
Restorable Logical Topology in the Face of No or
Partial Traffic Demand Knowledge

Reuven Cohen Gabi Nakibly
Technion – Israel Institute of Technology

Computer Science
Haifa, Israel

Abstract—The construction of a logical network on top of a
physical (optical) infrastructure involves two intertwined tasks:
logical link selection – deciding which pairs of routers will be
connected by logical links (lightpaths), and logical link routing –
deciding how to route each logical link across the optical network.
The operator of such networks is often required to maximize
the available throughput while guaranteeing its restorability. This
paper is the first to combine these seemingly conflicting goals into
one optimization criterion: maximizing the restorable throughput
of the end-to-end paths. We address this problem in three cases:
when the operator has no knowledge of the future bandwidth
demands, when it has partial knowledge, and when it has full
knowledge. We present efficient algorithms for each of these cases
and use extensive simulations to compare their performance.

I. I NTRODUCTION

Modern communication networks consist of a logical topol-
ogy overlaid on an optical physical infrastructure. Distinguish-
ing between the logical and physical networks is crucial to
flexibility and efficiency. However, this distinction givesrise
to important cross-layer optimization issues, such as how to
guarantee smooth restoration following a failure in the physical
network. In this work we study the problem of designing a
restorable logical network, which continues to operate effi-
ciently after a physical failure. The input to this problem is a
physical (optical) network, which consists of optical switches
connected by fiber optic links. Only a subset of those switches
has the capability to serve as routers. The logical network
that we build consists of routers connected by lightpaths. Each
lightpath is established over one or more optical fibers and
the optical switches connecting these fibers. The constructed
logical network should accommodate the traffic demands not
only when all the physical components are operational, but also
in the face of a physical failure.

The construction of a logical network is composed of two
intertwined tasks: deciding which pairs of routers will be con-
nected by logical links (lightpaths) and deciding how to route
each logical link across the optical network. These two tasks are
referred to as link selection and link routing, respectively. When
setting up optical lightpaths as the links of the logical network,
the dominating cost is of the transponders at the two ends of
every lightpath, which convert optical to electronic signals and

This research was partially funded by the Office of the Chief Scientist of
the Israel Ministry of Economy under the Neptune generic research project.
Neptune is the Israeli consortium for network programming.

vice versa [12]. Therefore, building a logical network is always
subject to a budget constraint, which is translated into an upper
bound on the number of lightpaths (logical links) that can be
established.

Most past works on designing logical networks assume that
the logical links are given, and focus on the link routing task. In
contrast, we solve the two tasks together, because they havea
tremendous impact on each other. To better understand the link
selection and routing problem, consider Figure 1(a). This figure
shows a physical network with 16 optical switches connectedby
24 optical links. Assuming that only nodesa, b, c andd have the
capability to serve as routers, logical links can be established
only between pairs of these nodes. Figure 1(b) shows a possible
logical network with 4 lightpaths (logical links). This logical
network is not resilient because a failure of one node (i or c)
or a failure of one logical link (c− i or i−d) disconnects node
d from the rest of the network. By selecting different logical
links, we can get a more resilient network. In Figure 1(c) a
failure of nodec or link c − i does not disconnectd from the
rest of the logical network, but a failure ofi or i−d still does.
By using the same logical links, but routing the logical link
c − d differently, we get the logical network in Figure 1(d),
which is resilient to any single physical failure.

To deliver network services with guaranteed Service Level
Agreement (SLA), it is not enough for the network operator
to create a restorable topology. Very often, the operator should
be able to provide “restorable throughput” [4], that is, end-
to-end throughput whose availability is guaranteed also inthe
face of a failure. The desire to guarantee restorable throughput
contradicts the desire to maximize throughput availability,
because full restoration requires that some bandwidth must
be reserved in the event of a failure. Nevertheless, these
two requirements can be combined into a single optimization
criterion: maximizing therestorable throughput. Since failures
are often limited to a single network element, it is customary
to guarantee restorable throughput under the assumption that
a new failure may occur only after the network has recovered
from all previous failures.

There are several possible schemes to guarantee end-to-end
restorable throughput. These schemes are compared in [4], and
the one called “Global Recovery” was shown the be the best.
In this scheme, end-to-end logical paths are built over the
logical network according to the users’ requirements, where

2

d

c

b

a

(a)

a

b

c

d

i

(b)

a

b

c

d

i

(c)

a

b

c

d

i

(d)

Fig. 1. An example of a physical network (a) and 3 logical networks (b-d) built over the physical network using the same numberof links

h
i

e f g

j

lk

a

c

b

d

Fig. 2. The global recovery scheme

each logical path consists of one or more logical links. For
each logical path, an end-to-end backup path is built in advance
between the same pair of end nodes. The backup path protects
against all physical link failures along the primary path, with
which it shares no physical link.

Figure 2 shows an example of the Global Recovery scheme
and the importance of constructing the logical network in such
a way as to guarantee end-to-end restorable throughput. There
are two primary end-to-end paths (thick lines) with guaranteed
restorable throughput of 1Gb/s:a − e − f − g − b and c −
k − l − d. Note that the links of each path are logical links
(lightpaths), built earlier on the optical topology. For each of
these primary end-to-end paths, the following backups paths
are built:a− i− j − b is the backup path ofa− e− f − g − b
andc − h − i − j − d is the backup path forc − k − l − d. If
no pair of the 13 lightpaths (links) shown in this figure shares
a physical link, then a failure of one physical link will destroy
only one logical link. This implies that a single failure cannot
disconnect the two primary end-to-end paths (a− e−f − g− b
and c − k − l − d) at the same time. Thus, only 1Gb/s on the
logical link i − j must be reserved in order to guarantee the
availability of 1Gb/s overa − i − j − b if a − e − f − g − b
fails and the availability of 1Gb/s overc − h − i − j − d if
c − k − l − d fails. In contrast, if the logical linkse − f and
k− l share an optical link, its failure will destroy both primary
end-to-end paths. In such a case, 2Gb/s must be reserved on
the logical link i − j for post failure use.

In this paper we propose algorithms for building the logical
topology on top of the optical network (i.e., selecting and
routing logical links), using a new optimization criterion:
maximizing the restorable throughput of the end-to-end paths.
We address this problem in the following three cases:

• Case-1: no knowledge of bandwidth demands. Here the
operator determines which logical node pairs will be
connected by logical links and how each logical link will
be routed, when future bandwidth demands are unknown.
That is, the operator does not know which primary end-to-
end paths will have to be admitted into the network, how
many primary paths will be needed, and which nodes are
more likely to serve as end points of such paths.

• Case-2: partial knowledge of bandwidth demands. Here,
the operator does not know which primary end-to-end
paths will have to be admitted into the network, but it
knows each node’s importance (weight). That is, it knows
the relative proportion of traffic expected to originate from
or be received by that node.

• Case-3: full knowledge. Here the operator knows which
pairs of nodes need to be connected by primary end-to-
end paths and the bandwidth demand for each path. While
this case only rarely occurs in practice, it can serve us as
a benchmark for the other cases.

