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Abstract—The construction of a logical network on top of a vice versa [12]. Therefore, building a logical network i&ays
physical (optical) infrastructure involves two intertwined tasks:  subject to a budget constraint, which is translated intogeu

logical link selection — deciding which pairs of routers will be ; ; ;
connected by logical links (lightpaths), and logical link routing — 2gtuanb?isohr:aéhe number of lightpaths (logical links) that can be

deciding how to route each logical link across the optical network. L .
The operator of such networks is often required to maximize ~ Most past works on designing logical networks assume that
the available throughput while guaranteeing its restorability. This the logical links are given, and focus on the link routingktda

paper is the first to combine these seemingly conflicting goals into contrast, we solve the two tasks together, because theyéave
one optimization criterion: maximizing the restorable throughput tremendous impact on each other. To better understandntke li

of the end-to-end paths. We address this problem in three cases: . - . . -
when the operator has no knowledge of the future bandwidth SEl€ction and routing problem, consider Figure 1(a). Thisré

demands, when it has partial knowledge, and when it has full Shows a physical network with 16 optical switches connebted
knowledge. We present efficient algorithms for each of these case 24 optical links. Assuming that only nodesb, ¢ andd have the

and use extensive simulations to compare their performance. capability to serve as routers, logical links can be esthbli
only between pairs of these nodes. Figure 1(b) shows a pessib
logical network with 4 lightpaths (logical links). This lal
Modern communication networks consist of a logical topohetwork is not resilient because a failure of one noder(c)
ogy overlaid on an optical physical infrastructure. Digtitsh-  or a failure of one logical link{— i or i — d) disconnects node
ing between the logical and physical networks is crucial  from the rest of the network. By selecting different logical
flexibility and ef‘ficiency. However, this distinction givesse links, we can get a more resilient network. In Figure 1(c) a
to important cross-layer optimization issues, such as how fhjlure of nodec or link ¢ — i does not disconneat from the
guarantee smooth restoration following a failure in thesitl rest of the logical network, but a failure ofor i — d still does.
network. In this work we study the problem of designing 8y using the same logical links, but routing the logical link
restorable logical network, which continues to operate- effi — 4 differently, we get the logical network in Figure 1(d),
ciently after a physical failure. The input to this problesna \which is resilient to any single physical failure.
physical (optical) network, which consists of optical siés  To deliver network services with guaranteed Service Level
connected by fiber OptiC links. OnIy a subset of those SW-ﬁChAgreement (SLA), it is not enough for the network operator
has the capability to serve as routers. The logical netwok create a restorable topology. Very often, the operatouish
that we build consists of routers connected by lightpatlaehE pe able to provide “restorable throughput” [4], that is, end
lightpath is established over one or more optical fibers amglend throughput whose availability is guaranteed alsthén
the optical switches connecting these fibers. The COI"IHHUCface of a failure. The desire to guarantee restorable ﬂhmmug
logical network should accommodate the traffic demands n@ntradicts the desire to maximize throughput availahilit
only when all the physical components are operational, Isat apecause full restoration requires that some bandwidth must
in the face of a physical failure. be reserved in the event of a failure. Nevertheless, these
The construction of a logical network is composed of tW@yo requirements can be combined into a single optimization
intertwined tasks: deciding which pairs of routers will bkene  criterion: maximizing theestorable throughputSince failures
nected by logical links (lightpaths) and deciding how toteou gre often limited to a single network element, it is customar
each logical link across the optical network. These twos@sk to guarantee restorable throughput under the assumptan th
referred to as link selection and link routing, respectivéfhen 3 new failure may occur only after the network has recovered
setting up optical lightpaths as the links of the logicaMwak, from all previous failures.
the dominating cost is of the transponders at the two ends ofrhere are several possible schemes to guarantee end-to-end
every lightpath, which convert optical to electronic signand restorable throughput. These schemes are compared img], a
This research was partially funded by the Office of the Chieietist of }:etf?igesf:i;lleerge Gle%téia}:;ol?:r?gvﬁ)rgic;\:a;astﬂgwgrethﬁuti)lf g:/eerbfr?;
the Israel Ministry of Economy under the Neptune generic aese project. !
Neptune is the Israeli consortium for network programming. logical network according to the users’ requirements, wher
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Fig. 1. An example of a physical network (a) and 3 logical neksqb-d) built over the physical network using the same nunabeinks

e f « Case-1: no knowledge of bandwidth demands. Here the
g operator determines which logical node pairs will be
connected by logical links and how each logical link will
be routed, when future bandwidth demands are unknown.
That is, the operator does not know which primary end-to-
end paths will have to be admitted into the network, how
many primary paths will be needed, and which nodes are
more likely to serve as end points of such paths.

o Case-2: partial knowledge of bandwidth demands. Here,
the operator does not know which primary end-to-end
paths will have to be admitted into the network, but it
knows each node’s importance (weight). That is, it knows

each logical path consists of one or more logical links. For the relative proportion of traffic expected to originatenfro

Fig. 2. The global recovery scheme

each logical path, an end-to-end backup path is built in acka or be received by that node.

between the same pair of end nodes. The backup path protects Case-3: full knowledge. Here the operator knows which

against all physical link failures along the primary paththw pairs of nodes need to be connected by primary end-to-
which it shares no physical link. end paths and the bandwidth demand for each path. While

