This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation informe
10.1109/TCC.2015.2487964, |IEEE Transactions on Cloud Computing

Inter-Datacenter Scheduling of Large Data Flows

Reuven Cohen Gleb Polevoy
Department of Computer Science
Technion—Israel Institute of Technology
Haifa 32000, Israel

Abstract—Inter-datacenter transfers of non-interactive but Our network model is similar in many aspects to the
timely large flows over a private (managed) network is an one considered in [12]. The bandwidth of the considered
important problem faced by many cloud service providers. .jyate network is divided into two classes: best-efforsl a

The considered flows are non-interactive because they do not teed . The first cl i f t best
explicitly target the end users. However, most of them must be guaranteed services. € Nrst class Is for spontaneous bes

performed on a timely basis and are associated with a deadline. €ffort connections that are not targeted by the controliee

We propose to schedule these flows by a centralized controller, other class is for the considered scheduled flows. Thus, the
which determines when to transmit each flow and which path to scheduled flows do not encounter congestion due to the non-
use. Two scheduling models are presented in this paper. In the scheduled flows.

first, the controller also determines the rate of each flow, while We beli that th . licati fth idered
in the second bandwidth is assigned by the network according € believe ha € main application o e consiaere

to the TCP rules. We develop scheduiing algorithms for bothn model is in the offline context, when all the flows are given

models and compare their complexity and performance. to the controller before the scheduling algorithm is inwbke
However, we will also present online algorithms, which can b
I. INTRODUCTION used if the controller receives the flows one by one when they

Cloud services continue to grow rapidly, and major cloudr® first ready for scheduling. In both cases, the decisiognwh

: : ; . to admit each flow, which path to use (when multiple paths
service providers connect many geographically disperagat d . .
centers to form geo-distributed cloud networks [1], [13K]; ?re glvﬁ ?l for e_fagh fg’W.Qtﬁ nd hO\tN much b;'g)d\'\;fth tot allolfaFe
Astronomical amounts of data are transferred over thisorgw © a1 TIOW, IT bandwidin 1S not assigned by the network, 1s

. . . made solely by the controller.
of datacenters for a myriad of reasons, including: As an application example, consider the Globally-Deployed

- Data replication to ensure disaster recovery. _ Software Defined WAN of Google, called B4. The char-
o Data relocation in order to shut off some.snes duringeteristics of this network, as described by [[13], make it
off-peak hours to save resources or for maintenance. perfectly suited to the model and problem considered in this
« Replication and/or rglocgtion of data in order to pring ibaper: a private WAN is used for synchronizing large data
closer to customers in different geographic locations. gets across sites; the network operator can enforce elativ
Such inter-datacenter transfers are non-interactiveausex application priorities and control bursts at the networked
they do not explicitly target the end users. Nevertheldssy t rather than through overprovisioning or complex function-
are performed on a timely basis and each is associated vathty in the WAN; capacity targets and growth rate led to
a rough target deadline. We address the problem of timelpsustainable cost projections, which render traditiéiiAN
transfer of these large non-interactive data flows betweemerprovisioning approaches impractical.
datacenters, not over the public Internet but over a well-When addressing the problem of inter-datacenter flow
managed private network. scheduling, it is crucial to determine how congestion aantr
The flows that are handled by the considered schedulgill be performed. We believe there are two possible answers
fulfill the following requirements: (a) their starting tinean o Network Assigned Bandwidth (NAB). In this model,
be controlled; (b) their bandwidth demand is very large and all the scheduled flows are transmitted using TCP. The
known (i.e., we schedule elephants, not mice); (c) each of bandwidth assigned to every flow is allocated by the
them has a target deadline. Other flows are not handled by network according to the TCP rules. The controller needs
our scheduling algorithms. to determine the starting time and the routing path (if
We assume that the control logic has the following infor- flows are not limited to using their shortest paths) for
mation for each to-be-scheduled data flow: its size, itsmur each flow, and to estimate when the transmission of every

destination pair, its time of release and required deliteng, flow will finish.
and a utility function that indicates the “profit to the syste o Controller Assigned Bandwidth (CAB). In this model,
for delivering the flow on time. In addition, the control lagi the bandwidth assigned to every flow is allocated by

knows the set of paths over which each flow can be routed. The the controller whose role is to prevent congestion in
controller needs to schedule the transmission of each flaw su the network and to ensure that flows are delivered on
that the total utility is maximized and the network bandvidt time. Thus, the controller determines the starting time,
resources are not exceeded. the allocated rate, and the routing path (if flows are not

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://lwww.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation informe
10.1109/TCC.2015.2487964, |IEEE Transactions on Cloud Computing

routed only over their shortest paths) for each scheduled Il. RELATED WORK

flow. In this ’.“Ode" end-to-end reliability is decoupled Inter-datacenter networking has been attracting a lot -of at
from congestion control. The protocol used for end-tq-

s _ . Yention lately. The need for a scheduling logic that deteasi
enlditraliwririrlfstlon_rgpre;er{ei? (}0 EK;I; i.mTlhlfnp:t)tE)l'-CPWhen to transmit each data flow is implicitly or explicitly
onstion ool becatise the tanamiseion rates of lndicated in [31, [7, 9], [12], [13], [16], [19].

