traffic flow can often be split intdut also the number of nodes traversed by each one.
multiple traffic subflows, usually using information in the 2. Ethernet switches in datacenters:Ethernet is the
packet header, such as the IP/MAC addresses, the Port fieldfault technology for connecting hardware in datacenters
in the UDP/TCP header, or the VLAN number. Because theblsing SDN (Software Defined network), network operators
traffic subflows are generated by different applicationgw@an can establish multiple paths between source-destinatins p
by different hosts, it is possible to route each of them overia their datacenters. However, each path requires an entry
different network path. Using multiple paths for a trafficflo in the expensive (TCAM) forwarding table of each switch
is useful when routing over a single path is impossible or tab traverses. According to [9], a large network may require
expensive. hundreds of thousands of path flow table entries at eachlswitc
A simple example of the advantages of multipath routing ishile commodity switches have much smaller flow tables.
illustrated in Figure 1. Suppose that we would like to route la [25] it is also indicated that datacenter scaling is made
2Gb/s traffic flow froma to f. Suppose that the default (short-difficult by the forwarding table size, which increases &rlg
est) patha — b — f has only 1 Gb/s available bandwidthwith the size of the system. In addition to the forwarding
and the other (longer, and therefore less cost effectivil) fpgs cost associated with every traversed node, there is an extra
only 1.5 Gh/s available bandwidth. In this case, the traffie/fl forwarding cost associated with every path The source of thi
can be split such that 1 Gb/s will be routed over the upper patktra cost can be found in the high speed NIC (Network
and 1 Gb/s over the lower path. But splitting a traffic flow oveinterface Card) used to connect the servers between which
multiple paths consumes extra “forwarding resources” fromost datacenter traffic is transmitted. The NICs have a very
the network nodes. These resources are proportional to ttmited forwarding table, much smaller than a typical switc
number of paths (2 in Figure 1), and the number of nodes/linkke division of a traffic flow into multiple paths is performed
traversed by these paths (6 links in Figure 1), as we ndwy the NIC using a classification logic, which consumes one
describe for several network technologies: entry in the forwarding table for every path over which paske
1. Optical Networks: In optical networks, each path isof this traffic flow are forwarded.
an optical, \-switched, lightpath. Such lightpaths can be set 3. MPLS networks: MPLS Traffic Engineering (MPLS-TE)
up and taken down in real time. The dominating cost in the used today by most network operators for building an IP
setup of a lightpath is of the transponders at the two engirastructure based on traffic engineering and QoS (Qualit
of it, which convert optical to electronic signals and vicef Service) considerations [3]. Using routing protocolstsas
versa (see [5], [12], [29] and references therein). Theesfo OSPF-TE, an MPLS-TE router is provided with a map of the
_ , _ network topology and with information about the bandwidth
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to an egress router. An ingress MPLS router establishes this work is thus to minimize the forwarding cost associated
MPLS LSP (Label Switched Path) over a selected route amdth the delivery of each traffic flow, and not to set an upper
uses it to deliver the traffic flow through the network. Théound (in each switch) on the total forwarding cost assediat
challenge of minimizing the number of LSPs and the numbwiith all traffic flows.
of nodes they traverse is similar to that described above forSome operational issues have to be addressed before the
Ethernet. Each LSP requires one entry in the costly forwaydi algorithms proposed in this paper can be applied: how the
table of each node it traverses In addition, the divisionhef t network knows the volume of traffic for each flow and how
traffic flow’s packets into multiple LSPs is performed by endophisticated routing decisions can be made in a distgbute
“pseudowire” switches, each of which needs to allocate @mvironment. These issues are relatively easy when a cen-
end-to-end forwarding entry in its expensive forwardingléa tralized controller is employed, as is usually the case for
for every used path [8]. all the application scenarios considered above. A cengdli
We study the problem of reducing the forwarding cost in twoontroller can make centralized routing decisions and can
different cases. In the first case, callB¥O (Decomposition inform each switch how to forward each flow. Other issues,
with Minimum Overhead), we are given a traffic demanduch as how to divide a traffic flow into several paths and how
(source, destination and bandwidth demand) and a netwaokavoid congestion — e.g., by limiting the volume of traffic
flow! that satisfies the bandwidth demand between the soufoevarded on each path — are orthogonal to the algorithms we
and destination nodes. This network flow is pre-determinguesent, and are therefore beyond the scope of this paper.
according to some bandwidth efficiency criterion, such that The rest of this paper is organized as follows. In Section I
bandwidth cost, and the problem is to break it into a sete illustrate in greater detail the DMO and RMO problems. In
of simple paths between the source and destination nod8ection Il we discuss related work. In Section IV we formgall
while minimizing the number of paths or the number oflefine the DMO(p) problem, discuss its computational com-
nodes they traverse. In the second case, c&leg® (Routing plexity, and present approximation algorithms. In Sectibn
with Minimum Overhead), only a traffic demand (sourcewe do the same for the RMO(p) problem. In Section VI we
destination and bandwidth demand) is given, and the problemidress DMO and RMO while minimizing the number of
is to find a set of simple paths between the source anddes rather than the number of paths. The actual perfornanc
destination nodes over which the bandwidth demand can dkthe proposed algorithms is evaluated through simulation
delivered, while minimizing the number of paths or the numbeSection VII. Finally, Section VIII concludes the paper.
of nodes they traverse. At first glance it seems that RMO
should be solved using a solution for DMO as a sub-routine.
We indeed find this approach to perform very well, but in the
general case it may be better to build a solution for RMO as aDMO and RMO are illustrated in Figure 2. The bandwidth
collection of paths, rather than starting with an initiatwmerk cost of a flow on a link is the link cost times the volume
flow. of flow it carries. For the sake of simplicity, let the cost of
For both problems we aim ahinimizing the forwarding each link in this example be 1. Figure 2(a) shows a network
cost,measured as the number of paths or the number of nodeth the capacity (available bandwidth) of each link. First
traversed by the paths. Thus, we actually solve two paissippose that the operator needs to accommodate a 1Gb#s traffi
of problems: (a) DMO(p) and RMO(p) for minimizing thedemand from node to c. The most efficient routing solution
number of paths; (b) DMO(n) and RMO(n) for minimizingis to use the shortest path— b — c¢. The bandwidth cost of
the number of nodes. this solution is 2. It is cheap and can be delivered using a
Throughout the paper we focus on the case where traffitngle path. However, if the operator needs to accommodate
flows are admitted one by one. While there are scenarias 8Gb/s traffic demand between the same nodes, the shortest
where the operator can admit many traffic flows at the sarpath cannot carry it. When the main optimization criteriotois
time, we believe that the “one traffic flow at a time” scenariminimize the forwarding cost, the operator can use thiditraf
is very important for the following three reasons. First, imflemand as an input to RMO. Figure 2(b) shows a routing of
many relevant applications, traffic flows are admitted for #e traffic demand over two paths of 4Ghis:d—e— f—g—c
pre-specified duration. The starting times and due dateseof tnda —h —i— j —k —1—m —c. In this example, this solution
flows are usually independent. Thus, when a new traffic flominimizes both the number of paths (2) and the number of
has to be admitted, previous traffic flows already use their ovnodes that carry thent + 8 = 14 (we count nodes. andc
paths. Second, an operator may decide to set up a new setwi€e), but this is not always the case. The bandwidth cost of
paths between two nodes in order to respond better to periothis solution is4 * 5 4- 4 x 7 = 48.
congestion. This is an on-line decision, which is captungd b Now, suppose that the operator's main optimization cioteri
the “one traffic flow at a time” approach. Third, when a links to minimize the bandwidth cost of carrying 8Gb/s fram
or a node fails, each path that crosses this link or node hastdaoe. The operator can use a standard algorithm for finding a
be re-routed, which is again an on-line problem. Our goal iminimum-cost network flow [1] whose output is illustrated in
Figure 2(c). The bandwidth cost of this network flow is 36.
1Given a network graplé*(V, E), a network flow is a real valued function The operator can use this network flow as an input to DMO
f: VXV — R that satisfies the capacity constraint, the skew symmetry, and o . L
the flow conversation [1]. Figure 2(c) shows an example of avork flow in order to decompose it into a set of paths which minimizes
for the graph in Figure 2(a). the forwarding cost. Figure 2(d) shows a decomposition ef th
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Fig. 2. An example for the two optimization problems considdrethis paper, for accommodating an 8Mb/s traffic flow from ned® nodec