For lack of information, one cannot formulate an optimiza-
tion problem that directly maximizes the restorable throughput
in the first two cases. Therefore, in these cases we use a the
well-known optimization criterion: minimizing the network’s
Shared Risk Link Groups(SRLG). To the best of our knowl-
edge, the earliest reference to the term SRLG is in [26].
However, prior to this, other works addressed the same notion
[23], [22]. An SRLG of a physical linke is the set of all logical
links routed overe. The cardinality of the SRLG associated
with a physical link is known to be a good indicator of the
damage to the logical network if this link fails [26]. We seek
to minimize the maximum cardinality of the SRLGs over all
physical links.

It has not been proved that the SRLG criterion has an un-
equivocal correlation with restorable throughput. Nevertheless,
we choose this criterion because it is widely used in practice,
and is widely considered to be a good indicator of logical
network resiliency [26].

The main contributions of this paper are as follows:

1) Introducing and formulating the problem of minimizing
the maximum SRLG for the selection and routing of
logical links.

2) Proposing a near-optimal approximation algorithm for the
selection and routing of logical links while minimizing
the maximum SLRG when no a-priori information about

3

the users’ bandwidth demands is given (case-1).
3) Proposing a near-optimal approximation algorithm for the

selection and routing of logical links while minimizing
the maximum SLRG when a-priori information of the
nodes’ weights is given (case-2).

4) Comparing the restorable throughput admitted in each of
the above three cases.

The rest of the paper is organized as follows. Section II
discusses related work. In Sections III, IV and V we propose
algorithms to construct a logical network for case-1, case-2 and
case-3, respectively. In section VI we evaluate the performance
of the different algorithms. Finally, Section VII concludes the
paper.

II. RELATED WORK

Many works deal with the construction of survivable logical
DWDM/MPLS/IP overlay network on top of a physical optical
network, e.g., [5], [6], [7], [16], [21]. Most of these works
assume that the logical links are given in advance, and focus
only on the routing of the logical links subject to some
optimization criterion.

To ensure resiliency of the logical network, many network
operators seek to minimize the maximum cardinality of the
Shared Risk Link Groups (SRLGs) in the logical network [29].
In [21], the authors propose a routing algorithm that maximizes
the connectivity of the logical network and propose an integer
Linear Program to minimize the maximum SRLG. In [16],
the authors study the impact of logical link routing on the
amount of spare capacity that should be reserved on the logical
links, in order to guarantee the required bandwidth demand also
following a single failure. To address this problem, they assume
that the bandwidth demand matrix is known in advance. Our
work addresses a related problem, i.e., the maximum restorable
throughput, while not making this assumption.

The design of a logical network on top of an optical net-
work has been studied extensively for the case where network
restoration in not important (e.g., [8], [11], [18] and references
therein). Most of these works focus on the efficiency and quality
of service of the logical network, without taking into account
the possibility of failures.

There are some works that address both the link selection and
link routing while taking into account the survivability ofthe
logical network and the traffic it carries. In [13], the authors
propose an algorithm to select and route logical links while
ensuring that a given traffic demand matrix is satisfied by a
set of node-disjoint paths between every pair of logical nodes.
In [17], the authors address the problem of logical link selection
and routing while minimizing the maximum traffic load on the
logical links. Both works assume that the traffic demands are
known in advance, in contrast to our work.

Another related line of research which also assumed the
existence of a predefined set of lightpath links is one that
deals with routing and wavelength assignment problem (see
[14], [29], [25] and references therein). In this problem one
must route lightpaths over an optical network and assigninga

wavelength for each lightpath such as no two lightpaths with
the same wavelength traverse the same optical link. In such
works the common objective is to maximize the number of
routed lightpaths.

Another line of research related to our work is the con-
struction of application level multicast trees (e.g., [3],[15]).
Most such works consider a source and a set of destination
nodes, and the problem is to construct an overlay tree that
satisfies some objective. In [3] and [15], the objective is to
minimize the maximum load imposed on the network links,
which is equivalent to minimizing the maximum SRLG size.
In these works, as in ours, the overlay (logical) nodes are given,
while the logical links should be selected and routed. The main
difference from our work is that we aim to construct an arbitrary
connected logical network, while those works construct a tree.

III. C ASE-1: NO PRIOR KNOWLEDGE OFUSERS’
BANDWIDTH DEMANDS

When no prior knowledge about the end-to-end paths to be
established over the logical topology is available, the network
opermator can build a resilient logical network by seeking to
minimize the maximum cardinality of the Shared Risk Link
Groups (SRLGs) in the logical network [29]. As noted above,
the cardinality of the SRLG associated with a physical link
is known to be a good indicator to the damage caused to the
logical network due to a failure of this link. In this section
we address for the first time the link selection and routing
tasks together, while minimizing the maximum SRLG size. One
of our contributions is a near-optimal approximation algorithm
that minimizes the maximum SRLG.

A. Problem Definition and Computational Complexity

Let GP = (VP , EP) be an undirected graph that represents
the physical (optical) topology, whereVP is the set of optical
switches andEP is the set of optical links. LetCp(e) be the
capacity ofe ∈ EP . Let VL ⊆ VP be a subset of the optical
nodes that can serve as routers. These routers are the nodes
of the logical network, and they are the only physical nodes
that can serve as end points of logical links. We assume that
the budget allows to establish at mostB logical links. All
logical links have equal capacities (e.g., OC-12, OC-24,...). We
normalize the capacities of the logical links to 1, but multiple
logical links can connect a pair of nodes in order to provision
higher capacity when needed. We require each logical node to
have a degree≥ 2, in order to ensure minimum resiliency of the
logical network. For this requirement to hold,B ≥ |VL| must
hold. In this paper we assume that the physical links’ capacities
are greater than 2 and even. This assumption does not affect
the generality of the algorithm, since it holds for all practical
optical links (typical values in real-world networks are 40, 80
and 160 [1]).

The problem we define is two-fold. First, we need to decide
which pairs of logical nodes should be connected by a lightpath
(logical link) while ensuring that the total number of lightpaths
is B and the resulting logical network is connected. Second,we
need to determine the path over which each of these B logical

4

min-SRLG(arb)

U min-SRLG

min-SRLG(cycle)

Fig. 3. The structure of the approximation algorithm for MM-SRLG

links should be established.1. The goal is to minimize the
maximum number of logical links traversing a single physical
link. We call this problemMM-SRLG.

We first show that MM-SRLG is NP-Complete. To show this,
we consider a special case of MM-SRLG where the budget
for the logical network allows us to construct onlyB = |VL|
links. Since the logical graph is required to be connected and
the nodes’ degrees must be≥ 2, the graph in this case is
actually a simple cycle that spans all logical nodes. Thus,
we call this problemMM-SRLG(cycle). The proof that MM-
SRLG(cycle) is NP-Complete is provided in Appendix A. Since
MM-SRLG(cycle) is a special case of MM-SRLG the following
corollary follows.

Corollary 1: MM-SRLG is NP-Complete.

B. An Approximation Algorithm for MM-SRLG

In this section we develop an approximation algorithm for
MM-SRLG in three steps. We first present an approximation
algorithm for the problem of constructing an arbitrary, notnec-
essarily connected, logical network. Then, we propose another
approximation algorithm for solving the problem when the
logical network must be a cycle (MM-SRLG(cycle)). Finally,
we combine the output of the two algorithms to produce a
connected logical graph with the desired number of logical
links. The final algorithm guarantees that SRLG≤ OPT+3,
where OPT is the optimal solution for MM-SRLG. Figure 3
depicts the structure of the final algorithm.