Figure 2 shows an example of the Global Recovery scheme this case only rarely occurs in practice, it can serve us as
and the importance of constructing the logical network iohsu a benchmark for the other cases.
a way as to guarantee end-to-end restorable throughpute The For lack of information, one cannot formulate an optimiza-
are two primary end-to-end paths (thick lines) with guaeedt tion problem that directly maximizes the restorable thigug
restorable throughput of 1Gb/a:—e¢ — f — g — b andc — in the first two cases. Therefore, in these cases we use a the
k — 1 — d. Note that the links of each path are logical linksvell-known optimization criterion: minimizing the netwads
(lightpaths), built earlier on the optical topology. Forchaof Shared Risk Link GroupéSRLG). To the best of our knowl-
these primary end-to-end paths, the following backups atkdge, the earliest reference to the term SRLG is in [26].
are built:a — i — j — b is the backup path of —¢ — f —g—b However, prior to this, other works addressed the same motio
andc — h —i — j — d is the backup path for — k — [ — d. If [23], [22]. An SRLG of a physical link is the set of all logical
no pair of the 13 lightpaths (links) shown in this figure sisardinks routed overe. The cardinality of the SRLG associated
a physical link, then a failure of one physical link will dest with a physical link is known to be a good indicator of the
only one logical link. This implies that a single failure cexdt damage to the logical network if this link fails [26]. We seek
disconnect the two primary end-to-end paths- — f —g—b to minimize the maximum cardinality of the SRLGs over all
andc — k — | — d) at the same time. Thus, only 1Gb/s on thghysical links.
logical link 4 — j must be reserved in order to guarantee the It has not been proved that the SRLG criterion has an un-
availability of 1Gb/s ovela —i —j —bif a—e— f — g —b equivocal correlation with restorable throughput. Nevelgss,
fails and the availability of 1Gb/s over— h —i — j — d if we choose this criterion because it is widely used in practic
¢ — k — [ —d fails. In contrast, if the logical linke — f and and is widely considered to be a good indicator of logical
k — 1 share an optical link, its failure will destroy both primarynetwork resiliency [26].
end-to-end paths. In such a case, 2Gb/s must be reserved ofhe main contributions of this paper are as follows:

the logical linki — j for post failure use. 1) Introducing and formulating the problem of minimizing
In this paper we propose algorithms for building the logical the maximum SRLG for the selection and routing of

topology on top of the optical network (i.e., selecting and logical links.

routing logical links), using a new optimization criterion 2) Proposing a near-optimal approximation algorithm fer th

maximizing the restorable throughput of the end-to-endhgat selection and routing of logical links while minimizing

We address this problem in the following three cases: the maximum SLRG when no a-priori information about



the users’ bandwidth demands is given (case-1). wavelength for each lightpath such as no two lightpaths with

3) Proposing a near-optimal approximation algorithm far ththe same wavelength traverse the same optical link. In such
selection and routing of logical links while minimizingworks the common objective is to maximize the number of
the maximum SLRG when a-priori information of therouted lightpaths.

nodes’ weights is given (case-2). Another line of research related to our work is the con-
4) Comparing the restorable throughput admitted in each stfuction of application level multicast trees (e.g., [Bl5]).
the above three cases. Most such works consider a source and a set of destination

The rest of the paper is organized as follows. Section Pdes, and the problem is to construct an overlay tree that
discusses related work. In Sections I1l, IV and V we propose@tisfies some objective. In [3] and [15], the objective is to
algorithms to construct a logical network for case-1, cased Minimize the maximum load imposed on the network links,
case-3, respectively. In section VI we evaluate the perémice which is equivalent to minimizing the maximum SRLG size.

of the different algorithms. Finally, Section VIl conclusi¢he N these works, as in ours, the overlay (logical) nodes areng
paper. while the logical links should be selected and routed. Thexma

difference from our work is that we aim to construct an aitr
Il. RELATED WORK connected logical network, while those works constructea.tr

Many works deal with the construction of survivable logical [1l. CASE-1: NO PRIOR KNOWLEDGE OFUSERS
DWDM/MPLS/IP overlay network on top of a physical optical BANDWIDTH DEMANDS

network, e.g., [5], [6], [7], [16], [21]. Most of these works \yhen no prior knowledge about the end-to-end paths to be
assume that the ngical links are given in advance, and foU§aplished over the logical topology is available, thevoek
only on the routing of the logical links subject to soMgpermator can build a resilient logical network by seekiag t
optimization criterion. minimize the maximum cardinality of the Shared Risk Link
To ensure resiliency of the logical network, many ”etworbroups (SRLGS) in the logical network [29]. As noted above,
operators seek to minimize the maximum cardinality of th@e cardinality of the SRLG associated with a physical link
Shared Risk Link Groups (SRLGs) in the logical network [29]s known to be a good indicator to the damage caused to the
In [21], the authors propose a routing algorithm that mazési |ggjcal network due to a failure of this link. In this section
the connectivity of the logical network and propose an iategye address for the first time the link selection and routing
Linear Program to minimize the maximum SRLG. In [16]tasks together, while minimizing the maximum SRLG size. One

amount of spare capacity that should be reserved on thealogig,at minimizes the maximum SRLG.

links, in order to guarantee the required bandwidth demé&sa a

following a single failure. To address this problem, thesumse A. Problem Definition and Computational Complexity

that the bandwidth demand matrix is known in advance. OurLet Gp = (Vp, Ep) be an undirected graph that represents
work addresses a related problem, i.e., the maximum rdméorathe physical (optical) topology, whenép is the set of optical
throughput, while not making this assumption. switches andEp is the set of optical links. Le€,(e) be the

The design of a logical network on top of an optical neteapacity ofe € Ep. Let V;, C Vp be a subset of the optical
work has been studied extensively for the case where netwekkdes that can serve as routers. These routers are the nodes
restoration in not important (e.g., [8], [11], [18] and nefeces of the logical network, and they are the only physical nodes
therein). Most of these works focus on the efficiency andityual that can serve as end points of logical links. We assume that
of service of the logical network, without taking into acobu the budget allows to establish at maBt logical links. All
the possibility of failures. logical links have equal capacities (e.g., OC-12, OC-24\We

There are some works that address both the link selection armfmalize the capacities of the logical links to 1, but npiéi
link routing while taking into account the survivability dfie logical links can connect a pair of nodes in order to provisio
logical network and the traffic it carries. In [13], the autho higher capacity when needed. We require each logical node to
propose an algorithm to select and route logical links whileave a degreg 2, in order to ensure minimum resiliency of the
ensuring that a given traffic demand matrix is satisfied bylagical network. For this requirement to hol&, > |V, | must
set of node-disjoint paths between every pair of logicalasod hold. In this paper we assume that the physical links’ cdiesci
In [17], the authors address the problem of logical link sééé®  are greater than 2 and even. This assumption does not affect
and routing while minimizing the maximum traffic load on thehe generality of the algorithm, since it holds for all preat
logical links. Both works assume that the traffic demands aogtical links (typical values in real-world networks are, 80
known in advance, in contrast to our work. and 160 [1]).