[ Problem [ Description |
Decompose a given network flow into a minimum number
DMO(p) of paths.
DMO(n) Decompose a given network flow into a set of paths travers-
ing a minimum number of nodes. a traffic demand
For a given traffic demand (source, destination and band- between two nodes v
RMO(p) width demand), find a minimum set of paths, which satisfies a network flow that
it. satisfies some
For a given traffic demand (source, destination and band- optimization criterion
RMO(n) width demand), find a set of paths, which satisfies this flow
while traversing a minimum number of nodes. paper’s scope
TABLE | RMO DMO y
DESCRIPTIONS OF THE PROBLEMS WE TACKLE IN THIS PAPER i f a set of simpl
generation of a set of simple decomposition of flow
flow paths that satisfy into simple flow paths
the demand
. . . L overhead measured by: overhead measured by:
network flow in Figure 2(c), which minimizes both the number | |
of paths (4) and the number of nodes that carry these paths| RMO®) RMO(n) DMO(p) DMO(m)
(22) number number number number
. . . . f path f of paths of nodes
Figure 3 gives an overview of the scope of this paper, and ofpaths of nodes P

Sec. V Sec. VI.B Sec. IV Sec. VLA

Table | summarizes the four addressed problems. We make
two theoretical and one practical contributions:

1) We are the first to define and solve the RMO(n) anfdg. 3. The scope of this paper
DMO(n) problems. We present for these problems ap-
proximation algorithms with performance guarantees.

2) We show that simple greedy decomposition algorithms,mjexity perspective. In this tablé, denotes the bandwidth
for DMO haye an approximation ratio that is 'ndepe”demand,b denotes the quantum of the edge capacitis,
dent of the size of the network. denotes the value of the optimal solution amds a tuning

3) We compare the performance of the RMO and DMQgameter. For each problem the table indicates a lower
algorithms. The purpose of this comparison is 10 bettgfyng on its approximation ratio and the approximationorati
understand the trade-off between bandwidth efficiencynieved by the algorithms we present for it. Throughout the
and forwarding cost. This comparison allows Us t9aner we consider the minimization of the bandwidth cost as
identify an algorithm that has the best performance fQhe pandwidth efficiency criterion. However, our resulte ar
both objectives. applicable to any other bandwidth utilization criteriomich

Table Il summarizes our main results from a computationak throughput maximization or maximal load minimization.




[ problem | minimum bound[ approximation ratio]
DMO(p) - O(log(B/b))

approximation is presented for the case whelie part of the

DMO(n) - O(log(B/b)) input. In [18], a comprehensive study of the k-splittablenflo

RMO(p) 3/2 0(-E) problem is presented and proven to be NP-hard for undirected
graphs. Moreover, it is proven that for a constarie problem