congestion control, because the transmission rates of t he two most relevant papers are probably [3] and [12].

senders are determined in advance by the controller. Tltﬁe@]’ the authors study a model similar to ours in that it

TCP protgcol_|s not.addre_ssed in this paper, but 'tﬁ'ses (1) global coordination of the sending rates of sesvice
implementation is relatively simple.

and (2) central allocation of data paths. The goal of their
Scheduling-based congestion control is not a new idea. Fbposed system is high efficiency while meeting certain
example, see| [2], [10] and references ther@MCP~ can be policy goals. They consider three priority classes: active
viewed as the opposite of the Datagram Congestion Contathstic, and background. The transmission of the active and
Protocol (DCCP)[15], becaus® CP~ provides reliability elastic flows is scheduled by the controller. The focus of [12
without congestion control whereas DCCP provides congéds-on computing bandwidth allocations, updating forwagdin
tion control without reliability. There were some effortsthe state, handling failures and prototype implementation.
past to definelCP~ under the name “reliable UBP In [3], the authors propose a scheduling model for dat-
As already indicated, in our problem definition, the scheécenter routing. Their paper focuses on finding an efficient
uler chooses a routing path for each flow, but it does npath inside the datacenter for each flow in order to maximize
compute these paths. In a network that supports only shortiéee throughput. The controller collects flow informatioorfr
path routing, this set will contain only shortest paths, levhi constituent switches, computes non-conflicting paths tovd|
in a network that supports traffic engineering, this set mand instructs switches to re-route traffic accordingly. Gbal
contain other paths as well. The problem of determining the to maximize aggregate network utilization with minimal
set of routing paths to be given to the scheduler as an inggheduler overhead or impact on active flows.
is orthogonal to the scheduling algorithms proposed in thisIn [16], the authors show how to rescue unutilized band-
paper. width across multiple datacenters and backbone networks
NAB-scheduling is usually impractical, because every ne@nd use it for non-real-time applications, such as backups,
flow changes the termination time of existing flows, angropagation of bulky updates, and migration of data. While
because it is very difficult for the controller to estimate ththe problem solved in [16] is different from the problem we
bandwidth to be acquired by each flow even if the algorithn@®nsider, in both cases the scheduler takes advantage of the
proposed in [11], [20] are used. However, studying the NARct that the transmission of a data flow can often be postbone
model allows us to better understand the potential trafle-89 non-peak hours.
between NAB'’s performance and CAB’s practicality. In [7], the authors study and analyze inter-datacentefidraf
Our goal in this paper is three-fold. First, we want to depelgeharacteristics using the anonymized NetFlow datasets col
efficient algorithms for solving the scheduling problem folected at the border routers of five major Yahoo! datacenters
both NAB and CAB. Our second goal is to compare th&heir study reveals that Yahoo! uses a hierarchical depémym
complexity and performance of CAB-scheduling to that ¢¥f datacenters, with US backbone datacenters and several
NAB-scheduling. The purpose of this comparison is to sé@tellite datacenters distributed in other countries1Bi,[the
if the added complexity of NAB-scheduling is translatechintauthors present the design, implementation, and evafuafio
significant performance gain. Finally, it is intuitive théow @ Private WAN connecting Google's datacenters across the
elasticity allows the scheduler to perform better. Howetree Planet. This network is shown to have a number of unique
strength of the correlation between elasticity and perforoe Characteristics, such as massive bandwidth requiremesnts d

is not clear. Our third goal is thus to study this correlatioRloyed to a modest number of sites, elastic traffic demand
both for CAB- and NAB-scheduling. that seeks to maximize average bandwidth, and full control

The rest of the paper is organized as follows. In Secfibn gyver the edge servers and ngtwork. These charf_slcterisditte le
we present related work. In Section| Il we define the CAg2 Software Defined Networking architecture using OpenFlow
scheduling problem, prove that it is NP-hard, and preseli‘_?t_ control relatively simple 5W|tches_ built frpm mgrchgnt
an approximation algorithm for solving it. In Section |1vSilicon. B4 phase 3 employs centralized traffic engineering
we define the NAB-scheduling problem, which is also NP optimized routing based on 7 application-level priesit
hard, and present two classes of algorithms for solving | @ddition, an external copy scheduler interacts with the
In Section VV we compare CAB and NAB from a theoretica@pe”FIOW controller to implement deadline scheduling for

perspective, and in Sectioh VI we compare their practicr9¢ data copiés L _
performance. Finally, we conclude in Sectjon VII. In [9], the authors seek to minimize operational costs on
’ inter-datacenter traffic with store-and-forward at intediate

1Wwhile there is no document that can be cited, there was an IE@ff dr 2In http://opennetsummit.org/archives/aprl2/hoelzlegpenflow.pdf,
that expired in 2000. these properties are mentioned with no further details.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://lwww.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation informe
10.1109/TCC.2015.2487964, |IEEE Transactions on Cloud Computing

nodes, by choosing routing paths, flow assignments, and allocated to all instances at every timen every linke

scheduling strategies for each source-destination tradiic In is < c(e). If a flow starts after the release time of a
[19], the authors propose a globally reconfigurable irgehit window w and finishes before the deadline of the same
photonic network that offers bandwidth-on-demand seririce window w, it acquires the profit/utility corresponding to
the core network for efficient inter-datacenter commuimnicat that window.