Another related line of research which also assumed theThe problem we define is two-fold. First, we need to decide
existence of a predefined set of lightpath links is one thathich pairs of logical nodes should be connected by a lightpa
deals with routing and wavelength assignment problem (s@egical link) while ensuring that the total number of lighaths
[14], [29], [25] and references therein). In this problemeonis B and the resulting logical network is connected. Secard,
must route lightpaths over an optical network and assigaingneed to determine the path over which each of these B logical



Algorithm 1: (An approximation algorithm for MM-

SRLG(arh))
1) ForC =1 to [B/2] do (recall thatB is the number of
logical links)

a) Forevene € Ep, set the capacity of to be ming-
C, Cy(e)) and call ALG (i.e., find the logical graph
with the maximum number of logical links).
b) If the number of logical links in the graph is B,
exit the loop.
2) From the set of logical links, choose an arbitrary subset

links should be establishéd.The goal is to minimize the of size B.

maximum number of logical links traversing a single physica Each operation of Algorithm 1 runs in polynomial time.

link. We call this problemMM-SRLG Since the algorithm loops at maBY/2 times, a naive implemen-
We first show that MM-SRLG is NP-Complete. To show thigation would be pseudo-polynomial. However, the algorithm

we consider a special case of MM-SRLG where the budgean be implemented in polynomial time by conducting a

for the logical network allows us to construct onfyy = |V| binary search on the values 6f, instead of running on them

links. Since the logical graph is required to be connectatl agequentially.

the nodes’ degrees must be 2, the graph in this case is Theorem 1:Algorithm 1 builds a logical network whose

actually a simple cycle that spans all logical nodes. ThuSRLG < OPT+1, where OPT is the SRLG of an optimal

we call this problemMM-SRLG(cycle) The proof that MM- solution for MM-SRLG(arb).

SRLG(cycle) is NP-Complete is provided in Appendix A. Since  Proof: First, we note that there must be a value(tfor

MM-SRLG(cycle) is a special case of MM-SRLG the followingwhich the number of logical links> B, because the capacity

min-SRLG(arb)

min-SRLG(cycle)

Fig. 3. The structure of the approximation algorithm for MNRISG

corollary follows. of each physical link may go as high @& Assume that the
Corollary 1: MM-SRLG is NP-Complete. algorithm produces a logical network whose maximum SRLG
L . S’ > OPT+1. LetC’ be the value ofC in the final loop of
B. An Approximation Algorithm for MM-SRLG Step 1. We have OPE &' —2<2-C’ —2 = 2(C' — 1). On

In this section we develop an approximation algorithm fahe other hand, we know that whéh= C’ — 1, the maximum
MM-SRLG in three steps. We first present an approximatiafumber of logical links is< B. Hence, OPT> 2(C” — 1) must
algorithm for the problem of constructing an arbitrary, net- hold, which yields a contradiction. ]
essarily connected, logical network. Then, we proposeh@mot 2) An Algorithm for MM-SRLG(cycle)Our next step is to
approximation algorithm for solving the problem when thgevelop an algorithm for MM-SRLG(cycle), which builds a
logical network must be a cycle (MM-SRLG(cycle)). FinallyJogical cycle whose maximum SRLG does not exceed 2. Since
we combine the output of the two algorithms to produce the minimum SRLG for any min-SLRG(cycle) instance is 1,
connected logical graph with the desired number of logicgiis algorithm can be viewed as a 2-approximation.
links. The final algorithm guarantees that SRLG OPT+3, Algorithm 2: (An algorithm for a cycle with a SRLG=2)

where OPT is the Optlmal solution for MM-SRLG. Figure 3 l) Find a tree OrGP that Spang/L_ This can be done by

depicts the structure of the final algorithm. ' finding a spanning tree @ p and then iteratively pruning
1) An Algorithm for MM-SRLG(arb)We start with the case the leaves that are not ivi;, until all the leaves of the
were the constructed logical graph is not necessarily ctiede tree are inVy,.

We seek to build an arbitrary graph with a predetermined 2) conduct a DFS tour on the tree, starting at an arbitrary

the reverse va_riant_where the objective is to route the maxim  3) Break( into sub-paths, such that each sub-path must start
number of logical links between the nodeslgf such that the and end at logical nodes and each logical node must be
number of logical links traversing each physical linkloes not an end point of exactly two sub-paths.

exceedc(e), wherec(e) is a capacity function on the physical 4) Transform each sub-path into a logical link with the
edges. Ref. [9] shows that iffe) is even for everye € Ep, corresponding routing over the physical graph. Denote
then there is an integral optimal solution. One can levethige this set of logical links asZ; .

result and formulate the problem as a straightforward linea Figure 4 depicts an example of Algorithm 2. Figure 4(a)

program, which can be optime_llly sol\{ed (see Appendix Bdhows an example offp with 4 logical nodes (denoted by
Ref. [9] shows that the resulting optimal solution must bg,.angles). The bold edges are comprise the tree prodaced i
integral. We refer to this algorithm as ALG, and propose e 1. Figure 4(b) shows a cycle produced by a DFS tour. The
following algorithm for the MM-SRLG(arb) problem. cycle is divided into 4 sub-paths, each representing a dbgic

in this work we assume that wavelength conversion is possiblevery link: 1-3, 3-2, 2-4 and 4-1. Figure 4(c) shows the final logica
optical node. cycle.
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Fig. 4. An illustration of Algorithm 2: (a) a physical graggip (logical nodes o o w5 O O w1
are denoted by rectangles); (b) a DFS (dashed line) dividedsub-paths; (c)
the final logical cycle. (a) a logical network with 4 light- (b) a logical network with 5 light-
paths paths
The Algorithm running time is ObViOUSIV polynomial. Fig. 5. Two logical networks over a physical network. Opti() is less