RMO(n) 3/2 - Oc()rg; hs. M it hat f tarnh bl

cannot be approximated within a factor of 5/6. Finally, it is
TABLE Il also proven that the problem is NP-hard fo€ k& < m—n+1,
OUR MAIN COMPUTATIONAL COMPLEXITY RESULTS .. .
and that it is polynomially solvable for any othér
Several papers address the problem of minimizing the
maximum load while bounding the number of paths. In [21],
IIl. RELATED WORK the splittable version of this problem is optimally solvédhe
number of paths is kept below + d, wherem is the number
To the best of our knowledge, no prior work deals witlyf edges and is the number of demands.
mlnlleIng the number of nodes traversed by paths that ECMP (Equa| Cost Mu|t|-Path) is the standard approach
satisfy a given traffic demand (RMO(n)). Moreover, no priofor using multi-paths in today’s IP networks. This concept
work deals with the decomposition of a given network flowhas been recently adopted for Ethernet networks, mainly for
while minimizing the number of nodes traversed by the patlgtacenters (E.g., see [14]), and for MPLS [8]. The ideaas th
(DMO(n)). There are, however, a few works that address thghen multiple best paths exist between a [source,desiimati
DMO(p) and RMO(p) problems. We note that if minimizingpair, each switch/router can split the traffic between itstne
the number of paths is not important, it is easy to decompoggps, e.g., using random hashing, without creating loops.
a given network flow with at mosD(|E|) paths [1]. In [22], a concept known as MTCP (Multipath TCP) is
In [6], the RMO(p) problem is addressed. In this workpresented in the context of large datacenters. The idea is
the number of paths that satisfy a given bandwidth dematisht by exploring multiple paths simultaneously, MTCP will
is minimized while guaranteeing an upper bound on the loaghd to both higher network utilization and fairer allocatiof
imposed on the network links. This work presents an algorithcapacity to flows. The main advantage of ECMP compared to
that may violate the maximum load bound. The violatiothe algorithms proposed in this paper is that it does notirequ
gets smaller as the number of paths increases. The actatentralized controller. On the other hand, the algorithms
performance of the proposed algorithm is not studied. proposed in this paper can take advantage of multiple paths
The objective of [27] is to decompose a given (maximunthat are not necessarily of equal cost. In the simulatioti@ec
flow into a minimum number of paths. The authors prove thaje show that due to this advantage, our algorithms perform
the problem is NP-hard, present several heuristics, arld&ea much better than ECMP.
their performance using simulations. A greedy algorith@atth  Another relevant branch of work deals with the embedding
iteratively decomposes the maximum flow path is shown #f virtual networks into physical networks. In this line obvk,
achieve the best performance. The problem of decomposingha nodes and links of the virtual network have to be embedded
given flow into a minimum number of paths is also studied ignto those of the physical network. Thus, one can view a
[26]. That paper is mainly concerned with decompositioras thyirtual link as a traffic flow that has to be accommodated
produce independent paths. Such paths are iterativelyipeal into the physical network. In most of the works that consider
by reducing to 0 the flow on at least one edge during each stgandwidth constraints on the physical links, such as [119],[
Such decompositions are shown to have an approximatian ragi single physical network path is chosen for each virtua.lin
of n — 1 — ==21+L, wheren is the number of vertices andIn [28], a virtual link may be split over several physical lps
m is the number of edges in the graph. Two decompositidfut no effort is made to minimize the number of such paths.
algorithms are evaluated: one is the greedy algorithm, had t
other chooses the shprtest path during each step. As in [27], IV. DMO WITH PATH MINIMIZATION (DMO(F))
the greedy algorithm is shown to have the best performance.
The flow decomposition problem has also been studied in!n this section we define the DMO(p) problem, discuss its
[15]. Its main contribution is an approximation algorithivat computational complexity and propose approximation algo-
decomposes all but anfraction of a flow into at most Q(/¢2)  fithms. Throughout the paper, a network flow that does not
times the smallest possible number of decomposed paths.violate the capacity constraints is referred to adeasible
Another relevant branch of work deals with thesplittable network flow In addition, we refer to a flow carried by a path
flow problem. This problem can be viewed as the rever@s asingle-path flow
version of our RMO(p) problem. An upper bouridon the ~ Problem 1 [DMO(p)]:
number of paths is given and the objective is to maximize Instance: Let G = (V, E) be a directed graph. Let ¢ €
the satisfied bandwidth demand [4], [17], [18]. In [4], the V be the source and target nodes. lfebe a feasible
directed graph version of this problem is proven to be NRthar network flow froms to ¢ and f(e) be the bandwidth of
Moreover, it is proven that it cannot be approximated witain f carried on edge € E.
factor of 3/2. A 2-approximation algorithm is also presented. Objective: Find a minimum path decomposition of.
In [17], an optimal polynomial solution is given for the case A decomposition off is a setpy,pa,...,pr Of simple
where k is constant and the graph has a special property directed paths froms to ¢, where patlp; carries a single-
called bounded treewidth [23]. In addition, a polynomiahei path flow of bandwidthw;, and on each edgethe sum



of bandwidths carried by the paths traversing the edge be the path chosen by the algorithm in théh iteration.

equalsf(e). Since at each step the chosen path is the widest one, then for
Using a reduction from the partition problem, the authors &veryj , ,
[27] prove that DMO(p) is NP-hard in the strong sense. Thus, fpi) = £ (p})-
a pseudo-polynomial algorithm that finds an optimal sohutloHence
for it is unlikely to exist. oPT
Consider a greedy algorithm for the DMO(p), which it- OPT - fi(p;) > Z f"(p;‘f) > B'/b.
eratively decomposes the remaining network flow at each j=1

step into the widest feasible single-path flow. This inweiti
algorithm was previously studied in [26] and [27]. In [26],
this algorithm is proven to have an approximation ratio g

The right inequality is due to the fact that the entire set of
ptimal paths can decompose the network flévand hence
ny network flowf? of value B*. This leads to

Vi—-1- W'ﬁ# Our contribution here is to prove that
this algorithm also yields an approximation ratio that does L < g
depend on the size of the network. fipi) — B'/b

In the following discussion we assume that the edge cfych jteration reduce®’ by at leasth units of bandwidth.
pacities areb-integral, whereb is an integer greater thal.  Thys,

For instancep might be 1Kb/s or 1Mb/s. We show that the
approximation ratio for the greedy algorithm lIsg(B/b), OPT - OPT
where B is the total bandwidth of the network flow. For Bi/b — B/b—(i+1)

dense networks, this approximatiﬂr‘llga'gig/liitighter thae th The left side of this inequality can be viewed as the “cost”

one proposed in [26], sind#’| —1 — ——7r——— might be in  of eachp bandwidth units routed by;. Summing up the cost
the order of several hundreds whileg(B/b) is in the order for all the sets ob bandwidth units in3 results in the number
of 10. of paths chosen by the algorithm, denoted45G. We now
As indicated above, the input network flow for DMO(p) isorder the sets ob bandwidth units according to the order
[, while f(e) is the value off carried over edge. Let f(p) of the algorithm steps during which they are routed. Mudtipl
denote the value of a single-path flow carried over pathe., sets that are routed at the same step are arbitrarily ordEced
f(p) = minee,{f(e)}. Let f\p be the network flow whose each setk of b bandwidth units routed at step 5,20% <

B/b z+1 —
valueVe € p is f(e) — f(p) and its valueve ¢ p is f(e). oPT ; holds. Hence, we get / )
The greedy algorithm iteratively finds a single path whos8/b~(k+1)

bandwidth is maximal until it reaches a total bandwidth®df 475 — EB/b OPT__ — OPT - (1+ T+ )

or more. _ Olngl ?/b—ékzl) - B/b
Algorithm 1: (A greedy algorithm for DMO(p)) - og B/b,
1) BO— B, fO— f, P — 6, i« 0. which concludes the proof. [

2) Repeat untilB? = 0:
a) Choose the patlp that can provide the largest V. RMO wWITH PATH MINIMIZATION (RMO(P))
portion of f* from the source to the destination. In this section we formally define the RMO(p) problem.
This can be found using the extended Dijkstr&nlike DMO, here the network flow is not given in advance

algorithm [1] in time O (|E|log(|V])). but only the traffic demand. We discuss the computational
b) Bit! «— B’ — fi(p), fi** — fi\p, P — PUp, complexity of RMO and propose approximation algorithms
1— 1+ 1. with bounded performance guarantees.
3) ReturnP. m Problem 2 [RMO(p)]:

Itis easy to see that the algorithm returns a feasible ssiuti  Instance: LetG = (V, E) be a directed graph. Lete) be
that carries a total bandwidth oB, because on each path  the bandwidth capacity of edgec E. Lets,¢ € V be the
p € P we can route a bandwidth ¢f(p), wherei is the step source and target nodes afitic R™ be the bandwidth
during whichp is selected. demand froms to ¢.