1) An Algorithm for MM-SRLG(arb):We start with the case
were the constructed logical graph is not necessarily connected.
We seek to build an arbitrary graph with a predetermined
number of logical links, whose SRLG is minimum. We call this
problem MM-SRLG(arb). To solve MM-SRLG(arb), consider
the reverse variant where the objective is to route the maximum
number of logical links between the nodes ofVL such that the
number of logical links traversing each physical linke does not
exceedc(e), wherec(e) is a capacity function on the physical
edges. Ref. [9] shows that ifc(e) is even for everye ∈ EP ,
then there is an integral optimal solution. One can leveragethis
result and formulate the problem as a straightforward linear
program, which can be optimally solved (see Appendix B).
Ref. [9] shows that the resulting optimal solution must be
integral. We refer to this algorithm as ALG, and propose the
following algorithm for the MM-SRLG(arb) problem.

1In this work we assume that wavelength conversion is possiblein every
optical node.

Algorithm 1: (An approximation algorithm for MM-
SRLG(arb))

1) For C = 1 to ⌈B/2⌉ do (recall thatB is the number of
logical links)

a) For everye ∈ EP , set the capacity ofe to be min(2·
C, Cp(e)) and call ALG (i.e., find the logical graph
with the maximum number of logical links).

b) If the number of logical links in the graph is≥ B,
exit the loop.

2) From the set of logical links, choose an arbitrary subset
of sizeB.

Each operation of Algorithm 1 runs in polynomial time.
Since the algorithm loops at mostB/2 times, a naive implemen-
tation would be pseudo-polynomial. However, the algorithm
can be implemented in polynomial time by conducting a
binary search on the values ofC, instead of running on them
sequentially.

Theorem 1:Algorithm 1 builds a logical network whose
SRLG ≤ OPT+1, where OPT is the SRLG of an optimal
solution for MM-SRLG(arb).

Proof: First, we note that there must be a value ofC for
which the number of logical links≥ B, because the capacity
of each physical link may go as high asB. Assume that the
algorithm produces a logical network whose maximum SRLG
S′ > OPT+1. LetC ′ be the value ofC in the final loop of
Step 1. We have OPT≤ S′ − 2 ≤ 2 · C ′ − 2 = 2(C ′ − 1). On
the other hand, we know that whenC = C ′− 1, the maximum
number of logical links is< B. Hence, OPT> 2(C ′−1) must
hold, which yields a contradiction.

2) An Algorithm for MM-SRLG(cycle):Our next step is to
develop an algorithm for MM-SRLG(cycle), which builds a
logical cycle whose maximum SRLG does not exceed 2. Since
the minimum SRLG for any min-SLRG(cycle) instance is 1,
this algorithm can be viewed as a 2-approximation.

Algorithm 2: (An algorithm for a cycle with a SRLG=2)
1) Find a tree onGP that spansVL. This can be done by

finding a spanning tree ofGP and then iteratively pruning
the leaves that are not inVL, until all the leaves of the
tree are inVL.

2) Conduct a DFS tour on the tree, starting at an arbitrary
nodev, to produce a non-simple physical cycleC that
traverses all nodes inVL.

3) BreakC into sub-paths, such that each sub-path must start
and end at logical nodes and each logical node must be
an end point of exactly two sub-paths.

4) Transform each sub-path into a logical link with the
corresponding routing over the physical graph. Denote
this set of logical links asEL.

Figure 4 depicts an example of Algorithm 2. Figure 4(a)
shows an example ofGP with 4 logical nodes (denoted by
rectangles). The bold edges are comprise the tree produced in
Step 1. Figure 4(b) shows a cycle produced by a DFS tour. The
cycle is divided into 4 sub-paths, each representing a logical
link: 1-3, 3-2, 2-4 and 4-1. Figure 4(c) shows the final logical
cycle.

5

1

3 4

2

(a)

1

3 4

2

(b)

1

3 2

4

(c)

Fig. 4. An illustration of Algorithm 2: (a) a physical graphGP (logical nodes
are denoted by rectangles); (b) a DFS (dashed line) divided into sub-paths; (c)
the final logical cycle.

The Algorithm running time is obviously polynomial.
Theorem 2:The logical network generated by Algorithm 2

is a simple cycle whose maximum SRLG is not greater than 2.
Proof: Since the DFS tour traverses all the nodes and

returns to the starting node, the constructed logical network
is a cycle. Since a logical node is an end point of exactly two
links, then the cycle must be simple. The maximum SRLG is
not greater than 2 because every link is traversed by the DFS
exactly twice (once in each direction).

3) The Final Algorithm: We now solve the original min-
SLRG problem, which requires the logical graph to be con-
nected and contain no more thanB links. To this end, we
combine Algorithm 1 and Algorithm 2 in the following way.
We first invoke Algorithm 2 to produce a logical cycle. Then,
we invoke Algorithm 1 to generate additional logical links,such
that their total number will beB.

Algorithm 3: (An approximation for of MM-SRLG)
1) Execute Algorithm 2. Denote its output byEcycle

L .
2) For every e ∈ EP , reduceCp(e) by the number of

lightpaths in the cycle traversinge.
3) Execute Algorithm 1 with a budget equals toB′ = B −

|VL|. Denote its output byEarb
L .

4) ReturnEcycle
L ∪ Earb

L .
Note that the algorithm may output more than one logical

link between a pair of logical nodes. As mentioned in the
Introduction, we allow this in our model. This is necessary
to accommodate cases in which the network operator wishes
to provision between two routers a higher amount bandwidth
than a single lightpath allows.

Theorem 3:Algorithm 3 produces a connected logical net-
work whose maximum SRLG≤ OPT+3, where OPT is the
value of the optimal solution for MM-SRLG.

Proof: Since the output graph of Algorithm 2 is a con-
nected logical cycle, the output graph of Algorithm 3 must be
connected, and must have a degree of at least 2 for each node.
It is easy to see that the number of logical links in the solution
returned by the algorithm isB. Let S′ denote the maximum
SRLG of the solution produced by the algorithm. Consider an
arbitrary subset of the logical links in an optimal solution,
whose cardinality isB − |VL|. Denote the maximum SRLG
of this subset bySB−|VL|. In addition, denote the maximum
SRLG of the optimal solution of MM-SRLG(arb) withB−|VL|
logical links by OPTB−|VL|, and the output of Algorithm 1
(with B − |VL| logical links) bySALG−1. Thus,

wa=0.25

wb=0.25

wc=0.25

wd=0.25

(a) a logical network with 4 light-
paths

wa=0.2

wb=0.3

wc=0.4

wd=0.1

(b) a logical network with 5 light-
paths

Fig. 5. Two logical networks over a physical network. Option(b) is less
robust although it has more logical links

OPT≥ SB−|VL| ≥ OPTB−|VL| ≥ SALG−1 − 1

≥ (S′ − 2) − 1 = S′ − 3,

The first inequality holds becauseSB−|VL| is the maximum
SRLG of a subset of the optimal solution. The second inequality
holds because the maximum SRLG of an optimal solution
must not be greater than an arbitrary solution, and the third
inequality holds due to Theorem 1. Finally, the fourth inequality
holds because the maximum SRLG of the cycle produced by
Algorithm 2 is 2, which implies thatS′ ≤ SALG−1 + 2.