Theorem 2:The logical network generated by Algorithm 2robust although it has more logical links

is a simple cycle whose maximum SRLG is not greater than 2.
Proof: Since the DFS tour traverses all the nodes and

returns to the starting node, the constructed logical netwo
is a cycle. Since a logical node is an end point of exactly two OPT2> Sp—|v;| 2 OPTp—vy| = Sarg-1 -1
links, then the cycle must be simple. The maximum SRLG is >(8'-2)-1=9"-3,
not greater than 2 because every link is traversed by the D
exactly twice (once in each direction).

3) The Final Algorithm: We now solve the original min-
SLRG problem, which requires the logical graph to be co

nected and contain no more tha links. To this end, we . : : L
; . . ) ! lity hol Th 1. Finally, the fourth inaii
combine Algorithm 1 and Algorithm 2 in the following Way.lnequalty olds due to Theorem inally, the fourth inegjy

L i . holds because the maximum SRLG of the cycle produced by
We first invoke Algorithm 2 to produce a logical cycle. Then : . C >
we invoke Algorithm 1 to generate additional logical linksich Algorithm 2-is 2, which implies that” < Sarc-1 + 2.

%g‘e first inequality holds becausgz_y,| is the maximum
SRLG of a subset of the optimal solution. The second inetyuali
holds because the maximum SRLG of an optimal solution
Must not be greater than an arbitrary solution, and the third

that their total number will be3. "

Algorithm 3: (An approximation for of MM-SRLG) IV. CASE-2: USING INFORMATION ABOUT THE WEIGHTS

1) Execute Algorithm 2. Denote its output ;Y. OF THE LOGICAL NODES

2) For everye € Ep, reduceCy(e) by the number of  As said earlier, when designing a logical network, the oper-
lightpaths in the cycle traversing ator is unlikely to know the exact bandwidth demand matrix.

3) Execute Algorithm 1 with a budget equals® = B — However, in many cases each router (logical node) can be
[VL|. Denote its output byE{™®. associated with a weight, which is proportional to the @orti

4) ReturnE{'“'“ U By, of traffic expected to originate from and received by it. The

Note that the algorithm may output more than one logicaleights are determined by the network operator before the
link between a pair of logical nodes. As mentioned in thiegical network is set up, based on past experience, on the
Introduction, we allow this in our model. This is necessamumber of users/subnets expected to be connected through ea
to accommodate cases in which the network operator wishrexle, on the importance of the node’s geographical location
to provision between two routers a higher amount bandwidémnd so on. Herein we propose to use this weight as an indicatio
than a single lightpath allows. of the degree this node should have in the logical network.

Theorem 3:Algorithm 3 produces a connected logical net- The idea that the number of lightpaths connected to every
work whose maximum SRLGZ OPT+3, where OPT is the node should be proportional to a weight whose value is known
value of the optimal solution for MM-SRLG. in advance is one of the contributions of this paper. It aow

Proof: Since the output graph of Algorithm 2 is a conus to build a logical network while taking into account the
nected logical cycle, the output graph of Algorithm 3 must bexpected traffic load on each router although the actudidraf
connected, and must have a degree of at least 2 for each nodatrix is unknown in advance. We illustrate this idea in
It is easy to see that the number of logical links in the sohuti Figure 5, which shows two logical networks overlayed on the
returned by the algorithm i$3. Let S’ denote the maximum physical network of Figure 1(a).

SRLG of the solution produced by the algorithm. Consider anIn Figure 5(a) we assume that the 4 routers are equally
arbitrary subset of the logical links in an optimal solutionimportant. Thus, each of them has an equal weight of 0.25.
whose cardinality isB — |V;|. Denote the maximum SRLG In this figure we also assume that the budget of the logical
of this subset bySgz_ |y, |. In addition, denote the maximumnetwork allows to establish only3 = 4 lightpaths. Hence,
SRLG of the optimal solution of MM-SRLG(arb) witB—|V,| each of the 4 routers should be an end poin2 06.25 -4 = 2
logical links by OPT;_y, |, and the output of Algorithm 1 lightpaths. Of course, there are other options to estalish
(with B — |V | logical links) by S4rc—1. Thus, lightpaths between the 4 nodes such that each node will be



connected to 2 lightpaths. In Figure 5(b), the same 4 nodesl) An Algorithm for Weighted MM-SRLG(arb)in the

have different weights and the budget allows to estalilish 5 weighted MM-SRLG(arb) problem we do not require the

lightpaths. Thus, we have 4 lightpaths connected to nod® logical graph to be connected, but we take into account the

to nodeb, 2 toa and 1 tod. Although there are more lightpathsweight constraints on the logical degrees. Note that sirce n

in Figure 5(b) than in Figure 5(a), the logical network isslesconnectivity constraint is imposed on the logical grapre th

robust, because it might be disconnected after a singleréail following algorithm does not assume that> |V}, |. To take the
We seek to maximize the restorable throughput while takingeights into account, we transform the physical gréphinto

into account the weight of each logical node. To this en¢’s = (V5, E}) as follows. First, for every logical nodec V;,

we propose an approximation algorithm (Algorithm 5) for th&ve define a mirror node’. We denote the set of logical nodes

minimization of the maximum SRLG while using the weightén the new graph a$//. The setV/ consists only of mirror

of the nodes for establishing an upper bound on the degmedes. TherV, = VpU V] andE}, = Ep U {(v,v")|v € VL. }.

of the nodes. We show that this algorithm produces logicahis means that each mirror node is connected to its original

networks that accommodate more restorable throughput thende. The weight of every mirror nodé € V/ is w, = w,.

the networks produced by Algorithm 3. The rationale is that Algorithm 4: (An  approximation for weighted MM-

nodes that should accommodate more bandwidth need higB&LG(arb))

connectivity in order to deliver all the traffic before andeaf 1) ConstructG}, and V/ according to the above transfor-

a failure takes place. mation.
2) For everyv € V;, set the capacity of the linkv,v’) to
A. The Weighted MM-SRLG Problem be2-B-w, - a.