During each step of the algorithm, the flow carried on at Objective: Find a minimum set of simple directed paths
least one edge inf¢ is reduced to 0. Thus, the number of  from s to ¢, that carry together a feasible network flow
steps is bounded byF|. Since each step can be performed ©of B from s to ¢.
in time O(|E|), the total running time of Algorithm 1 is To solve RMO, we first construct a feasible network flow

O(|E]*1og(|V])). that satisfies the bandwidth demand. After the flow is con-
Theorem 1:The approximation ratio of Algorithm 1 is structed, it is decomposed into paths.
O(log(B/b)). Theorem 2:RMO(p) is NP-complete.

Proof: The proof is similar in spirit to the one used in [16] Proof: We prove this by a reduction from DMO(p).
for the Minimum Set Cover problem. L&' be the same a§, Consider an instance of DMO(p) that consists of a directed
but with edge capacities scaled down by a factob.ddenote graph G and a network flowf from s to ¢. We transform
the number of paths in the optimal solution ®yT" and each this instance into an instance of RMO(p) in the following
path in the optimal solution by}, wherel < j < OPT. Let way. We take the same gragh and set its edge capacities



such thatvVe € FE, c¢(e) = f(e). We take the bandwidth complexity of this step byO(Flow-Alg). The total computa-
demandB of RMO(p) to be equal to the value of floyi tional complexity of Algorithm 2 isO(Flow-Alg + |E] - g),

of DMO(p) and consider the same source and destinatibecause the time complexity of the scaling process in Step 1
nodes. By construction, in the resulting graph there is oniy linear in the size of the network and the time complexity of
one possible network flow of valu from s to ¢. This flow the decomposition process in Step 30¢|E| - £). Note that

is exactly f of DMO(p). Hence, an optimal solution for thethe above time complexity is only pseudo-polynomial beeaus
constructed RMO(p) instance is also an optimal solution fdrdepends onB. Algorithm 3 presented later refines this and

the original DMO(p) instance. B yields a polynomial running time complexity.
Theorem 3:RMO(p) cannot be approximated within a fac-  Thegrem 4:Algorithm 2 returns a set of at mo$€ | paths
tor of 3/2. whose total bandwidth is at leat — k* - o, wherek* is the

Proof: In [4], a reduction from SAT to the 2—Sp||ttab|e number of paths in an 0pt|ma| solution.
flow problem is shown. In the 2-splittable flow problem, the
objective is to find a maximum flow that can be decompos
into at most 2 paths. The reduction constructs a graph wi
source and destination nodes such that a satisfiable SAT j .
stance, for which there is a truth assignment that satisfiiés a tep 2. We now prove the lower pound on the band_W|dth. Let
clauses, yields a feasible flow withpaths that carry togethgr P1:P2:- -+ P be the set of paths in an optimal solution. Each
flow units. In contrast, an unsatisfiable SAT instance, foiclwh O.f them is a simple path from to ¢. Each pat_hv i carries a
there is no truth assignment that satisfies all its clausekls/a single-path flow ofu;, where)_; w; = B. Consider the same
feasible flow with2 paths that carry together onyflow units. set .Of paths in the sca/led nelENork, gnd let each p?‘m.ry
In the latter case, the flow can be augmented by a third p hs"’_‘g'e'path.f'ov.“ Ofw; = L?J This scaled solution is a
that carriesl flow unit. Consequently, an unsatisfiable SA casible solgﬂon n t.he scaled network due to the following
instance yields a feasible flow &f paths that carry togetherset of equations, which holdz: € E:
only 3 flow units. In both cases we have flows ®funits
delivered by eithe® or 3 paths, which implies that even for

Proof: The scaled network has integral capacities. From
servation 1 follows that the decomposition step prodances
ore than[£] paths, which is the value of the flow found in

B = 3 it is NP-hard to determine whethéror 3 paths are cle) = Z W
needed to accommodate the demand. Therefore, it is NP-hard eepi
to approximate RMO(p) with a ratio df/2. [ | cle) =A+ Z wi, A >0
We now present an approximation algorithm for RMO(p), e€p;
which uses the following observation: cle) A Zeem i
Observation 1:A network flow of valueB in a network 0 a + o A0
with integral capacities can be decomposed in&j paths.O cle A Eeepi w;
At first glance, this observation does not seem to be very {QJ = {QJ + {QJ 820
helpful, becauseB may be larger than the numbeF| of c(e) ) w;
edges in the network, which is a straightforward upper bound {aJ > L eii’" J

on an optimal solution. However, we can scale down the edge
capacities by a significant factor such that each unit of flow
will be larger in relation to the total network flow. This sty
process reduces the original demaBdinto a small number
that makes a solution of unit-flow paths more attractive. ~ The first equation holds because the optimal solution must be
Algorithm 2 below uses a parameter for the scaling feasible in the original graph. The second and third equatio
process. The algorithm finds a network flow whose value fgllow from the first one. The fourth equation holds because
slightly less thanB using no more thafj 2] paths. Choosing [2-#:] = > |i], and the last one follows from the fourth.
a largera would yield fewer paths whose total bandwidth is \We also note that:
smaller.
Algorithm 2: (A basic scaling algorithm for RMO(p))

1) Scale the capacities hy, i.e.,Ve € FE ¢/(e) — {% . Z“’?’ -B
2) Find a network flowf whose value is not larger than =0
[£] in the scaled network. E w B
3) Find any decomposition gf into paths. Let the resulting P
set of paths be” = p4, ..., px, Where pathp; carries a =0
single-path flow off;. r wi| B
4) Use every patlp; € P to carry a single-path flow of — LEJ - {a-‘
af; in the original graph. O o
The network flow in Step 2 and its decomposition in Step 3 e {EZJ <« {f-‘ ,

can be arbitrary. Furthermore, we denote the computational i=0



wherea [g] is the value (bandwidth) of the flow returnedalgorithm has no worst case performance guarantee, italactu

by Algorithm 2. This can be lower bounded as follows: performance is shown later to be very good.
o o o The main idea behind the new algorithm is to break the

o {Bw >a- Z [%J >a- Z (% _ 1) _ Z (w; —«) RMO(p) solution into two stages. First, a network flow that

o S ta o ¢ P provides a bandwidth of at leagt is found. Then, this flow

k* is decomposed using Algorithm 1.
- qu —ka=B-—k* q. Algorithm 4: (A 2-phase algorithm for RMO(p))

i=1 1) Find an initial feasible network flow of bandwidi or

u more froms to ¢.