IV. CASE-2: USING INFORMATION ABOUT THE WEIGHTS

OF THE LOGICAL NODES

As said earlier, when designing a logical network, the oper-
ator is unlikely to know the exact bandwidth demand matrix.
However, in many cases each router (logical node) can be
associated with a weight, which is proportional to the portion
of traffic expected to originate from and received by it. The
weights are determined by the network operator before the
logical network is set up, based on past experience, on the
number of users/subnets expected to be connected through each
node, on the importance of the node’s geographical location,
and so on. Herein we propose to use this weight as an indication
of the degree this node should have in the logical network.

The idea that the number of lightpaths connected to every
node should be proportional to a weight whose value is known
in advance is one of the contributions of this paper. It allows
us to build a logical network while taking into account the
expected traffic load on each router although the actual traffic
matrix is unknown in advance. We illustrate this idea in
Figure 5, which shows two logical networks overlayed on the
physical network of Figure 1(a).

In Figure 5(a) we assume that the 4 routers are equally
important. Thus, each of them has an equal weight of 0.25.
In this figure we also assume that the budget of the logical
network allows to establish onlyB = 4 lightpaths. Hence,
each of the 4 routers should be an end point of2 · 0.25 · 4 = 2
lightpaths. Of course, there are other options to establish4
lightpaths between the 4 nodes such that each node will be

6

connected to 2 lightpaths. In Figure 5(b), the same 4 nodes
have different weights and the budget allows to establishB = 5
lightpaths. Thus, we have 4 lightpaths connected to nodec, 3
to nodeb, 2 toa and 1 tod. Although there are more lightpaths
in Figure 5(b) than in Figure 5(a), the logical network is less
robust, because it might be disconnected after a single failure.

We seek to maximize the restorable throughput while taking
into account the weight of each logical node. To this end,
we propose an approximation algorithm (Algorithm 5) for the
minimization of the maximum SRLG while using the weights
of the nodes for establishing an upper bound on the degree
of the nodes. We show that this algorithm produces logical
networks that accommodate more restorable throughput than
the networks produced by Algorithm 3. The rationale is that
nodes that should accommodate more bandwidth need higher
connectivity in order to deliver all the traffic before and after
a failure takes place.

A. The Weighted MM-SRLG Problem

In this section we address the weighted variant of MM-SRLG
problem. This problem is similar to MM-SRLG, except that
the upper bound on the degree of every logical nodev ∈ VL

must be proportional to a given weightwv which is part of the
network. The value ofwv is chosen such that

∑

v∈VL
wv = 1.

The degree of each logical nodev in GL is ≤ 2 ·B ·wv ·α,
where α is an integer≥ 1. We useα as a parameter that
controls the flexibility while setting the degree of each logical
node. Forα = 1, the node degree has no flexibility. Asα
increases, we allow more flexibility to the degree of each node.
This flexibility allows us to obtain a smaller SRLG at the cost
of deviating from the nodes’ weights. As before, the degree of
each logical node is≥ 2.

In addition to the requirement that
∑

v∈VL
wv = 1, we

require that for everyv, the value of2B · wvα will be an
even integer. While the latter requirement imposes an additional
constraint on thewv vector, we note that: (1) a weight vector
that fulfills these two requirements can easily be found using
an integer program whose input is the originalw′

v vector that
fulfills only the

∑

v∈VL
w′

v = 1; the linear program minimizes
the total difference betweenwv an w′

v; (2) for every v, the
maximum difference between its original weightw′

v and the
ultimate weightwv is smaller than 1

2B·α , which in practice
would be less than 1% since typicallyB > 50 in most
real-world networks; (3) the weight vector serves only as a
rough estimate of the importance of each node, and the small
(approximately 1%) “rounding error” that we add keeps it as
such.

We develop an approximation algorithm for the weighted
MM-SRLG problem in a similar way to what we did in
Section III for MM-SRLG. We first develop an algorithm for
the weighted MM-SRLG(arb) problem, where the constructed
graph is not necessarily connected. Then, we solve the MM-
SRLG(cycle) problem where a logical cycle over the physical
graph is produced. Finally, we combine the solutions of the two
algorithms into a solution for the general problem.

1) An Algorithm for Weighted MM-SRLG(arb):In the
weighted MM-SRLG(arb) problem we do not require the
logical graph to be connected, but we take into account the
weight constraints on the logical degrees. Note that since no
connectivity constraint is imposed on the logical graph, the
following algorithm does not assume thatB ≥ |VL|. To take the
weights into account, we transform the physical graphGP into
G′

P = (V ′
P , E′

P) as follows. First, for every logical nodev ∈ VL

we define a mirror nodev′. We denote the set of logical nodes
in the new graph asV ′

L. The setV ′
L consists only of mirror

nodes. ThenV ′
P = VP ∪ V ′

L andE′
P = EP ∪ {(v, v′)|v ∈ VL}.

This means that each mirror node is connected to its original
node. The weight of every mirror nodev′ ∈ V ′

L is wv′ = wv.
Algorithm 4: (An approximation for weighted MM-

SRLG(arb))

1) ConstructG′
P and V ′

L according to the above transfor-
mation.

2) For everyv ∈ VL, set the capacity of the link(v, v′) to
be 2 · B · wv · α.

3) For C = 1 to ⌈B/2⌉ do

a) Set the capacity of everye ∈ EP to be min(2 · C,
Cp(e)).

b) Call ALG to find the maximum set of logical links
in G′

P while usingV ′
L as logical nodes.

c) If the total number of logical links is≥ B, then
select an arbitrary subset of these links of sizeB,
and exit the loop.

4) For each logical link in the transformed graph that
connects a pair of mirror nodes, add toEL a logical link
in the original graph which connects the nodes that are
attached to these mirror nodes.

Theorem 4:Algorithm 4 builds a logical network whose
SRLG ≤ OPT+1, where OPT is the SRLG of an optimal
solution for weighted MM-SRLG(arb).

The proof of this theorem is similar to the one presented
for Theorem 1. The graph transformation used in the above
algorithm has no impact on the approximation factor, since the
SRLG on the links of the form(v, v′) is not taken into account
in the final solution.

2) The Final Algorithm: We are now ready to present the
final approximation algorithm for the weighted MM-SRLG
problem, which combines Algorithm 4 and Algorithm 2 (pre-
sented in Section III-B2).

Algorithm 5: (an approximation Algorithm for weighted
MM-SRLG)

1) Execute Algorithm 2. Denote its output byEcycle
L .

2) For every logical nodev, set its new weight towv−1/B
1−|VL|/B

(to offset the new degree of each node, which is now set
to 2).

3) For every e ∈ EP , reduceCp(e) by the number of
lightpaths in the cycle traversinge.

4) Execute Algorithm 4 with a budget that equalsB′ =
B − |VL|. Denote its output byEarb

L .
5) ReturnEcycle

L ∪ Earb
L .

7

Theorem 5:Algorithm 5 produces a logical network whose
maximum SRLG≤ OPT+3, where OPT is the value of the
optimal solution of weighted MM-SRLG which is not greater
than the optimal solution plus 3.

Proof: Since the output graph of Algorithm 2 is a cycle,
the output of Algorithm 5 must be connected. It is easy to see
that the number of logical links in the solution returned by the
algorithm isB. Ecycle

L imposes on each node a degree of 2.
Earb

L imposes on each node a degree≤ 2 · B′ · wv−1/B
1−VL/B · α.