The proposed solution is motivated by the variability iBy using a generic utility/profit function, we allow the con-
traffic demands for communication across datacenters: nervller to decide which parameter has to be optimized. For
interactive bulk data transfers between datacenters hidve dxample, by assigning the same profit to each flow, our
ferent patterns than interactive end-user driven traffic. optimization function would maximize the number of flows
In [17], the authors propose and evaluate a framewodelivered on time. If the assigned profit is proportionalte t

for optimization-based request distribution, which eealder- size of each flow, the optimization function would maximize
vices to manage their energy consumption and costs. In [18je amount of data delivered on time. It is also possible to
the authors indicate the importance of cross-datacenterana assign to each flow the priority of the originating user or
resource management, and propose a management layespiglication; for example, a flow whose aim is to back up a
make coordination decisions across applications and scr@atabase will be assigned a lower profit than one whose aim
physical facilities. is to migrate a virtual machine. Moreover, since the profit is
associated with a transmission window, and not with a floe, th
same flow may have different priorities for different possib
transmission windows. As an example, one can assign to a flow
A. Problem Formulation and Hardness that is routed over one of its shortest paths a bigger prdit th

We start by defining the CAB-scheduling problem, wherthe profit assigned to the same flow when it is routed over a

bandwidth is allocated to flows by the scheduler. Each flognger path. o
is served by arCP~ connection, which uses TCP-like rules CAB is related to the Throughput Maximization Problem

for guaranteeing end-to-end reliability, but does not grenf (TMP) [4], defined as follows. LefA; : i =1,...,n} be a set

I1l. THE CONTROLLERASSIGNEDBANDWIDTH (CAB)
SCHEDULING PROBLEM

congestion control. of activiti_es, where each actiyity cons_ists of a set of int_ses
Z. Every instance has a profit7), a widthw(Z), a start time
Problem 1 (CAB) b(Z), and a finish timef(Z). For everyZ € A;, there exists

o .a Booleanxz. The problem is
Input: A communication network, represented by a di- o P

rected graph. Each directed edgehas a transmission maXZp(Z)mz,
capacityc(e) > 0. There is a set of data flows waiting to Al T
be transmitted, each attributed with: subject to:

1) A pair of source/destination nodes and a positive
size (number of bytes).

2) A finite set of possible transmission windows. Each
window is associated with: (a) a description of @&nd
routing path from the source to the destination; this Z x7 < 1 for each activity.A;.
can be the default (sometimes known as “shortest”)
path, or any other path; (b) a release time, which
indicates when the flow is ready for transmission;
(c) a deadline, which indicates the time when the
flow must be completely delivered in order to be
useful; (d) a profit/utility, which is explained below.

3) A set of possible bandwidth rates that can be al- 2) .Wh"e in TMP all the ﬂOWS. run on one common link,
located to this flow (e.g.] Mbps, 10 Mbps, 100 in CAB they run on an arbitrary network, and for each

Mbps) flow a routing path is chosen.
..CAB is not only NP-hard, but it also does not admit a PTAS
polynomial-time approximation scheme). Namely, theristex

scheduling instance of a flow is characterized by: (a) e 0 such that there _is no p°'yr?°'?""a' time approximation
routing path and a starting time from one of the possibﬁer%?/gtr:mswt? OSST]:VSF:OXI'E; ?tlg'r&éa}go ;/slt :);hs'sl\lg_%t:re dmlwvr\lli:h
transmission windows of this flow, say; (b) a fixed rate b y 9 '

from the set of possible rates. The rate is allocated to thnép“es that it does not admit a PTAS i NP.

flow along the routing path associated withuntil the Theorem 1. CAB is MAX SNP-hard even in the special case

flow finishes. The time it takes for an instance to finislwhere the network has a single edge of unit capacity, all the
is equal to the flow size divided by allocated bandwidttlows have the same size, there are 2 windows per flow that
A schedule is said to be feasible if the total bandwidtto not intersect (in time), and the profit of each window is 1.

w(Z)xz < 1 for every timet
I:b(T)<t<f(T)

TeA;

CAB generalizes TMP in two important ways:

1) While in TMP the bandwidth allocated to each flow is
determined in advance and is given as a part of the input,
in CAB it is determined by the controller.

at most onescheduling instancdor every flow. Each

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://lwww.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation informe
10.1109/TCC.2015.2487964, |IEEE Transactions on Cloud Computing