Corollary 1: Let £* be the number of paths in an optimal 2y yse Algorithm 1 for decomposing the flow into a

i - _B i i i . . .
solution. Fora = el Algorithm 2 produces a solution with minimum number of paths that provide bandwidth

at mostk*-3+1 paths whose value is no less tth(l — %) 3) Return the set of paths produced by Algorithm 1.0
The parametep can be considered as a tuning parametajye now present several procedures for finding an initial
As j3 increases, the value of the output flow of Algorithm Zetwork flow. In Section VII we compare the performance
approaches the original demarf?j but the number of paths of Algorithm 4 using each of these procedures. All of the
increases. Sincé™ is not known in advance, it is not easyprocedures produce maximumnetwork flow betweens and
to find the value ofa. One can try all values ok*, and ¢ although the algorithm only requires that the bandwidth of
find the minimum one that yields a network flow whose totahe initial network flow will be greater than or equal B We
bandwidth is larger thaB - (1 — % . This requires running found that starting with a maximum flow gives the algorithm

Algorithm 2 on all possible values of*, which is O(|E|). 9reater flexibility in minimizing the number of paths. When
To improve the total time complexity, Algorithm 3 below use§ve evaluated similar procedures that limit the bandwidth of
the output returned by Algorithm 2 for a givénas the initial the initial flow to B, the number of decomposed paths was
network flow when running Algorithm 2 withk + 1. This larger.
is possib|e because the Sca”ng param@taﬂecreases ak The procedures for flndlng an initial network flow are as
increases. Thus, the capacities of the scaled networkasere follows.

Algorithm 3: (A scaling approximation algorithm for « The Maximum Widest Path Flow (WIDEprocedure:

RMO(p) using a tuning parametg) Here, to find an initial feasible network flow, the pro-
1) k< 1. cedure iteratively augments thwidest pathavailable
2) Let f be an initial network flow such that(e) « 0 for from s to ¢ until the maximum flow is reached. If there

are multiple paths, one of them is selected arbitrarily.
everye € E. . . . - .

3) While & < |E| and the total val is smaller than The rationale behind this procedure is to greedily use
) € B Bl a € total value of is smaller tha the available paths in the network. The running time of
B (1 - B) do this procedure i€ (|E|? log(|V])1og(Craz)) [1], where

a) Run Algorithm 2 with a scaling facton = - Cimae 1S the maximal capacity of an edge in the network.
and usef as the initial network flow for Step 2 in * The Maximum Shortest Path Flow (SHORjocedure:
Algorithm 2. Here, to find an initial feasible network flow, the proce-

b) Setf as the flow returned by Algorithm 2. dure |tera'§|vely augments tmhort_est pathavailable from

s to t until the maximum flow is reached. If there are
c) k—k+1. . ) o I
. multiple paths, one of them is selected arbitrarily. This is
4) Return the set paths output by the last execution of  the well-known Edmonds-Karp algorithm [10] for finding
Algorithm 2. O a maximum flow. The rationale behind this procedure is to
Assuming that the capacities are integral, if Algorithm 3 is  use short paths, which traverse fewer nodes. The running
invoked with 3 = B, the resulting value of the network flow time of this procedure i©(|V||E|?).
is guaranteed to be at leaBt However, there is no guarantee « The Maximum Shortest Widest Path Flow (S-WIDE)
on the number of paths it uses. procedure: This procedure is similar to WIDE, except that
The running time complexity of each iteration of Step 3is  when there is more than one path of maximum width
the time complexity of Algorithm 2. Since Algorithm 2 does in any iteration, the shortest is chosen. The rationale
not need to construct a flow from scratch, its running time is  behind this procedure is to consume less bandwidth

|

Ng

O(|E|-£). Since the number of iterations does not exceef in each iteration as compared to WIDE, in the hope
the running time complexity of Algorithm 3 i®(|E|? - g), that the next iterations will be able to choose wider
i.e., O(|E]? - k* - ). paths. This procedure can be implemented using a simple

Algorithm 2 and 3 have theoretical value because they dynamic programming algorithm with a running time of
have worst case performance guarantees. However, sioulati ~ O(|V||E|? log(Cnaz))-
results indicate that their actual average performanceots n « The Maximum Widest Shortest Path Flow (W-SHORT)
good. Specifically, when the bandwidth provided by the flow procedure: This procedure is similar to SHORT, except
is close toB, the number of paths increases very rapidly. We that when there is more than one path of minimum
therefore present another algorithm for RMO(p). While this  length in any iteration, the widest of them is chosen. It



is expected that this procedure will need less iterations Algorithm 5: (A greedy algorithm for DMO(n))

to achieve the maximum flow compared to SHORT. 1) B0 B f0— f P ¢ i 0.

Hence, the decomposition algorithm is likely to use fewer 2) Repeat untilB? = 0:

paths. This procedure can be implemented using a simple

dynamic programming algorithm with a running time of

O(|VHE|_2)' ) is the bandwidth op in f? andn, is the number
o The Maximum Width/Length Path Flow (WID/LEg)o- of nodesp traverses.

cedure: This procedure iteratively chooses the path with b) B+l — Bi — fi(p), fitl — fi\p, P — P Up,

the largest width-length ratio. The rationale behind this i i,

procedure is to have a better trade-off between the width 3) ReturnP -

and length of the chosen paths compared to the previous . : ) .

procedures. This procedure can be implemented using £lgorithm 5 has the same computational complexity as

dynamic programming algorithm with a running time of?lgorithm 1. o . _ .
O(|[V2|E* log2(|V])). Theorem 6:The approximation ratio of Algorithm 5 is

O(log(B/b)). .
V1. DMO AND RMO WiTH NODE MINIMIZATION Proof: The proof_|s S|m|Iar_ to that of_ Theorem 1. Denote
the number of paths in the optimal solution &7 and each

In many cases, a network operator seeks to minimize tBﬁth in the optimal solution by, wherel < j < OPT. Let

number of nodes that carry the paths rather than the numbe%ofbe the path chosen by the algorithm in stepand u; be

paths. This is because each node traversal requires onge e{ﬁé ratio f*(p)/n,. The path chosen in each step is the one
in the forwarding table of that node. In such a case, it m ith the greatesli ratio. Thus, for everyj u? > u’. and
' ! Pi = 3

be better to set up many short paths rather than fewer long > o hold. Theref P
ones. To address such cases, we now change our optimizatfen’ '»; = Up; * "tp; N00. THETEIOTE,

a) Choose the patp from the source to the destina-
tion for which f?(p)/n, is maximum, wheref(p)

problem and view the forwarding cost as the number of nodes oPT

that carry the paths. More formally, given a détof simple OPT -}, > Z wle nye > B /b, 1)
directed paths froms to ¢, the forwarding cost byll is - !

measured by, [p|, where|p| is the number of nodes along _ ) _ ,

the pathp. The second inequality holds becausg M = f'(p;) and

because the entire set of optimal paths is a decomposition of

A. DMO with Node Minimization (DMO(n)) t':]risnlit;,\ézrlioﬂwvf and, therefore, of any network floyi*.

We now show that DMO(n) can not be solved in polynomial
time. Then, we propose an approximation algorithm for it.
Theorem 5:DMO(n) is NP-complete.