Consequently, each node in the final logical network has a link
degree≤ 2 + 2 · B′ · wv−1/B

1−VL/B · α < 2 · B · wv · α.
The proof for the approximation bound is similar to the

one presented in the proof of Theorem 3. LetS′ denote the
maximum SRLG of the solution produced by the algorithm.
Consider an arbitrary subset of the logical links in an optimal
solution, whose cardinality isB−(|VL|). Denote the maximum
SRLG of this subset bySB−|VL|. In addition, denote the
maximum SRLG of the optimal solution of MM-SRLG(arb)
with B − |VL| logical links by OPTB−|VL|, and the output of
Algorithm 4 (with B − |VL| logical links) bySALG−4. Thus,

OPT≥ SB−|VL| ≥ OPTB−|VL| ≥ SALG−4 − 1

≥ (S′ − 2) − 1 = S′ − 3,

The first inequality holds becauseSB−|VL| is the maximum
SRLG of a subset of the optimal solution. The second inequality
holds because the maximum SRLG of an optimal solution
must not be greater than an arbitrary solution, and the third
inequality holds due to Theorem 4. Finally, the fourth inequality
holds because the maximum SRLG of the cycle produced by
Algorithm 2 is 2, which implies thatS′ ≤ SALG−4 + 2.

V. CASE-3: ASSUMING FULL KNOWLEDGE OFTHE USERS’
BANDWIDTH DEMANDS

We now address case-3, where the operator knows the
average bandwidth demands between every pair of nodes on
the logical network. In this case, we solve a joint optimization
problem that:

1) Selects the logical links and routes them on the physical
network.

2) Determines the end-to-end primary and backup paths for
all traffic demands, and the bandwidth reserved on each
path.

Case-3 only rarely occurs in practice, because the network
operator only rarely has concrete knowledge of the future band-
width demands when the logical network is constructed. Still,
this case can serve as a benchmark for the maximum restorable
throughput in case-1 and case-2. The joint optimization problem
for this case can be formulated as an integer linear program
(ILP), which we solve by relaxing its integrality constraints.

The linear program for the global recovery scheme requires
as an input the primary path of each traffic flow. However,
we do not have this information when the logical network is
constructed. We solve this problem by building a backup path

for every flow and every logical link the flow traverses, rather
than building a single backup path for every flow. This strategy
requires every backup path to start and end at the nodes of
the failed logical link, and it is slightly inferior to the global
recovery scheme [4].

The linear program has the following parameters:

• F – the set of all logical node pairs. Each pairf =
(sf , tf) ∈ F constitute a flow.

• df – the bandwidth demand of flowf ∈ F . This value is
normalized to the capacity of a single logical link; namely,
df = 1 means that the bandwidth demand equals the
capacity of a logical link.

• B – the total number of logical links that are budgeted to
the network.

We define the following variables:

• ye
f,(u,v) – the fraction ofdf routed over the logical edge

connecting the logical nodesu andv when physical edge
e ∈ EP fails; when no edge fails,e = φ.

• xf – the total routed fraction ofdf .
• l(u,v) – an integer variable that equals the number of

logical links connecting the two logical nodesu andv.
• r

(u,v)
e – an integer variable that equals the number of

logical links connecting the two logical nodesu and v
and that traverse the physical linke ∈ EP .

• r
(u,v)
e – a binary variable that equals 1 if and only if

r
(u,v)
e ≥ 1.

In the following l(u,v) represents a directed link. However, we
treat each such directed link as an undirected link with the
corresponding capacity. For example, suppose thatl(2,1) = 2,
l(1,2) = 2 and l(3,1) = 1. Then, there are 5 undirected links
connected to node ’1’, 4 undirected links connected to node
’2’ and 1 undirected link connected to node ’3’.

The target function is to maximize the total throughput
∑

f df · xf , subject to the following constraints:

8

(1)
∑

e=(j,i)∈EP
r
(u,v)
e −

∑

e=(i,j)∈EP
r
(u,v)
e

=



















−l(u,v) i = u

l(u,v) i = v

0 else

,∀i ∈ VP ,∀u, v ∈ VL

(2)
∑

u,v∈VL
r
(u,v)
e ≤ Cp(e), ∀e ∈ EP

(3)
∑

u,v∈VL
l(u,v) = B

(4)
∑

u∈VL
ye

f,(u,v) −
∑

u∈VL
ye

f,(v,u)

=



















xf v = tf

−xf v = sf

0 else

,∀v ∈ V,∀f ∈ F,∀e ∈ {EP , φ}

(5)
∑

f∈F df · ye
f,(u,v) +

∑

f∈F df · ye
f,(v,u) ≤ l(u,v) + l(v,u)

∀u, v ∈ VL,∀e ∈ {EP , φ}

(6) ye
f,(u,v) ≤ 1 − r

(u,v)
e ,∀f ∈ F,∀e ∈ EP ,∀u, v ∈ VL

(7) r
(u,v)
e + ye

f,(u,v) ≥ yφ
f,(u,v) ,∀f ∈ F,∀e ∈ EP ,∀u, v ∈ VL

(8) r
(u,v)
e ≤ r

(u,v)
e · B ,∀e ∈ EP ,∀u, v ∈ VL

(9)
∑

u∈VL
l(u,v) + l(v,u) ≥ 2 ,∀v ∈ VL

(10) 0 ≤ xf ≤ 1, 0 ≤ ye
f,(u,v) ≤ 1

∀f ∈ F,∀u, v ∈ VL,∀e ∈ {EP , φ}

(11) r
(u,v)
e ∈ {0, 1} , r

(u,v)
e ∈ {0, 1, 2, . . .} ,

l(u,v) ∈ {0, 1, 2, . . .}

∀e ∈ EP ,∀u, v ∈ VL.

The set (1) of constraints ensures that every logical link is
routed over the physical link. Note that in this ILP, the physical
links must be directed. Therefore,EP represents here a set of
directed edges, where each undirected link is represented by
a pair of oppositely directed links. Constraint (2) ensuresthat
the capacities of the physical links are not exceeded. Constraint
(3) ensures that the total number of logical links isB. The
set (4) of constraints ensures the conservation of traffic over
the logical network. The set (5) ensures that traffic flows only
over the selected logical links. Note thatl(u,v) represents the
number of directed logical links fromu to v. Since in our
problem a logical link is undirected, each chosen logical link
gives bandwidth to both directions. Therefore, in the right-hand
side of each inequation in (5) we sum the number of logical
links from both directions of each pair of logical nodes. Theset
(6) ensures that traffic flow will not be carried by logical links
that traverse a failed physical link. The set (7) ensures a traffic
flow will be carried by the same logical links for all link failure
events unless the logical link traverses a failed physical link.
The set (8) ensures a proper relation betweenr

(u,v)
e andr

(u,v)
e ;

namely,r(u,v)
e is set to 1 ifr(u,v)

e is greater than 0. The set (9)
ensures that all logical nodes have a degree of at least 2. The

set (10) of constraints ensures that the total routed bandwidth
of each flow do not exceed flow demand. Finally, the set (11)
of constraints ensures that each logical link is routed overa
single physical path.

The above program is an integer linear program (ILP). To
allow tractability in the simulation study we solve the fractional
version of this ILP where we relax the integrality constraints.
This relaxation allows us to get an upper bound to the solution
of case-3. This solution will serve as a benchmark for the
solutions of case-1 and case-2.