Proof: The unweighted job interval scheduling problem:*, =7 and =3 be optimal solutions for(F, p()), (F,p1()),
with % intervals per job is defined as follows. Its input is @nd (F,p2()) respectively. Thenp(z) = pi(z) + p2(x) >
finite set of jobs, each of which is/atuple of real intervals. o - pi(a}) + a - pa(23) > a - (p1(z*) + p2(z*)) = - p(a™*).
Its objective is to selec't a non—!ntersectlng subset qfrmlle, Igorithm 1. (solve the discrete CAB problem)
such that at most one interval is selected for each job and the' ™ S

.) - ! nput: a setR of all possible instances for all flows, and a

total number of selected intervals is maximized. This peobl rofit function
is MAX SNP-hard even if each job has onlyintervals, the P p:
intervals of the same job are non-intersecting, and all thel) Delete fromR all the instances with a non-positive
intervals are of the same lengtfh [21]. This problem is a profit.
special case of CAB, in that it maps each job to a flow of size 2) If R = (), return an empty schedule.
L, converts each interval to a transmission window from the 3) Let: be an instance with the earliest ending timefin
beginning of the interval to its end, and assigns a profio Using the value of(i), split the profit functionp into
each window. u p1 andps = p — p;.
4) Run recursively on the inpufR,p2). Let S’ be the

returned schedule.

Although there is no PTAS for CAB, we are still able to 5) If 5’ U {i} is a feasible schedule, retursi = S’ U {i}.
develop a polynomial time approximation algorithm with a Otherwise, returnS = 5.
guaranteed approximation ratio. To this end, consider atitow . . .
which we have already allocated some bandwidth. This iraplie The most |mpo_rtant part of AIgon_thiﬂ Lis th? development
that the time it takes to finish the flow is fixed, and it is equdll @ p1 function in step ((3). To this end, define a feasible
to the flow size divided by the allocated bandwidth. If we argcneduleS to be i-maximal if either: € S, ori ¢ S

able to determine in advance the allocated bandwidth to efd?zq S U {i} is infeasible. Functiorp, is chosen such that

flow, we know the transmission time (“length”) of this flow?2 1) =0, and for a certain > 0 every i-maximal schedule

and we only need to decide when to start it. is an r-approximation with respect t@;. Using the local

Given a transmission window of a flow and the bandwidtff!° technique, as dgscnbed gbove, such a sel_ecthpl of
allocated to it, one can easily determine the feasible s garantegs_, thathIgorlthtfﬁ L will return anapprommau_on.
window for starting this flow. Consider a flow g¢f bytes to he Cond'tlonm(l_) — U ensures tha_t tth\ algorlt_hm terminates
which a bandwidth ofB bytes/sec is allocated. Lét,,? /] after O([{all the mstance}s{) recursive invocations, since it
be one of the windows during which this flow can start an@scards ‘at least mstancg during every recursive caII:
finish. The time it takes for this flow to finish i§/B sec. -6tw(1) be the normalized bandwidth assigned to instance
Thus, assuming tha/B < t; — t., the flow should start i, i.e., the assigned bandwidth divided by the maximum link
durinjg [ts,t; — B3/B] This?mefrval fs now referred to abe bandwidth in the network. To define thg function for the
feasible Séué-window for starting the flow, discrete CAB problem, we distinguish between the case where

In [4], it is shown how to use an approximation algorithnf"c"Y }pstznce 607%'; Wldde'th l.e., Vi € hR tw(i) > p f(:r
for TMP with a finite set of possible instances per flow igOme Tixedp € (0,0.5], an € case where every instance

order to approximate the original version with continuou§ "aoW. 1€, Vi € R w(i) < p- We split the set of
feasible starting sub-windows (each containing an infinde Ins tanpes nto a sub;et of narrow mstancgs and. a subset of
of possible instances). This technique works for CAB as .Welxlvlde_lnstances, and invoke Algorithi 1 with a different .
Therefore, we start with a finite set of possible instancesryi unction on each sqbset. Then, we chgose the be$t solution
explicitly for every flow, a problem referred to as discret&BC returne_d by the two independent executions of Algoritim 1 as
and solved by our Algorithm|1. Then, we present Algorithm A solution for the general case.

which extends Algorithm/1 and solves the general (contisyiou Let A(,Z) denote_ the set of all instances of the flow to which
CAB problem. m;tar_mez belongs, these mstances_, can never be .tak_en together
Throughout the paper we assume that each input instar.\{\c/:'éh “ L'eF I(.Z) be the set of all instances not iA(i) th‘ﬁ
. . . - .intersect; in time and have at least one common edge with
is feasible if taken alone. To ensure the validity of thI?ntuitivel we can see that these are the instances tha hav
assumption, all the non-feasible instances are discarelenleb e, . o . .
capacity conflict withi. We view an instance of a flow also

the algorithm commences. s the set of edges along its route. Recall that our problem’s
We start by extending the TMP algorithm proposed in [finition allows different instances of the same flow to use

to solve the discrete version of CAB. Both problems consid

a finite number of possible instances for every flow. The alg ifferent routes. .

rithm from [4] uses the local-ratio technique [5], [6]. Godd Let £ be the edge set of the network. The capacity of
a ! an edgee € FE is denotedc(e). Again, we normalize the

as follows. LetF' be a set of constraints and let), p1 (), p2() e)
be profit functions such thai() = py() + pa(). Then, if = capacities, such thate : c(e) € (0,1]. For everyX C E,

is an a-approximate solution with respect i@, p; () and '€t ¢(X) = min {c(e)le € X} while c(f) = co. Addltlogally,
with respect ta(F, p()), it is also ana-approximate solution 1€t cwin(7) = min {c(i Nd’)|i" € Z(i)}, wheremin(()) = oo,
with respect to(F, p()). The proof in [5] is very simple. Let and cyax (i) = max {c(i N4’)|7’ € Z(i)}, wheremax () 20.