In this section we address the weighted variant of MM-SRLG 3) ForC' =1to [B/2] do
problem. This problem is similar to MM-SRLG, except that a) Set the capacity of everyc Ep to be ming - C,
the upper bound on the degree of every logical node V, Cp(e)).
must be proportional to a given weight, which is part of the b) Call ALG to find the maximum set of logical links
network. The value ofv, is chosen such thadt; .. w, = 1. in G’» while usingV] as logical nodes.

The degree of each logical noden G is < 2-B-w, -, c) If the total number of logical links is> B, then
where « is an integer> 1. We usea as a parameter that select an arbitrary subset of these links of size
controls the flexibility while setting the degree of eachida and exit the loop.
node. Fora = 1, the node degree has no flexibility. A8 4) For each logical link in the transformed graph that
increases, we allow more flexibility to the degree of eachenod connects a pair of mirror nodes, addAp, a logical link

This flexibility allows us to obtain a smaller SRLG at the cost in the original graph which connects the nodes that are
of deviating from the nodes’ weights. As before, the degriee o attached to these mirror nodes.

each Iogif:gl node is> 2. ] Theorem 4:Algorithm 4 builds a logical network whose
In addition to the requirement thgt_ .,, w, = 1, We gR| G < OPT+1, where OPT is the SRLG of an optimal

require that for every, the value of2B - w,a will be an g \ution for weighted MM-SRLG(arb).

even integer. While the latter requirement imposes an auditi 1,4 proof of this theorem is similar to the one presented

constraint on thew, vector, we note that: (1) a weight Vector, Thegrem 1. The graph transformation used in the above

that fulfills these two requirements can easily be found @isiny g rithm has no impact on the approximation factor, simee t
an integer program whose input is the origing vector that gg) G on the links of the fornfv, »') is not taken into account
fulfills only the >° .y, w;, = 1; the linear program minimizes i, the final solution.

H /.
the total difference betweew, an w,,; (2) for everyv, the 2) The Final Algorithm: We are now ready to present the

maximum difference between its original weigif, and the final approximation algorithm for the weighted MM-SRLG

: . ) ] 7 .
ultlmlgteb WT'ghtwr’]’ IS somaII(?r tha”szal' which in practice problem, which combines Algorithm 4 and Algorithm 2 (pre-
wou e less than 1% since typicalliy > 50 in most sented in Section I1I-B2).

real-world. networks; (3) the weight vector serves only as a lgorithm 5: (an approximation Algorithm for weighted
rough estimate of the importance of each node, and the small -SRLG)
(approximately 1%) “rounding error” that we add keeps it as ] . wele
such 1) Execute Algorithm 2. Denote its output ;Y.
’ w,—1/B

We develop an approximation algorithm for the weighted 2) For every logical node, set its new weight tq=y 7
MM-SRLG problem in a similar way to what we did in (to offset the new degree of each node, which is now set
Section Il for MM-SRLG. We first develop an algorithm for to 2).
the weighted MM-SRLG(arb) problem, where the constructed3) For everye € Ep, reduceC,(e) by the number of
graph is not necessarily connected. Then, we solve the MM- _ lightpaths in the cycle traversing
SRLG(cycle) problem where a logical cycle over the physical 4) Execute Algorithm 4 with a budget that equals —
graph is produced. Finally, we combine the solutions of e t B—[VL|. Denote its output by
algorithms into a solution for the general problem. 5) Returng;”"“uU B¢



Theorem 5:Algorithm 5 produces a logical network whosefor every flow and every logical link the flow traverses, rathe
maximum SRLG< OPT+3, where OPT is the value of thethan building a single backup path for every flow. This stggte
optimal solution of weighted MM-SRLG which is not greaterequires every backup path to start and end at the nodes of
than the optimal solution plus 3. the failed logical link, and it is slightly inferior to the gbal

Proof: Since the output graph of Algorithm 2 is a cyclerecovery scheme [4].
the output of Algorithm 5 must be connected. It is easy to see
that the number of logical links in the solution returned bg t
algorithm is B. Ez”de imposes on each node a degree of 2. The linear program has the following parameters:
B¢ imposes on each node a degree2 - B’ - ¥ 2 . q,
Consequently, each node in the final logical network hasla lin
degree< 2+2- B’ f“vlfg a<2 B-w,-a.

The proof for the approximation bound is similar to the

one presented in the proof of Theorem 3. I¥tdenote the | r _ the set of all logical node pairs. Each pdir =

maximum SRLG of the solution produced by the algorithm. (sf,ts) € F constitute a flow.

Consider an arbitrary subset of the logical links in an optim ds — the bandwidth demand of flow € F. This value is
solution, whose cardinality i& —(|V.[). Denote the maximum normalized to the capacity of a single logical link; namely,
SRLG of this subset bySz_v,|. In addition, denote the d; = 1 means that the bandwidth demand equals the
maximum SRLG of the optimal solution of MM-SRLG(arb) capacity of a logical link.

with B — [V, | logical links by OPT;_y, |, and the output of | p _ the total number of logical links that are budgeted to
Algorithm 4 (with B — |V | logical links) by Sarc—4. Thus, the network.