VI. SIMULATION STUDY

In this section we evaluate the performance of the proposed
algorithms using extensive simulations. We first evaluate the
SRLG performance of Algorithms 3 (case-1) and 5 (case-2).
Then, we compare the restorable throughput in the three cases.
Throughout this section we useα = 22 in Algorithm 5.

A. SRLG Performance

We first evaluate the SRLG performance of Algorithm 3.
As in earlier related work [20], [21], [28], we use augmented
real network topologies as our physical network: the NSFNET
topology, which has 14 nodes and 29 links, and the USIP
topology, which has 24 nodes and 53 links. For each topology
we generate 125 random instances, each comprises of a subset
of physical nodes, which serve as logical routers, and a budget
B of logical links. For simplicity, and to allow faster execution
of the linear program, we do not impose a constraint on the
capacities of the physical links. For each instance we ran the
following algorithms:

1) Algorithm 3: This is the MM-SRLG approximation al-
gorithm presented in Section III-B3.

2) An algorithm that finds a lower bound (i.e. the best
possible result) for MM-SRLG. This algorithm finds an
optimal solution for the splittable variant of the problem,
which can be represented as a linear problem and be
solved in polynomial time. Obviously, an optimal solution
to this variant is always better than or equal to the optimal
solution for MM-SRLG. We then round up the fractional
optimal solution returned by the algorithm. The rounded
result is still a lower bound for MM-SRLG, because
the optimal solution for MM-SRLG is also integral. The
linear program is presented in Appendix C.

In each simulation instance, the locations of the logical
routers are randomly chosen using a uniform distribution. The
number|VL| of logical routers is chosen as either1/3 or 1/2 of
the number of physical nodes|VP |.The budget of logical links
(B) varies between|VL| + 2 and14 · |VL|.

Figure 6 shows the simulation results for the two physical
topologies. In all the graphs thex-axis represents the budget
B of logical links, while they-axis represents the maximum
SRLG size produced by each algorithm. For each point in the

2Following some initial simulations, we observed that the bestperformance
is obtained withα = 2. Nonetheless, we cannot claim that the same value of
α is the best choice for every system.

9

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70

M
ax

im
um

 S
R

LG

B

Alg. 3
lower bound

(a) NSFNET physical topology,|VL|=5

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

M
ax

im
um

 S
R

LG

B

Alg. 3
lower bound

(b) NSFNET physical topology,|VL|=7

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

M
ax

im
um

 S
R

LG

B

Alg. 3
lower bound

(c) USIP physical topology,|VL|=8

 0

 2

 4

 6

 8

 10

 20 40 60 80 100 120 140 160 180

M
ax

im
um

 S
R

LG

B

Alg. 3
lower bound

(d) USIP physical topology,|VL|=12

Fig. 6. The SRLG performance (with error bars) of Alg. 3 compared to the theoretical lower bound

graphs, we show an error bar for the range of itsy values.
Each bar depicts the distance between the minimum value
of the “maximum SRLG” and the maximum value of the
“maximum SRLG” produced by different simulation instances
for a given B value. In each such a simulation instance,
the locations of logical nodes are different, because they are
randomly chosen according to uniform distribution. For most
of the points there was no difference between the minimum
and maximum “maximum SRLG” produced by the different
simulation instances, and therefore there is no error bar. We
see in all graphs that Algorithm 3 performs very well, and it is
very close to the theoretical lower bound. No error bar for most
of the points means that, for most budgets, the maximum SRLG
size does not depend on the location of the chosen nodes. This
indicates that the maximum SLRG size is influenced mainly by
the number of logical links (B) and much less by the locations
of the logical nodes.

It is evident from all the graphs that given a number of
logical nodes, the maximum SRLG increases with the budget
B. However, when the number of logical nodes increases, then
for the same number of logical links the maximum SRLG size
decreases to some extent. The reason is that by increasing the

number of nodes, one has more flexibility in choosing and
routing the logical links. Finally, by comparing the performance
of the algorithms for the two physical topologies, we observe
that for the sameVL/VP andEL/EP ratios, the performance
of the algorithms in the USIP topology degrade to some extent.
This can be explained by the fact that the average length of the
physical route of each logical link is longer for larger physical
topologies, which imposes higher load on the network.

To validate the above results we depict in Figure 7 the
performance of the above two algorithms while using artificially
generated physical topologies. We randomly generate 20 phys-
ical topologies having 15 nodes and 30 links (equivalent in size
to the NSFNET topology). To generate these topologies we use
the BRITE simulator [24] while employing the Barabasi-Albert
model [2]. This model captures two important characteristics
of network topologies: incremental growth and preferential
connectivity of a new node to well-connected existing nodes.
These characteristics yield a power-law degree distribution of
the nodes. As for NSFNET we constructed logical networks
with 5 and 7 nodes in Figure 7(a) and Figure 7(b), respectively.

The results of Figure 7 closely resemble the ones for the
NSFNET topology. Here also the difference between Algo-

10

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70

M
ax

im
um

 S
R

LG

B

Alg. 3
lower bound

(a) |VL|=5

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

M
ax

im
um

 S
R

LG

B

Alg. 3
lower bound

(b) |VL|=7

Fig. 7. The SRLG performance of Alg. 3 compared to the theoretical lower bound averaged over 20 artificially generated physical topologies

 1

 2

 3

 4

 5

 6

 10 15 20 25 30

M
ax

im
um

 S
R

LG

B

Alg. 5
Alg. 3

Fig. 8. The SRLG performance of the algorithms given NSFNET as the
physical topology, and|VL| = 7

rithm 3 and the theoretical lower bound is less than 1. The
curves are smoother than the curves for NSFNET, because we
average the results over many instances of physical topologies.

We now evaluate the SRLG performance of Algorithm 5. The
evaluation is done using the same simulation setup described
above. We only show here the results for the NSFNET physical
topology. Figure 8 shows the SRLG for Algorithm 5 and
Algorithm 3. The x-axis represents the budgetB of logical
links, while they-axis represents the maximum SRLG achieved
by each algorithm. It is evident that Algorithm 3 obtains the
lowest maximum SLRG size, which is not surprising since this
algorithm is not restricted by the node weights.

B. Restorable Throughput Performance

We now evaluate the restorable throughput admitted by the
logical networks constructed in each of the three cases. To
measure this criterion, we generate traffic demands for the
logical network based on the Gravity model [19], where the
demand of every pair of logical nodes is proportional to the
products of their weights. We remind the reader that all logical

links have the same capacity, and that bandwidth demands are
normalized by the capacity of the logical link. To measure the
maximum restorable throughput that can be admitted into the
logical network, we use the optimal algorithm presented in [4]
for the Global recovery scheme [27]. As discussed earlier and
depicted in Figure 2, in this scheme each primary logical path
is associated with one backup logical path between the same
end nodes. Each backup path protects against the failure of any
physical link in the primary path, and it therefore does not share
any physical link with this path. This scheme is sometimes
referred to as “path recovery scheme.”