B. An Approximation Algorithm for CAB

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://lwww.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation informe
10.1109/TCC.2015.2487964, |IEEE Transactions on Cloud Computing

Finally, define intersct(i) as the number of edges of anonly on the wide instances, and the schedule with the larger

instancei that also belong to an instance Irji). profit is chosen, the approximation ratio of the algorithm is
As explained above, to obtain a local ratio approximation, 1 c
the weight functionp, should fulfill the condition that for a FEEw i :
. AL S0 . : . 9 (7(gy) intersct 2cmm+()) intersct
certainr > 0 everyi-maximal schedule is ar-approximation e (&)

with respect tg,. To this end, we have to give every instance
a profit that will be close to the profit it would acquire in an
arbitrary i-maximal schedule. For example, every instance H'h

a flow to whichi belongs has the same profit, since there is ’F'éasible starting sub-windows, rather than on individual i

most one such instance in any feasible solution. The 'nemngtances. Throughout the profit decomposition, Algorithim 2

:Eatt;n:ﬁrsectzk have ptroflt. that ﬂ']s. |pver|sely tprﬁﬁortlonatlj to 1gamtains the invariant that all the instances represehted
€ bottieneck capacily, since this 1S close 1o the NUMbBEr Dl i 0 starting sub-window have the same profit. This

such msta;mes in anmlaxmal Sghe?#le Wh:tn]fjea“ngtmv;’:thmvanant requires the algorithm to split some of the felesib

tnhar.row '?‘:’ anﬁles%wetha SO.ZOUSI ter € Vtvhelg pha':r? '?Smcestartlng sub-windows. To guarantee polynomial runningetim
€Ir profit, while for the wide instances tne weight Is fa the algorithm deletes feasible starting sub-windows whose

the minimum relevant capacity. This profit definition ensur rofit becomes smaller than a#fraction of their original one.

that everyi-maximal schedule is a good approximation of th his results in a loss of up to anfactor in the approximation
optimum, with respect t@,. The proof of Theorem 2 below ratio

formalizes this _mtumon.)) Before invoking Algorithm 2, we need to convert all the
V_Ve__”o"_v define thep1~. functlonif_or dlsc_rete CAB. The windows into a set of feasible starting sub-windows for

Qef|n|t|on IS based- orp(i), wherei is the instance Chosenstarting each flow. This is done by considering each possible

in step [(3) of Algorithm 1: bandwidth, and creating a feasible starting sub-window for
« When the algorithm runs on wide instances, for eaach bandwidth and each possible windew1].

The proof can be found in the Appendix.
Next, we extend Algorithm 1 to address the general (con-
uous) CAB. The generalization applies Algorithm 1 on

instancei
Algorithm 2. (A continuous version of Algorithm 1 for the
1 i€ A7) continuous CAB)
p1(i) = p(3) - ﬁ i€ Z(i) 1) Input: a setR of all feasible sub-windows for starting each

0 otherwise flow, a profit functiorp, and the desired approximation ratio
1) Delete fromR all the feasible starting sub-windows with
a non-positive profit.
2) If R =0, return an empty schedule.
1 i€ A7) 3) Find the instance with the earliest ending time7n let
~ A w(i) this instance be.

o When the algorithm runs on narrow instances, for each
instancei

(i) = p(i) e (€I) If p(i) < e[the original profit ofi], delete the feasible
0 otherwise starting sub-window that containsand go to step (2).
Else, using the value gf(i), determine the profit func-
Let cumin 2 min; {cyin(é4)} and intersct e tion p; as discussed later, and let, = p — p;. To
max; {intersct(i)}. Then, guarantee that all the instances of the same feasible

starting sub-window have the same profit (relative)4d
even after updating (z), split the feasible starting sub-
window into two parts: one that contains the instances
that start beforei ends, and another that contains the
rest of the instances.

Theorem 2. Letp < ¢(E); i.e., p is smaller than the minimum
link capacity of the network.

(@) When Algorithm[_f1 runs only on wide instances, the
obtained profit is at least

1 Comnin 4) Run recursively on the inputR,po,¢). Let S’ be the
(X]=1) mterset 1] — 1) intersct returned schedule.)
Iy = Cmn “H ~ 1) intersc 5) If S"U {i} is a feasible schedule, returi = S" U {i}.

H . !
of the optimum profit. Otherwise, returns = 5.