OPT> Sp_jv,| 2 OPTp_|v,| = Sarg-4 — 1
> (' —2)—1=5"—3,

The first inequality holds becausgs_ |y, is the maximum \ye define the following variables:
SRLG of a subset of the optimal solution. The second inetyuali

holds because the maximum SRLG of an optimal solution

must not be greater than an arbitrary solution, and the third

inequality holds due to Theorem 4. Finally, the fourth inglijy

holds because the maximum SRLG of the cycle produced by

Algorithm 2 is 2, which implies that’” < Sac 4 + 2. * Y () — the fraction ofd; routed over the logical edge
connecting the logical nodesandv when physical edge

]
e € Ep fails; when no edge fails; = ¢.
V. CASE-3: ASSUMING FuLL KNOWLEDGE OFTHE USERS o xy — the total routed fraction of ;.
BANDWIDTH DEMANDS o l,y) — an integer variable that equals the number of

We now address case-3, where the operator knows the logical links connecting the two logical nodesand .

average bandwidth demands between every pair of nodes om Téu’_v) — an integer variable that equals the number of
the logical network. In this case, we solve a joint optimiat logical links connecting the two logical nodesand v

problem that: and that traverse the physical lieke Ep.

1) Selects the logical links and routes them on the physical® EZ:; — a binary variable that equals 1 if and only if
network. re 2 1.
2) Determines the end-to-end primary and backup paths for
all traffic demands, and the bandwidth reserved on each
path.
Case-3 only rarely occurs in practice, because the network
operator only rarely has concrete knowledge of the futurglba In the following [, ., represents a directed link. However, we
width demands when the logical network is constructedl, Stitreat each such directed link as an undirected link with the
this case can serve as a benchmark for the maximum restorajslgesponding capacity. For example, suppose &hat = 2,
throughput in case-1 and case-2. The joint optimizatioblera [(; 5y = 2 and/3;) = 1. Then, there are 5 undirected links
for this case can be formulated as an integer linear prograennected to node '1’, 4 undirected links connected to node
(ILP), which we solve by relaxing its integrality constrein 2" and 1 undirected link connected to node '3'.
The linear program for the global recovery scheme requires
as an input the primary path of each traffic flow. However,
we do not have this information when the logical network is The target function is to maximize the total throughput
constructed. We solve this problem by building a backup paf ; dy -z, subject to the following constraints:

=
o



set (10) of constraints ensures that the total routed baftdwi
(u,0) (u,0) of each flow do not exceed flow demand. Finally, the set (11)
@) Ze:(m)eEp Te =~ Ze:(z’,j)eEp Te of constraints ensures that each logical link is routed aver
) i=u single physical path.
The above program is an integer linear program (ILP). To
allow tractability in the simulation study we solve the ftiaoal
0 else version of this ILP where we relax the integrality consttain
This relaxation allows us to get an upper bound to the saiutio

=9 lwey i=v ,VieVpVuveVy

(u,v)
@ Yuvev, e S Cple), Ve € Ep of case-3. This solution will serve as a benchmark for the
) Yuvev, lww) =B solutions of case-1 and case-2.
() Xuevi Y5 () — 2ouevi Y5 (w.u) VI. SIMULATION STUDY
ry  v=ly In this section we evaluate the performance of the proposed

B B algorithms using extensive simulations. We first evaluate t
=\ —@ v=sp WwEVVfeRVec{Ep, ¢} SRLG performance of Algorithms 3 (case-1) and 5 (case-2).
0 else Then, we compare the restorable throughput in the threescase

. . Throughout this section we use= 22 in Algorithm 5.
G Xrerds Y e T X rer 4 Y5 ) < L) Flww

Yu,v € Vi,,Ve € {Ep, ¢}

. —(uw We first evaluate the SRLG performance of Algorithm 3.
® Y =1- re Yf € FiVe € Ep,Yu,v €V As in earlier related work [20], [21], [28], we use augmented
@) Flw) | Y5 9 > yjj () ,Vf € F,VYe € Ep,Vu,v € Vfeal network topologies as our physical network: the NSFNET

wv) o _(uw o topology, which has 14 nodes and 29 links, and the USIP
8 " <T" B Ve BpVuveVy topology, which has 24 nodes and 53 links. For each topology
9 Duev, luw) Tlww =2 ,Yv eV we generate 125 random instances, each comprises of a subset
of physical nodes, which serve as logical routers, and adtudg
B of logical links. For simplicity, and to allow faster exeimrt

Vf e F,Yu,v eV, Vee {Ep, ¢} of the linear program, we do not impose a constraint on the
(uw wv capacities of the physical links. For each instance we ran th
a1 7 efo.ny, w e f0.0,2,.. ), following algorithms:
lwwy €10,1,2,...} 1) Algorithm 3: This is the MM-SRLG approximation al-
Ve € Ep,Vu,v € V. gorithm presented in Section 111-B3.

2) An algorithm that finds a lower bound (i.e. the best
possible result) for MM-SRLG. This algorithm finds an
optimal solution for the splittable variant of the problem,
which can be represented as a linear problem and be
solved in polynomial time. Obviously, an optimal solution
to this variant is always better than or equal to the optimal
solution for MM-SRLG. We then round up the fractional
optimal solution returned by the algorithm. The rounded
result is still a lower bound for MM-SRLG, because

A. SRLG Performance

(10) 0<ap <1, 0<ys ., <1

w,v)

The set (1) of constraints ensures that every logical link is
routed over the physical link. Note that in this ILP, the phgb
links must be directed. Therefor&,p represents here a set of
directed edges, where each undirected link is represented b
a pair of oppositely directed links. Constraint (2) ensutes
the capacities of the physical links are not exceeded. Cainst
(3) ensures that the total number of logical links#%s The
set (4) of constraints ensures the conservation of traffar ov , ) 4 :
the logical network. The set (5) ensures that traffic flowsyonl ~ the optimal solution for MM-SRLG s also integral. The
over the selected logical links. Note thij, ,,) represents the linear program 15 .presented in Apper.1dlx C. _
number of directed logical links froms to v. Since in our  In each simulation instance, the locations of the logical
problem a logical link is undirected, each chosen logiaak |i routers are randomly chosen using a uniform distributidme T
gives bandwidth to both directions. Therefore, in the righbd number|Vy | of logical routers is chosen as eithief3 or 1/2 of
side of each inequation in (5) we sum the number of logicHte number of physical nodes’»|.The budget of logical links
links from both directions of each pair of logical nodes. Be¢ (B) varies betweenVz|+2 and14 - [V |.