Proof: We show this using a reduction from DMO(p)The rest of the proof is identical to the proof of Theorem 1.
to DMO(n). Given an instance of the former problem, we |
construct an instance of the latter. We set the source of
DMO(_n) to be a new nodes’, which is_ co_nnected te using B. RMO with Node Minimization (RMO(n))

a chain of |[V||E| links whose capacity iB. The network ) o _

flow of DMO(n) is carried over the new chain fromi to s, Using a proof similar to that of Theorem 5 for DMO(n), it

and then tot as the network flow in the DMO(p) instance c@n be shown that

We now show that the minimum-node decomposition of the Theorem 7:RMO(n) is NP-complete.

DMO(n) flow, P, has the same number of paths as the number'n€orem 8:An a-approximation algorithm for RMO(n)

of paths in the minimum-path decomposition of the DMO(pYi€!dS an ¢ +¢)-approximation algorithm for RMO(p), where

flow, P;. First, |P;| > | Px| must hold, because otherwiggs € > 0 1S arbitrarily small. .

is not a minimum-path decomposition in DMO(p). Second, if ~Proof: The reduction used in the proof of Theorem 5 can

|P:| > |P| thenP; induces a decomposition for the DMO(n)_be used again, but this time the length of the a_ddec_i chain

flow with a smaller number of nodes than that imposediyy 18 M = [V||E| - o - (1/e€). If we have ana-approximation

(because each additional path in the DMO(n) decompositigtgerithm for RMO(n), we can apply it to the new flow

increases the number of nodes BY||E|, which is greater constructed by the reduction. Let/.G, and ALG,, be the

than the number of nodes of any decomposition in DMO(p) umber of paths and thg number of .nodes in the solutions
Therefore, an optimal solution for the DMO(p) instancé®und by the two approximation algorithms. LexPT, and

can be derived from an optimal solution for the constructéd?Z» be the number of paths and the number of nodes in

—_

_OPT ___ OPT
w, = Bifb =~ B/b—(i+1)

DMO(n) instance. m the corresponding optimal solutions. From the reductiois it
Algorithm 1 can be modified to approximate DMO(n) withPPvious that
the same approximation rati®(log(B/b)). The idea is to ALGn = ALG) - M.

choose in each iteration the path with the greatest rard'j)n the other hand. we have:
between the bandwidth it carries and the number of nodes ' '
it traverses: ALG, <a-OPT, <a-(OPT,- M+ X),



where X is the number of nodes in the minimum-node den addition, the cost of the scaled optimal solution is

composition on the original graph, which is obviously sreall .

than |[V||E|. The right inequality holds because in the proof Z {%J ipil < B max |pi]

of Theorem 5 we showed that the number of paths of the ol P axipil-

minimum-node decomposition must be equal to the number

of paths in the minimum-path decomposition. Hence we hateearly, the cost off;- is less than that of the scaled optimal
x solution. Hence,

OPT,(a+€) > ALG),,. N+ max; [p;|

i=1

— k- 8.

d

m _ .
From Theorems 3 and 8 we derive the following corollary: AS IN RMO(p), the above algorithm for RMO(n) has theo-

Corollary 2: RMO(n) cannot be approximated within aretical value. However, our simulation results indicatatths
factor of3/2 N . actual average performance is not good enough. Therefore,

We now present an approximation algorithm for RMO(n)We present an additional algorithm that has no worst case

The algorithm is based on Algorithm 2 for RMO(p). In Alglo_performance guarantee, but a very good actual performance.

rithm 2 each flow unit is transformed into a path. Therefore The algonthm IS sm_mlar to Algorithm 4 presen'ged _for
A%MO(p). Its main idea is to break the RMO(n) solution into

of nodes for the decomposed paths returned by Algorithmt 0 stages. First, a network flqw that.provides a bandw.idth

would be equal to the cost of their total network flow. Hencé at 'IeastB is found. Then, this flow is decomposed using

we shall modify Algorithm 2 to find a minimum cost networl(a‘lgor'th_m . _

flow before it is decomposed. Clearly, Corollary 1 still held Algorithm 7: (A 2-phase algorithm for RMO(n))

for this minimum cost flow version of the algorithm. 1) Find an initial feasible network flow of bandwidi or

Since an algorithm for finding a minimum cost network more froms to ¢.

flow addresses the case where the edges, rather than the nodeg yUse Algorithm 5 for decomposing the network flow into
have a cost, we will consider the following simple reduction a set of paths that traverse a minimum number of nodes
Consider a network where every unit of flow on a node and deliver together a bandwidth &f
incurs a cost of. Every nodev is transformed into two nodes, ) .

PP . 3) Return the set of paths produced by Algorithm 5.0
v; andw,, connected by an edge — v, with infinite capacity

and a cost ofl. All the other edges have zero cost. All edges The initial network flow can be found by one of the
going intov will go into v; and all edges from will go out five procedures (WIDE, SHORT, S-WIDE, W-SHORT, and

from v, WID/LEN) described in Section V.

Algorithm 6: (A scaling algorithm for RMO(n))

1) Assign to each node in the network a costlof VII. SIMULATION STUDY

2) Transform the network to one with costs on the edgesin this section we evaluate the performance of the algo-
(as described above). rithms for RMO and DMO. We first examine the performance

3) Add a source nod¢’ and an edge — s’ with capacity of the two variants of the RMO algorithms. Then we evaluate
B. the trade-off between the bandwidth cost and the forwarding

4) Fork=1...|E| cost of a network flow by comparing the performance of the

tRMO algorithms to the performance of the DMO algorithms
. . . as they apply to a network flow of minimum bandwidth cost.
Algorithm 2 with a scaling factor: = =k We use the BRITE simulator [20] to simulate network
b) Store the result ag;. domain topologies according to the “preferential attachine
5) Return f; with minimum cost whose value is at leasimodel” of [7]. This model captures two important characteri
B (1 — %) O tics of network topologies: incremental growth and prerfiied
Theorem 9:The solution returned by Algorithm 6 has ar;cr)]nnectl;]/lty of anew n_O(Ije to weII-clonnected eX|_st|n_g n_c;des
value greater thai (1 — L) and a cost smaller thai*N'*, ese c aracterlstilps yield a power-law degre_e distidiout
8 the nodes. In addition, we also run our algorithms on actual
wherek” and N* are the number of paths and the number q§p (gnologies, as inferred from the RocketFuel projeci.[24
nodes in the optimal solution. These topologies reflect better the model presented in [2].
Proof _ - For each synthetic or realtopology, we generate a bandwidth
Corollary 1 holds during the iteration whefe= £*. Hence, gemand between a source and a destination. The chardcgerist
the value offy- is > B gl - %) Let p1,p2,...,pr+ be the of the simulated topologies and the methods for choosing the
set of paths in an optimal solution. The optimal scaled smiut bandwidth demands are described for each setting. A network
is feasible. The value of this solution is the number of nades topology together with a bandwidth demand are considered as
p1,p2,- -, P+ Since every patlp; carries a single-path flow one simulation instance. We apply the various algorithms fo
of w;, where} ", w; = B, this value ist:1 |p;| > max; |p;|. each such instance.

a) Run a minimum cost network flow version o
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and so on.