(b) When Algorithm 1 runs only on narrow instances, the The removal of the feasible starting sub-window that con-
obtained profit is at least tainsz, whose profit is smaller thantimes the original profit,
may reduce the approximation factor byas indicated in the

iitersct = Cin n following theorem.
L+ (E)—p) cmin Cmin +m mtersct

Theorem 3. Letn be the total number of feasible sub-windows
of the optimum profit. for starting a flow, each associated with a starting time and
(c) When Algorithm 1 runs only on narrow instances and theam bandwidth. For anye > 0, Algorithm[2 guarantees a

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://lwww.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation informe
10.1109/TCC.2015.2487964, |IEEE Transactions on Cloud Computing

5x107

= 0.01 1) In NAB, the bandwidth allocated to a flow is not

o €= 0.05 —— necessarily fixed for the entire lifetime of a flow.

g Ll 1 2) In NAB, bandwidth allocation is not determined by the
o £=0.2 controller.

S 0l Like CAB, NAB is NP-hard and does not admit a PTAS if
2 P # NP.

[S]

B 20| 1 Theorem 4. NAB is MAX SNP-hard even in the special case
g— where the network has a single edge of unit capacity, all the
@W | flows have the same size, there &ravindows per flow that

do not intersect (in time), and the profits of all windows are
unitary.

o000

100 Proof: The proof is similar to that of Theorem 1. =

20 40 60 80
number of feasible sub windows X . X
We start with an online greedy algorithm for NAB:
Fig. 1. A totic bound on th ing time of Algorithm 2 . . .
9 sympttic bound on the running time of Algorithrm Algorithm 3. (An online greedy algorithm for NAB)

1) When the release timeof a windoww of an unsched-
uled flow is reached: schedule this flow into the network

1+(%E)1) e €= o +(%“) ——— — e approximation for Et Itdover the path ofw if the following two conditions
. Cmin o ola:
the wide instances angh s —¢ = & owier /o)~ (c1) the bandwidth share to be acquired by this flow
e for the narrow instances. Thus, by choosing a schedule with a on the path ofw allows the flow to finish before
larger profit, we get a;_—— ey — e-approximation. the deadline associated with.
In addition, the running time of the algorithm @(M). (c2) the bandwidth acquired by this flow does not
€ prevent any running flow from finishing on time.
The proof can be found in the Appendix. 2) When a flow finishes at timg let W be the set of

. . .)
. To get a bet.ter _|dea of how the time comp_lexny of Algo- windows for which the following holds (a) everye W
rithm[2 grows, in Figure 1 we plot the asymptotic bound on the belongs to a non-scheduled flow; (b) the release time of

running time,@, as a function of the number of feasible everyw € W is < t and the deadline is> t. Try to
sub-windows for starting a flow. Each curve corresponds to schedule the windows &F at t, one by one, in the order
a certaine value. In this graph, we us& = 50, and the of their release times. A window can be scheduled if
maximum number of feasible sub-windows is 1,000. conditions ¢;) and () above hold for it. If a window
is scheduled, all the other windows associated with the
IV. THE NETWORK ASSIGNEDBANDWIDTH (NAB) same flow are removed frofi .

SCHEDULING PROBLEM))))
Note that if there are multiple relevant windows in step (1)

We now consider the scheduling problem for the NABf the algorithm, as would be the case if flows have multiple
model, where bandwidth is allocated to flows by the networkossible paths, these windows can be examined in any arbi-
To make the discussion general, we assume that there existggy order.
bandwidth allocation functiory, such as max-min fairness, Algorithm([3 is an online algorithm. Thus, the scheduler can
which determines the bandwidth allocated to each flow afake a scheduling decision without knowing in advance the
every time, and guarantees that the total bandwidth akacafuture flows. To use this algorithm offline, the controlleeds
to all the flows that share the same link at a given time dogs sort all the windows in ascending order of their release
not exceed the link capacity. times.

Let m be the total number of flows and let be the total
Problem 2 (NAB) number of windows of all the flows. The running time of
Input: The same as in CAB (Problem 1), except that podlgorithm(3 is O(mlog(m)nt(m, E)), wheret(m, £)) is the
sible bandwidth rates are not given. Instead, the scheduigfe needed to verify that a certain flow can be admitted
is given a dynamic bandwidth allocation functigin without violating the termination time of previously adteit
Objective: Determine a routing path and a transmissioflows. For instance, if bandwidth is allocated by the network
time for each flow, such that the total profit is maximizeggccording to max-min faimess(m, £) = m?|E| and the
assuming that bandwidth allocation is basedfor flow ~total running time isO(m®n |E).
is said to acq_uire its corre_zsponding pr_of_it if it starts aft§femma 1. Regardless of how flows are chosen in step (2), for
the release time of a window and finishes before thgery dynamic allocatiorf and for anye > 0, there exists an
deadline of the same window. instance of NAB for which the profit of the schedule returned
There are two important differences between CAB and NARBy Algorithm 3 is< ¢ x OPT, whereorT s the optimum profit.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://lwww.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation informe
10.1109/TCC.2015.2487964, |IEEE Transactions on Cloud Computing