Figure 9 depicts the restorable throughput for the constructed
logical network with 5 or 7 logical nodes. For this simulation,
we use the NSFNET as the physical topology. Thex-axis
represents the number of logical links, denotedB, whereas
the y-axis represents the fraction of traffic demand that can
be admitted into the logical network while guaranteeing 100%
restorability in the face of a single physical failure. As expected,
the fraction of admitted throughput increases withB for all the
algorithms. Furthermore, the algorithm for case-3 obtainsup to
120% better throughput than the other two, with its advantage
depending on the number of logical links. As this number
increases, the advantage of the case-3 algorithm decreasesdue
to the greater flexibility in the selection of the logical links,
which in turn makes the full knowledge of future demands less
important.

The difference between the curves of case-1 and case-2
is interesting. We can see that case-2 has better restorable
throughput than case-1 (up to 25%) for allB values. This
result indicates the importance of knowing the nodes’ weights
in advance. While we obtained similar results in other scenarios,
we cannot claim, of course, that this will always be the case.

Figure 10 depicts the performance of case-2 as a function of
the α-value used during Algorithm 5. As before, NSFNET is
the physical topology. This time we useVL = 7. The x-axis
represents the value ofα, whereas they-axis represents the
restorable traffic demand of case-2 normalized by the restorable
traffic demand of case-1. We consider 6 different scenarios

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70

F
ra

ct
io

n
of

 A
dm

itt
ed

 R
es

to
ra

bl
e

T
hr

ou
gh

pu
t

B

Case-3
Case-2
Case-1

(a) |VL|=5

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 A
dm

itt
ed

 R
es

to
ra

bl
e

T
hr

ou
gh

pu
t

B

Case-3
Case-2
Case-1

(b) |VL|=7

Fig. 9. The restorable throughput performance of the algorithms given NSFNET as the physical topology

with different values ofB: 30, 40, 50, 60, 80 and 100. It is
evident from the graph that for lowB-values up to 50, the best
performance is obtained forα = 1, while for higher values,
α = 2 is optimal. This suggests that for lowB-values it is
more important that the network will be designed according to
the expected traffic distribution rather than according to only
SRLG considerations.

VII. C ONCLUSION

This paper is the first to propose algorithms for building
the logical topology on top of the optical network while
maximizing the restorable throughput of the end-to-end paths.
We addressed this problem in three cases: when the operator
has no knowledge of the future bandwidth demands, when it has
partial knowledge, and when it has full knowledge. For the first
case the most reasonable strategy is to minimize the maximum
SRLG size. We showed that the resulting (new) problem is
NP hard, and proposed an efficient approximation for solving
it. For the second case we assumed that each router (logical
node) can be associated with a weight, which is proportional
to the portion of traffic expected to originate from and received
by it. We used this weight as an indication of the degree this
node should have in the logical network. In the third case,
we assumed that the operator knows the average bandwidth
demands between every pair of nodes on the logical network.
We presented efficient algorithms for each of these cases, and
ran extensive simulations to compare their performance.

REFERENCES

[1] Dwdm - dense wavelength division multiplexing.
http://www.fiberoptic.com/adtdwdm.htm.

[2] A. Barabasi, R. Albert, and H. Jeong. Scale-free characteristics of random
networks: the topology of the World Wide Web. InPhysica A: Statistical
Mechanics and Its Applications, volume 281, pages 69–77, June 2006.

[3] R. Cohen and G. Kaempfer. A unicast-based approach for streaming
multicast. InProceedings of IEEE INFOCOM, volume 1, pages 440–
448, 2001.

[4] R. Cohen and G. Nakibly. Maximizing restorable throughput in MPLS
networks.IEEE/ACM Transactions on Networking, 18(2):568–581, 2010.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

N
or

m
al

iz
ed

 A
dm

itt
ed

 R
es

to
ra

bl
e

T
hr

ou
gh

pu
t

α

B = 30
B = 40
B = 50
B = 60
B = 80

B = 100

Fig. 10. The normalized restorable throughput as a function of α. |VL| = 7

[5] O. Crochat and J.-Y. Le Boudec. Design protection for WDM optical net-
works. IEEE Journal on Selected Areas in Communications, 16(7):1158–
1165, September 1998.

[6] O. Crochat, J.-Y. Le Boudec, and O. Gerstel. Protection interoperability
for WDM optical networks. IEEE/ACM Transactions on Networking,
8(3):384–395, June 2000.

[7] Q. Deng, G. Sasaki, and C. fong Su. Survivable IP Over WDM: An
efficient mathematical programming problem formulation. InIEEE HSN,
2002.

[8] R. Dutta and G. N. Rouskas. A survey of virtual topology design
algorithms for wavelength routed optical networks.Optical Networks,
1:73–89, 2000.

[9] A. Frank, A. V. Karzanov, and A. Sebo. On integer multiflow maximiza-
tion. SIAM J. Discret. Math., 10:158–170, 1997.

[10] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Co., 1979.

[11] A. Gençata and B. Mukherjee. Virtual-topology adaptation for WDM
mesh networks under dynamic traffic. IEEE/ACM Trans. Netw.,
11(2):236–247, April 2003.

[12] O. Gerstel, R. Ramaswami, and G. H. Sasaki. Cost-effective traffic
grooming in WDM rings. IEEE/ACM Transactions on Networking,
8:618–630, 2000.

[13] L. Gouveia, P. Patrcio, and A. de Sousa. Hop-constrained node survivable
network design: An application to mpls over wdm.Networks and Spatial
Economics, 8:3–21, 2008.

12

[14] B. Jaumard, C. Meyer, and B. Thiongane. Comparison of ILP formula-
tions for the RWA problem.Optical Switching and Networking, 4(34):157
– 172, 2007.

[15] X. Jin, W. Yiu, S. Chan, and Y. Wang. On maximizing tree bandwidth
for topology-aware peer-to-peer streaming.IEEE Transactions on Multi-
media, 9:1580–1592, 2007.

[16] D. Kan, A. Narula-Tam, and E. Modiano. Lightpath routingand capacity
assignment for survivable IP-over-WDM networks. InDRCN, Oct. 2009.

[17] G. R. Kiran and C. S. R. Murthy. QoS based survivable logical topology
design in WDM optical networks.Photonic Network Communications,
7:193–206, 2004.

[18] V. R. Konda and T. Y. Chow. Algorithm for traffic grooming in optical
networks to minimize the number of transceivers. InIEEE Workshop on
High Performance Switching and Routing, pages 218–221, 2001.

[19] J. Kowalski and B. Warfield. Modeling traffic demand between nodes in
a telecommunications network. InProceedings of ATNAC, 1995.

[20] K. Lee, H.-W. Lee, and E. Modiano. Reliability in layered networks
with random link failures. InProceedings of the 29th conference on
Information communications, INFOCOM, pages 1667–1675, 2010.

[21] K. Lee and E. Modiano. Cross-layer survivability in WDM-based
networks. IEEE/ACM Transactions on Networking, 2011.

[22] D. Medhi. A unified approach to network survivability for teletraffic
networks: Models, algorithms and analysis.IEEE Trans. on Communi-
cations, 42:534–548, 1994.

[23] D. Medhi and S. Sankarappan. Impact of a transmission facility link
failure on dynamic call routing circuit-switched networks under various
circuit layout policies. Journal of Network and Systems Management,
1:143–169, 1993.

[24] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An approach to
universal topology generation. InProceedings of MASCOTS, 2001.

[25] A. E. Ozdaglar and D. P. Bertsekas. Routing and wavelength assignment
in optical networks.IEEE/ACM Transactions on Networking, 11(2):259–
272, April 2003.