As clearly indicated by all the graphs in Figure 4, ECMP
always produces more paths than Algorithm 4 under any flow
construction scheme. In addition, it is evident that Algjom 4
minimizes the number of paths needed for delivering the
requested bandwidth when it uses S-WIDE in Step 1. W-
SHORT performs better than SHORT because it produces
network flows with larger average bandwidth on each edge.
This allows Algorithm 1 (in Step 2 of Algorithm 4) to choose
wider, and consequently fewer, paths. S-WIDE and WID/LEN
perform better than WIDE because they take into account
the length of the paths. Hence, less bandwidth is consumed
during each iteration, and more bandwidth is left for latter
iterations. Consequently, wider paths are found. S-WIDE is
still slightly better than WID/LEN since it chooses wider
paths. The above results are consistent across all netizak s
and average node degrees, which indicates that the network
size and node average degree do not have a significant impact
on the relative characteristics of the network flows germerat
by the 5 procedures. For example, W-SHORT always chooses
wider paths than SHORT, and S-WIDE always chooses shorter
paths than WIDE, regardless of the network size or the node
average degree. This makes W-SHORT and S-WIDE perform
better than SHORT and WIDE, respectively. To continue the
example, since it is better to choose wider paths than ghorte
ones when generating a network flow, WIDE and S-WIDE wiill
always perform better than SHORT and W-SHORT, regardless

of the network size and node average degree.

It is evident from Figure 4 that he number of decomposed
paths increases linearly with the bandwidth demand. For a
network with 100 nodes and an average degree of 10 (Fig-
ure 4(b)), the number of decomposed paths as well as the slope
of the curves are almost doubled compared to that of networks
with an average degree of 5 (Figure 4(a)). This is because

Figure 4 depicts the number of paths over which thee use larger bandwidth demands (recall that the bandwidth
required bandwidth can be delivered as a function of tlbemand shown in the graphs is normalized to the largest
bandwidth demand for networks with 100 nodes whose amaximum network flow in the network, which increases with
erage degree is 5 links (Figure 4(a)), and networks with 1@0e node degree). In addition, the relative difference betw
nodes whose average degree is 10 links (Figure 4(b)). Fbr edlce number of paths using S-WIDE and the number of paths
such network, the edge capacities are uniformly distrihute using SHORT increases: it is how roughly 50% compared to
[0.5C, 1.5C]. C is a normalizing factor for the edge capacitie25% for a network with an average degree of 5 (Figure 4(a)).
and the volume of bandwidth demands. Tjraxis of all the This is because the number of possible paths between any two
graphs in Figure 4 represents the number of decomposed patbesvork nodes significantly increases. This allows S-WIDE
produced by the various algorithms. Theaxis represents the to find wider augmenting paths. Hence, the network flow is
normalized bandwidth demand frogto ¢, i.e., the bandwidth constructed with fewer iterations, which is translatediat
demand divided by the value of the largest maximum netwosknaller number of decomposed paths.
flow that exists between any pair of nodes in the network. In Figure 5 we examine how the distance between the
For each network instance and for each average bandwidtiurce and destination influences the number of decomposed
value B, we generate 100 instances of bandwidth demangaths. As in Figure 4, theg-axis represents the number of
that are uniformly distributed on the intenf@l9B, 1.1B]. For decomposed paths for each procedure. Tkeis represents
each demand, the source and destination nodes are uniforthly distance between the source and destination divideldeby t
selected from among the network nodes, and the five variadiameter of the network. The network has 100 nodes and an
of Algorithm 4 are executed. As a benchmark, we also simaverage degree of 5. We generate 100 network instancessof thi
late the well known equal cost multi-path (ECMP) algorithnmsize. For each instance we generate 100 bandwidth demands.
For ECMP, the bandwidth of a traffic flow is equally divided~or each demand, the distance between the source and the
between the paths whose length/cost are minimum. If thé totiestination is assigned a given distance value with% vari-
bandwidth of the least-cost paths is insufficient, the set afion. The average normalized bandwidth for each demand is
second least-cost paths is used for the remaining bandwidit6. For all of the procedures, the number of decomposedpath

Fig. 4. The number of paths found by Algorithm 4 with the vasgou
procedures as a function of the normalized bandwidth demandaidous
sizes of network domains

A. Minimizing the Number of Paths
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Fig. 6. The number of paths found by Algorithm 4 with the vasqurocedures for real ISP topologies

presented in [2], which may better represent a router-IEsel

topology. We used the following network topologies:

1 1) Exodus ISP, which consists of 80 routers with average
degree of 1.8

2) Telstra ISP, which consists of 115 routers with average

i degree of 1.3

The bandwidth demands are generated as described for Fig. 4.

P Figure 6 shows the performance of Algorithm 4 with the

5F , various procedures. We can see that the relative perforenanc

’ rank is the same as for the synthetic graphs (Figure 4) that re

flect the preferential attachment model. In the Telstra lmpp

(Figure 6(b)), the performance differences are smalleabse

of its lower link degree, which substantially reduces théhpa

diversity in the network.

10
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Fig. 5.  The number of paths found by Algorithm 4 with the vasgou
procedures as a function of the distance between sourc¢iakesn pairs B. Minimizing the Number of Nodes