Proof: Consider a network with a single edge whosequal if we ignore the sorting phase of Algorithm 4. Recall
capacity is1. Suppose there are only two flows to schedul¢hat when Algorithm 3 is executed offline, its input windows
The first flow is released d&t= 0, has a deadline a = 1, must also be sorted according to their starting times.

a size of1, and a profit ofe/2. The second flow is released

att = 01 has a deadline .1, a size ofl, and a profit of a decreasing order of2Y, wherea, g, - and s are defined
1. Obviously, only one flow can be scheduled. ot 2, the X o ; L
for every windoww as follows: (a) « is either 1 for all

optimal solution is to schedule the second flow at its relea ee windows, or equal te(w): (b) 3 is either 1 for all the
time, which yieldsopT = 1. However, Algorithm 3 SChedUIeSwindows oré ual?o the@mqfni,mum capacity on the pathyof
the first flow, thereby obtaining a profit @f2 < ¢ x OPT. & ! q pactly pativp

Next, we modify Algorithm 3 into &-phase offline greedy (c) v is eitherl for all the windows or equal ta(w) — r(@’

algorithm. In the new algorithm the transmission flows arvé/hzr: dr((:ju)) 6airsldtgéugizzrift?ﬁer§|;?;e gnmd?nanﬁo\?ve?rﬂlenne gr
preordered according to some criterion, such as release tirﬁ}er dynamic allocatiorf and for an P <0 tgr]lere éxists a{n
profit, etc. Then, the algorithm goes over the ordered list an y dy ye

considers one flow at a time. For each considered flow thnstance of NAB with one window per flow for which the profit

algorithm checks whether it can be scheduled into the né&twor th? schedulle returneq by Algoritim 4<se x OPT, where
Tis the optimum profit.

upon its release time without disturbing already scheduléd
flows. If so, the flow is scheduled. In the second phase, the Proof: If « = 3 = v = § = 1, then the scheduling is
algorithm tries to schedule each non-scheduled flow. arbitrary and the claim holds. We next prove the lemma for
. . . the case wheré # 1. Consider a network with a single edge
Algorithm 4. (An offline greedy algorithm for NAB) of a unitary capacity and two flows. The first flow is released

1) Sort all the windows of all the flows in advance, acy;; _ () has a deadline at= 1, a size ofe/3, and a profit

cording to some criterion to be discussed later. Let thgx ¢/2. The second flow is released @t 0, has a deadline

sorted list bel/. _ at 1, a size of1, and a profit ofL. Obviously, only one flow
2) Go over the sorted list. For each window perform as .5 pe scheduled. For evefly< ¢ < 2, the optimal solution

follows is to schedule the second flow at its release time, which yield

« Schedulew into the network at its release tinteif opT= 1. However, Algorithm 4 schedules the first flow at its
the following two conditions hold: release time, thereby obtaining a profit of oBj2 < ¢ x OPT.
(c1) the bandwidth share to be acquired by this Next, we prove the lemma for the case wheret 1 and

flow on the path ofv allows the flow to finish § = 1. Consider a network with a single edge of a unitary

before the deadline associated with capacity andn + 1 flows. The first flow is released at= 0,
(c2) scheduling the flow ofy into the network at has a deadline at= 1, a size of1, and a profit ofl. Each

t does not prevent flows that have alreadypf the remaining. flows is released at = 0, has a deadline

been scheduled from finishing on time; at1, a size ofL, and a profit 0f0.9. The algorithm schedules

« When a flow of a window is scheduled, remove only the first flow, thereby obtaining a profit af while the
from U all the windows associated with the sam@ptimum solution is to schedule the otheflows, obtaining a
flow, and add the instance to the liSt profit of 0.9n. For a large enough, 1 < ¢ x OPT = ¢ x 0.9n.

« Update the termination time of each instancedn Finally, we prove the lemma for the case wherey # 1
and sort the flows in this list in ascending order ofi.e., 3 # 1 or v # 1). Consider a network with a single edge
their termination times. of a unitary capacity and two flows. The first flow is released

3) While S is not empty do: att = 0, has a deadline at= 1.1, a size ofl, and a profit

a) Lett¢ be the termination time of the first instanceOf ¢/2. The second flow is released at= 0, has a deadiine

. at1, a size ofl, and a profit ofl. Obviously, only one flow

in S. SinceS is sorted in ascending order of in- .

stance termination times, this instance is the first fean k_)e s_cheduled. Therefore, for every e < 23 the opt|mal_
terminate from all the instances iffl. Remove this solut_|qn Is to schedgle the gecond flow at its relgase tme,
instance froms and try to schedule unscheduleaObt.ammgopT:. 1, while Allgorlthmm.schedules the first flow
flows in the following way. at its release time, obtaining a profit of only2 < e x OPT.

b) Try to schedule the windows bf at ¢, one by one, u
in their sorted order. A window can be scheduled V. CAB vs. NAB: SOME SPECIAL CASES

i .condm_ons €1) and (c2) above .hOId. for it. If a In this section we compare the optimal solution for CAB
window is scheduled, remove this window and a{l