(6) ensures that traffic flow will not be carried by logicalken ~ Figure 6 shows the simulation results for the two physical
that traverse a failed physical link. The set (7) ensuresffiar topologies. In all the graphs the-axis represents the budget
flow will be carried by the same logical links for all link fale B of logical links, while they-axis represents the maximum
events unless the logical link traverses a failed physicéd. | SRLG size produced by each algorithm. For each point in the

The set (8) ensures a proper relation betwe&r) and7“"; ) _ o _
_(u,v w,v) Following some initial simulations, we observed that the Ipestormance

namely,Te IS set _tO 1ifre is greater than 0. The set (9)is obtained witha: = 2. Nonetheless, we cannot claim that the same value of
ensures that all logical nodes have a degree of at least 2. Bhe the best choice for every system.
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Fig. 6. The SRLG performance (with error bars) of Alg. 3 comparethe theoretical lower bound

graphs, we show an error bar for the range ofitsvalues. number of nodes, one has more flexibility in choosing and
Each bar depicts the distance between the minimum valwgiting the logical links. Finally, by comparing the perfaance

of the “maximum SRLG” and the maximum value of theof the algorithms for the two physical topologies, we observ
“maximum SRLG” produced by different simulation instancethat for the samé’, /Vp and E,/Ep ratios, the performance
for a given B value. In each such a simulation instancef the algorithms in the USIP topology degrade to some extent
the locations of logical nodes are different, because they &his can be explained by the fact that the average lengtheof th
randomly chosen according to uniform distribution. For moghysical route of each logical link is longer for larger picgs

of the points there was no difference between the minimutopologies, which imposes higher load on the network.

and maximum “maximum SRLG" produced by the different 14 ygjidate the above results we depict in Figure 7 the

simulation instances, and therefore there is no error ba. Werformance of the above two algorithms while using artiflgi
see in all graphs that Algorithm 3 performs very well, andsit Igenerated physical topologies. We randomly generate 26-phy

very clos_e to the theoretical lower bound. No error par fosmoj4 topologies having 15 nodes and 30 links (equivalentaa s
of the points means that, for most budgets, the maximum SR"t@,the NSFNET topology). To generate these topologies we use

size does not depend on the location of the chosen nodes. TRiSBRITE simulator [24] while employing the Barabasi-Afbe

indicates that the maximum SLRG size is influenced mainly By, qel [2]. This model captures two important charactessti
the number of logical links ) and much less by the locationsy¢ network topologies: incremental growth and preferéntia

of the logical nodes. connectivity of a new node to well-connected existing nodes

It is evident from all the graphs that given a number ofhese characteristics yield a power-law degree .distlcihudf
logical nodes, the maximum SRLG increases with the buddB¢ nedes. As for NSFNET we constructed logical networks
B. However, when the number of logical nodes increases, th&fih 5 and 7 nodes in Figure 7(a) and Figure 7(b), respegtivel
for the same number of logical links the maximum SRLG size The results of Figure 7 closely resemble the ones for the
decreases to some extent. The reason is that by increagngNBFNET topology. Here also the difference between Algo-
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Fig. 7. The SRLG performance of Alg. 3 compared to the theaktaver bound averaged over 20 artificially generated maydopologies

links have the same capacity, and that bandwidth demands are
normalized by the capacity of the logical link. To measure th
maximum restorable throughput that can be admitted into the
logical network, we use the optimal algorithm presented4in [
for the Global recovery scheme [27]. As discussed earlier an
depicted in Figure 2, in this scheme each primary logicah pat
is associated with one backup logical path between the same
end nodes. Each backup path protects against the failuneyof a
physical link in the primary path, and it therefore does iatre
any physical link with this path. This scheme is sometimes
referred to as “path recovery scheme.”
1 ‘ ‘ ‘ Figure 9 depicts the restorable throughput for the contdic
10 5 20 * %0 logical network with 5 or 7 logical nodes. For this simulatio
we use the NSFNET as the physical topology. Thaxis
Fig. 8. The SRLG performance of the algorithms given NSFNEThes t Fepresents the number of logical links, denotBd whereas
physical topology, andV, | =7 the y-axis represents the fraction of traffic demand that can
be admitted into the logical network while guaranteeing%00
restorability in the face of a single physical failure. Apegted,
rithm 3 and the theoretical lower bound is less than 1. THBe fraction of admitted throughput increases witlor all the
curves are smoother than the curves for NSFNET, because @erithms. Furthermore, the algorithm for case-3 obtajnso
average the results over many instances of physical tojasiog 120% better throughput than the other two, with its advantag
We now evaluate the SRLG performance of Algorithm 5. Thgepending on the number of logical links. As this number
evaluation is done using the same simulation setup describgcreases, the advantage of the case-3 algorithm decrdases
above. We only show here the results for the NSFNET physidg| the greater flexibility in the selection of the logical k)
topology. Figure 8 shows the SRLG for Algorithm 5 an(x:fvhlch in turn makes the full knowledge of future demands less
Algorithm 3. The z-axis represents the budgét of logical 'Mmportant.
links, while they-axis represents the maximum SRLG achieved The difference between the curves of case-1 and case-2
by each algorithm. It is evident that Algorithm 3 obtains thés interesting. We can see that case-2 has better restorable
lowest maximum SLRG size, which is not surprising since thi§roughput than case-1 (up to 25%) for @}l values. This

Maximum SRLG

algorithm is not restricted by the node weights. result indicates the importance of knowing the nodes’ wsigh
in advance. While we obtained similar results in other saesar
B. Restorable Throughput Performance we cannot claim, of course, that this will always be the case.