We now examine the performance of Algorithm 7, the goal
of which is to minimize the number of nodes. Figure 7 depicts
increases with the distance. Consequently, the capaoitié® the number of nodes traversed by all of the paths that deliver
paths between the source and destination decrease. Tlehs, & required bandwidth as a function of the bandwidth demand
decomposed path can carry less bandwidth on the average. fdrehe network domains considered in Figure 4. The network
number of decomposed paths increases more moderately ifgtances and bandwidth demands are generated as described
WIDE, S-WIDE, and WID/LEN. This is because the sourcefor Fig. 4.
destination distance has a smaller effect on the lengthef th It is clear that Algorithm 7 gives the best performance
widest path between them than on the length of the shortegien it uses WID/LEN for finding an initial network flow.
path between them. S-WIDE, which was shown to yield the smallest number
Furthermore, the minimum link capacity in the generatedf paths, produces solutions with roughly 20% more nodes
networks is 40. This is the reason for the steep changean WID/LEN. This result is consistent for all three routing
in bucket 40-50. Since the bandwidth carried by a path gomain sizes.
dominated by the minimum of link capacities on the paths the The advantage of WID/LEN over S-WIDE indicates that it
curve for the SHORT procedure between 40 and 140 indeisdbetter to choose shorter paths rather than fewer wide ones
resembles the probability function of the minimum of thén order to minimize the number of nodes. This insight is
uniform random variables. The S-WIDE curve has a differesupported by the results of WIDE, which yields the worst
shape since it seeks to maximize the path bandwidth. Tperformance. This is because WIDE is the only procedure that
S-WIDE curve peaks around the mean of the link capacityoes not take into account the length of the chosen paths.
Below 40 are the paths whose bandwidth is the residuakespite of this shortcoming, S-WIDE is slightly better than
capacity of links on which other paths selected in earli@HORT. This indicates that the number of paths still influeenc
iteration pass. the number of nodes. Another evidence to the importance of
To validate the results from the synthetic graphs, we pitesersing shortest paths for minimizing the number of nodes is
in Figure 6 results for real AS topologies, as inferred frdra t the ECMP’s performance curve, which is in the middle of
RocketFuel project [24]. These topologies reflect the modeigure 7, and not the worst as in Figure 4.
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then determine the bandwidth cost by summing up the cost
for all links. Figures 8(a) and 8(b) show the trade-off betwe
the bandwidth cost and the number of decomposed paths for
each of the six procedures for Step 1 of Algorithm 4. The
results are shown for networks with 100 nodes whose average
node degree is 5 or 10. Theaxis represents the bandwidth
cost normalized by the value of the actual bandwidth demand,
while the y-axis shows the number of decomposed paths. The
results are shown for a normalized bandwidth demand of 0.6.
‘ ‘ ‘ ‘ As expected, for both network sizes, the bandwidth cost is
0 02 0.4 0.6 08 1 minimized using COST, but yields the largest number of paths
Normalized Bandwidth Demand S-WIDE minimizes the number of paths, but its bandwidth
(@) Num. nodes = 100, average degree = 5 cost is 50% more than COST. From Figures 8(a) and 8(b) we
conclude that WID/LEN yields a very good trade-off between
these two extremes. Its bandwidth cost is only 10% more than
WO —woe—— ‘ ‘ that of COST while it has only 5% more paths than S-WIDE.
Figures 8(c) and 8(d) show the trade-off between the band-
width cost of a network flow and the aggregated number of
nodes that participate in the setup and maintenance of thispa
that carry this flowfor each of the six procedures for Step 1 of
Algorithm 7. The results are shown again for networks with
100 nodes whose average degree is 5 or 10 and a normalized
bandwidth demand of 0.6.As noted above, WID/LEN is the
best procedure in terms of the aggregated load it imposes on

Number of Nodes

10 =

120 r s.wiDE
100 W-SHORT

80 f
60

40

Number of Nodes

20

0 02 04 06 08 1 the network nodes. Moreover, its bandwidth cost is almost as
Normalized Bandwidth Demand small as that of COST. Therefore, WID/LEN yields the best
(b) Num. nodes = 100, average degree = 10 trade-off between bandwidth cost and forwarding cost.

_ _ _ _ Our conclusion from these simulations is that WID/LEN is
Fig. 7. The number of nodes found by Algorithm 7 with the vasiou . .
procedures as a function of the normalized bandwidth demanddidous € p_rocedure of choice for Step 1 of both Algorithm 4 and
sizes of network domains Algorithm 7.

VIII. CONCLUSIONS

C. The Trade-Off Between Bandwidth Cost and Forwarding ) ) o o )
Cost In order to improve bandwidth utilization, it is often desir

) able to split one traffic flow over multiple paths. This conicep
We now gtudy the trade-off between the bgndW|dth cost al supported today by state-of-the-art network technelsgi
the forvvardm_g cost of a net\_/vork flow. To this end, we focu§uch as optical networks, MPLS and datacenter SDNs. How-
on the following three questions: ever, in such a case the network nodes need to spend more
« What is the extra forwarding cost when the main targebrwarding resources for every traffic flow. This raises two
is minimizing the bandwidth cost? important optimization problems, related to splitting of a
« What is the extra bandwidth cost when the main targgffic flow into multiple paths while minimizing the assoteid
is minimizing the forwarding cost? forwarding cost: Decomposition with Minimum forwarding
« How do the various procedures perform with respect Qverhead (DMO), and Routing with Minimum forwarding
this trade-off? Overhead (RMO). We showed that both problems are NP-
Finding the minimum-cost network flow in general networkbard, and presented approximation algorithms. The DMO
is a well-studied problem [1], [10], [13]. In what follows approximations were shown to perform very well, whereas
we use the well-known Edmonds-Karp algorithm [10]. Thithe RMO approximations were shown to perform not as well.
algorithm iteratively adds to the constructed network flowWe presented efficient practical heuristics for RMO. These
the least cost path until the bandwidth demand is satisfidwburistics first find an initial network flow and then decongos
We refer to this procedure as COST. We decompose theising our DMO approximation. The procedure for selecting
network flow using Algorithms 1 and 5 to find a solutiorthe initial network flow was shown to have a critical impact on
with a minimum number of paths and nodes, respectivelyne performance of the algorithm. While S-WIDE was shown
Note that the difference between COST and SHORT is that be preferable when the main optimization criterion is to
SHORT constructs a maximal network flow while COSTminimize the number of paths, WID/LEN gave the best trade-
returns a network flow of bandwidtt3. Consequently, the off between bandwidth cost and forwarding overhead. We also
decomposition algorithm has less flexibility in the latteise. showed that these RMO algorithms perform much better than
We use the same simulation setting as described earlibtie ECMP algorithm, which is used today in many networks
and assign an equal cost to each flow unit on every link. Viler routing a flow over multiple paths.



Fig.

(1]
(2]

(3]
(4]
(5]

(6]

(7]

(8]
(9]

[20]

[11]

[12]

(23]
[14]

(18]

[16]
[17]
(18]
[19]
[20]

[21]

[22]
[23]

[24]

Number of Paths

8

75
7
6.5
6
55

cosT
SHORT

W-SHORT

WID/LEN

S-WIDE

WIDE

Number of Paths

COSsT
SHORT

W-SHORT
WID/LEN

S-WIDE

WIDE

Total Nodes

WIDE
cosT .
SHORT
) S-WIDE
W-SHORT -

WID/LEN

Total Nodes

60
55
50
45

40

CosT
SHORT

W-SHORT

WID/LEN

S-WIDE

13

5

4. 35
2 25 3 35 4 45 5 55 6 65

Normalized Bandwidth Cost

5
35 4 45 5 55 6 65 7 75 3 4 5 6 7
Normalized Bandwidth Cost Normalized Bandwidth Cost

35 4 45 5 55 6 65 7 75
Normalized Bandwidth Cost

(a) 100 nodes, avg. degree =5 (b) 100 nodes, avg. degree = 10 (c) 100 nodes, avg. degree =5 (d) 100 nodes, avg. degree = 10

8. The trade-off between the bandwidth cost and the numibpaths/nodes that carry this bandwidth
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