[26] B. Rajagopalan, D. Pendarakis, D. Saha, R. Ramamoorthy, and K. Bala.
IP over optical networks: architectural aspects.IEEE Communications
Magazine, 38(9):94–102, September 2000.

[27] V. Sharma and F. Hellstrand. Framework for multi-protocollabel
switching (MPLS)-based recovery. IETF RFC 3469, February 2003.

[28] T. Venkatesh, T. Sujatha, and C. Murthy. A novel burst assembly
algorithm for optical burst switched networks based on learning automata.
Optical Network Design and Modeling, 4534:368–377, 2007.

[29] H. Zang and J. P. Jue. A review of routing and wavelength assignment
approaches for wavelength-routed optical WDM networks.Optical
Networks Magazine, 1:47–60, 2000.

APPENDIX A
CASE-1: MM-SRLG(CYCLE) IS NP-COMPLETE

We prove that MM-SRLG(cycle) is NP-Complete using a
reduction from the Directed Hamiltonian Cycle (DHC) prob-
lem [10]. The reduction is similar to the one presented in [3]. In
the DHC problem, a directed graphG(V,E) is given, and the
problem is to determine ifG contains a directed Hamiltonian
cycle (i.e., a simple cycle that passes through all the vertices
of V).

Theorem 6:MM-SRLG(cycle) is NP-Complete.
Proof: MM-SRLG(cycle) is clearly in NP. We now show a

reduction from DHC. Given a directed graphG(V,E) as an in-
stance of DHC, we construct an instance of MM-SRLG(cycle)
and show that the DHC instance contains an Hamiltonian
cycle if and only if the constructed MM-SRLG(cycle) instance
contains a logical network whose maximum SRLG is 1. We
define the undirected physical graphGP = (VP , EP) as
follows:

VP =
{

vin, vmid, vout|v ∈ V
}

,

s

uv

(a) A given instance of DHC

Sout

Smid

Sin

Vout

Vmid

Vin

Uout

Umid

Uin

(b) The reduced MM-SRLG(cycle) in-
stance

Fig. 11. An illustration of a reduction from an instance of DHC to an instance
of MM-SRLG(cycle)

EP =
{

(vin, vmid), (vmid, vout)|v ∈ V \ {s}
}

∪
{

(vout, uin)|(v, u) ∈ E
}

.

In addition, we choose the following set of logical nodes:

VL =
{

vmid|v ∈ V \ {s}
}

.

Figure 11 depicts an example of the above reduction. IfG
contains a directed Hamiltonian cycleC, this cycle can be
transformed into the following set of logical links:

EL =
{

(umid, vmid)|(u, v) ∈ C
}

,

where(vmid, umid) is a logical link routed over the physical
path (vmid, vout, uin, umid). Since a logical link was con-
structed for every edge inC, then the logical network must
form a cycle. By the construction, since for everyv ∈ V there
is exactly one edge inC that entersv and exactly one edge in
C that exitsv, then every edge inEP is used by at most one
logical link. Thus,(VL, EL) is a logical graph having SRLG=1.

To prove the other direction, we need to show that if the
created MM-SRLG(cycle) instance contains a logical cycle
whose SRLG is 1, then the original DHC instance contains
a directed Hamiltonian cycle. We denote the logical cycle
formed by EL as CL. By definition, EL is a set of edge-
disjoint physical paths. Thus, and by construction, every vertex
vmid ∈ VL has at most two logical edges attached to it. We
construct a cycleC in G by choosing an edge(u, v) for each
logical link (umid, vmid) ∈ EL. Since CL is a cycle that
connects all the logical vertices inVL, C must be a Hamiltonian
cycle.

APPENDIX B
THE L INEAR PROGRAM FORALG

We present the linear program used for ALG in Algorithms 1
and 4. The target function of the program is maximizing the
number of logical links, given a capacity constraintc(e) for
everye ∈ EP :

Maximize L
subject to the following constraints:

13

(1)
∑

e=(j,i)∈EP
r
(u,v)
e −

∑

e=(i,j)∈EP
r
(u,v)
e

=



















−l(u,v) i = u

l(u,v) i = v

0 else

,∀i ∈ VP ,∀u, v ∈ VL

(2)
∑

u,v∈VL
l(u,v) = L

(3)
∑

u,v∈VL
r
(u,v)
e ≤ c(e) ,∀e ∈ EP

(4) r
(u,v)
e ≤ 1, l(u,v) ≤ 1

∀e ∈ EP ,∀u, v ∈ VL.

The set (1) of constraints ensures that every logical link
is routed over a physical link. Constraint (2) ensures that the
total number of logical links isL. The set (3) of constraints
ensures that the capacity constraints of the physical linksare
not violated.

APPENDIX C
THE L INEAR PROGRAM FORTHE SRLG LOWER BOUND

In this section we present the linear program to find a lower
bound of the optimal maximum SRLG. This program is the
fractional version of the following ILP that finds the optimal
SRLG.

The target function of the program is to minimize the
maximum cardinality of the SLRGs:

Minimize z
subject to the following constraints:

(1)
∑

e=(j,i)∈EP
r
(u,v)
e −

∑

e=(i,j)∈EP
r
(u,v)
e

=



















−l(u,v) i = u

l(u,v) i = v

0 else

,∀i ∈ VP ,∀u, v ∈ VL

(2)
∑

u,v∈VL
l(u,v) = B

(3)
∑

u,v∈VL
r
(u,v)
e ≤ z ,∀e ∈ EP

(4) r
(u,v)
e ∈ {0, 1, 2 . . .} , l(u,v) ∈ {0, 1, 2 . . .}

∀e ∈ EP ,∀u, v ∈ VL.

The set (1) of constraints ensures that every logical link is
routed over the physical link. Constraint (2) ensures that the
total number of logical links isB. The set (3) of constraints
ensures that the variablez takes the maximum cardinality of
the all SRLGs. Finally, the set (4) of constraints ensures that
each logical link is routed over a single physical path.

PLACE
PHOTO
HERE

Reuven Cohenreceived the B.Sc., M.Sc. and Ph.D.
degrees in Computer Science from the Technion -
Israel Institute of Technology, completing his Ph.D.
studies in 1991. From 1991 to 1993, he was with
the IBM T.J. Watson Research Center, working on
protocols for high speed networks. Since 1993, he
has been a professor in the Department of Computer
Science at the Technion. He has also been a consul-
tant for numerous companies, mainly in the context
of protocols and architectures for broadband access
networks. Reuven Cohen has served as an editor of

the IEEE/ACM Transactions on Networking and the ACM/KluwerJournal on
Wireless Networks (WINET). He was the co-chair of the technical program
committee of Infocom 2010 and headed the Israeli chapter of theIEEE
Communications Society from 2002 to 2010.

PLACE
PHOTO
HERE

Gabi Nakibly received the B. Sc. in Information
Systems engineering (summa cum laude) and PhD
in Computer Science from the Technion - Israel
Institute of Technology, Haifa, Israel, in 1999 and
2008, respectively. Gabi is a professional fellow in
the National Research & Simulation Center at Rafael
Advanced Defense Systems. He also serves as an ad-
junct researcher and lecturer in the Computer Science
department at the Technion. Gabi received his Ph.D.
in computer Science in 2008 from the Technion, and
he is a recipient of the Katzir Fellowship. His main

research interests include network security and traffic engineering.