We now evaluate the restorable throughput admitted by theFigure 10 depicts the performance of case-2 as a function of
logical networks constructed in each of the three cases. ffie a-value used during Algorithm 5. As before, NSFNET is
measure this criterion, we generate traffic demands for ttie physical topology. This time we ud§, = 7. The z-axis
logical network based on the Gravity model [19], where theepresents the value af, whereas they-axis represents the
demand of every pair of logical nodes is proportional to theestorable traffic demand of case-2 normalized by the raister
products of their weights. We remind the reader that alldali traffic demand of case-1. We consider 6 different scenarios



with different values ofB: 30, 40, 50, 60, 80 and 100. It is
evident from the graph that for lo-values up to 50, the best

Fraction of Admitted Restorable Throughput

(a) VL|=5

Fig. 9.

performance is obtained far = 1, while for higher values,

o =
more important that the network will be designed according t

2 is optimal. This suggests that for lo®-values it is

the expected traffic distribution rather than according méy o
SRLG considerations.

This paper is the first to propose algorithms for building

VII. CONCLUSION

Fraction of Admitted Restorable Throughput

Normalized Admitted Restorable Throughput

the logical topology on top of the optical network while

maximizing the restorable throughput of the end-to-endhgpat

We addressed this problem in three cases: when the operator
has no knowledge of the future bandwidth demands, when it has
partial knowledge, and when it has full knowledge. For th&tfirrig. 10. The normalized restorable throughput as a function.dVy | = 7
case the most reasonable strategy is to minimize the maximum
SRLG size. We showed that the resulting (new) problem is

NP hard, and proposed an efficient approximation for solvin

it. For the second case we assumed that each router (Iogif@l
node) can be associated with a weight, which is proportional

to the portion of traffic expected to originate from and reedi
by it. We used this weight as an indication of the degree this

node should have in the logical network. In the third casey,
we assumed that the operator knows the average bandwidth

demands between every pair of nodes on the logical networt:.
We presented efficient algorithms for each of these casek, a

ran extensive simulations to compare their performance.
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C that exitsv, then every edge itEp is used by at most one

logical link. Thus,(Vy,, E1,) is a logical graph having SRLG=1.
To prove the other direction, we need to show that if the
created MM-SRLG(cycle) instance contains a logical cycle

We prove that MM-SRLG(cycle) is NP-Complete using gvho_se SRLG |s_1, t_hen the original DHC mstanceT contains
) . A a directed Hamiltonian cycle. We denote the logical cycle

reduction from the Directed Hamiltonian Cycle (DHC) prob; -— :

R ’ formed by F;, as Cp. By definition, £, is a set of edge-
lem [10]. The reduction is similar to the one presented inlf3] disjoint physical paths. Thus, and by construction, evenyex
the DHC problem, a directed gragh(V, E) is given, and the ) Pny P ) ' y '

maid H H
problem is to determine i€ contains a directed Hamiltonianzonstfué?ahcas(':k"j,fv mocs;t ;W(;hlgg;ﬁl e;ng?;j aé’iag? ?grtgaghwe
cycle (i.e., a simple cycle that passes through all the cesti . ; ymid mid y 9 g&u,
of V). logical link (u™ v™®) € Ej. Since Cy, is a cycle that

. connects all the logical vertices Iy,, C' must be a Hamiltonian
Theorem 6:MM-SRLG(cycle) is NP-Complete. g L

APPENDIXA
CAsE-1: MM-SRLG(cYCLE) IS NP-COMPLETE

cycle. n
Proof: MM-SRLG(cycle) is clearly in NP. We now show a Y
reduction from DHC. Given a directed grapiV, E) as an in- APPENDIXB
stance of DHC, we construct an instance of MM-SRLG(cycle) THE LINEAR PROGRAM FORALG

and show that the DHC instance contains an Hamiltonian\ye hresent the linear program used for ALG in Algorithms 1
cycle if and only if the constructed MM-SRLG(cycle) instanc 5 4 The target function of the program is maximizing the

con_tains a Iogiqal network vyhose maximum SRLG is 1. We mber of logical links, given a capacity constrairt) for
define the undirected physical graghir = (Vp,Ep) as

everye € Ep:
follows:

_ _ Maximize L
Vp = {v" 0™ "y e V], subject to the following constraints:



(u,v) (u,v)
(1) Ze:(j,i)GEp Te B Ee:(i,j)EEp Te

| = PLACE
Tl P PHOTO
=9 L i=v ,VieVp,Yu,veVy HERE
0 else
(2) Zu,vEVL l(u,v) =1L
@) Tuwer, i <cle) Ve € Bp

(4) Tf(:’uW) <1, l(uﬂv) <1
Ve € Ep,Yu,v € V.

The set (1) of constraints ensures that every logical link
is routed over a physical link. Constraint (2) ensures that t
total number of logical links is.. The set (3) of constraints
ensures that the capacity constraints of the physical larks
not violated.

APPENDIXC
THE LINEAR PROGRAM FORTHE SRLG LOWERBOUND

In this section we present the linear program to find a lower
bound of the optimal maximum SRLG. This program is the
fractional version of the following ILP that finds the optima
SRLG.

The target function of the program is to minimize the
maximum cardinality of the SLRGs:

Minimize =z

subject to the following constraints:

(u,v) (u,v)
) Xe—GierrTe  — Xe—(ijycEp e

—lupy P=u PLACE

, PHOTO

= L) i=v ,VieVp,Yu,veVg HERE
0 else

@) Zu,veVL luy =B

@) Xuvewn, r <z Ve € Ep

@ e {0,1,2..}, ) € {0,1,2...}
Ve € Ep,Vu,v € V.

The set (1) of constraints ensures that every logical link is
routed over the physical link. Constraint (2) ensures that t
total number of logical links isB. The set (3) of constraints
ensures that the variable takes the maximum cardinality of
the all SRLGs. Finally, the set (4) of constraints ensures th
each logical link is routed over a single physical path.
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