: . ; 0 the optimal solution for NAB. The results of such a
the other windows associated with the same flow : . .
. S . ~comparison cannot be easily predicted because each model
from W. In addition, update the termination time : : .
of each instance it and sort this list again has_ its own ad_/antages_an_d dlsadvantages. CAB is more
' flexible because its allocation is not restricted by the éaxal”
In practice, the running time of Algorithi 4 is shorter thamlynamic allocation rule. On the other hand, CAB’s allocated

of Algorithm[3. However, their asymptotic running times ardandwidth is fixed for the whole lifetime of an instance

Lemma 2. Suppose that th& list in Algorithm[4 is sorted in

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://lwww.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation informe
10.1109/TCC.2015.2487964, |IEEE Transactions on Cloud Computing

whereas in NAB the bandwidth is dynamically adapted to the The proof of the other direction, i.e., thaPT(NAB) <
actual load and availability. oPT(CAB), is similar, except for the following changes:

In the following we show that in the special case where We are given a schedule of NAB where every scheduled
every flow has a single window, all the flows share the sarflew starts after its release timé)(and finishes not later than
route, and they all have the same release time, then the tigodeadline. We construct a schedule for CAB by a procedure
optimal values are equal, provided that the possible badttiwi that is completely analogous to the one described earlier.
rates include:(.J) for each flow.J. This result holds regardlesse We go over the scheduled flows in a non-decreasing order of
of how bandwidth is allocated by the network to the scheduldbeir finishing times. Each flow is rescheduled to run using

flows in the NAB model. the bandwidth ofc(.J), which is the maximum bandwidth it
Given an instancél of CAB and NAB, denote the profit can use. [|

of its optimum solution byoPT(CAB)(IT) andorPT(NAB)(II) We next show that under a different set of conditions, we can

respectively. state thabPT(CAB)(II) > opPT(NAB)(II). For this set of con-

)) ditions, it can be shown thairPT(CAB)(II) < oPT(NAB)(II)
Lemma 3. When every flow has a single window, all the flowgges not necessarily hold.

share the same route, all the flows have the same release time, _ _
and for each flow/ the bandwidth rate:(.J) can be allocated Lemma 4. When every flow has a single window, all the

by CAB, the following holds: flows have the same release time and deadline, and CAB
allows every bandwidth to be allocatedpT(CAB)(II) >
OPT(CAB)(II) = opT(NAB)(II). oPT(NAB)(IT) even if flows do not necessarily share the same
route.

Proof: Recall thate(/J) is the bottleneck of the path of _ ,
flow .J. This path is unique in the considered case because " '0of: Suppose that all the release times are at 0
has only one window. We decompose the proof into two parf@!d all the deadlines are at= 1. Let #1,¢,,...,7, be a

In the the first part we show that under the conditions abov&2Sibleé NAB schedule. In this schedutg,> 0 is the starting

oPT(NAB) > OPT(CAB) holds. The second part shows thdMe of flow J; and every flow finishes before = 1. We
other direction. now construct a CAB schedule by the following procedure.

Let the release time of all the flows be= 0, and let For _eachk_: 1’2*’3"' O’I”Z da;\locfit(gkgo_the mstanrc]:es O th?t
e be the edge with the minimum capacity along the shar&?gm ati = 0 a bandwidtn o = s(Jx), wheres(J) is

- . . 1_0 . - .
path. Let the sequence of instandesis, . . . ,,, be a feasible the size of flow.J. This instance will finish exactly by = 1.
CAB schedule. Eacli;, starts after the release time)(and

It is left to prove that the obtained CAB schedule is

finishes before the deadline of the considered flow. We nJﬁF‘S'b'e- Suppo_se, _to the contrary, that there exists ag edg

construct a schedule for NAB using the following proceduré. WNOSe capacity is exceeded, 1.8 s1ees 8(J) > cle),

We start witht = 0 and go over the scheduled instances in @ equivalently, M > 1. But this contradicts the

non-decreasing order of their termination times. Let thideo assumption that,, i, ..., i, is a feasible NAB schedulem

be iy,io,...,i,. Then, fork = 1,2,... n we perform the

following two steps. First, we denote the flow to which

belongs asJ,,, and schedule it at time Second, we setto A. The Simulated Algorithms

be the finishing time o/ if this flow was running alone. In this section we present a simulation study, in order to
We now show that when the bandwidth is allocated accordddress the three challenges first raised in SeCtion I:

ing to this procedure, all the flows finish by their deadlines. Deciding what are the best algorithms for CAB and NAB.

We show this by induction on the iterations of the procedure. | Deciding whether there is a significant performance ad-

Before rescheduling/;, all the rescheduled flows))Y have vantage to NAB, although we know that their running

finished by their deadlines. Thus, the induction basis holds 14 renders them impractical.

Assuming the claim holds for the firbtrescheduled flows, we | Understanding the correlation between the width of the

now prove it for the(k + 1)th flow. Suppose, on the contrary, fjos* windows and the performance of the scheduler.

that the claim does not hold for this flow; namely, that jus{'he algorithms simulated in this section are as follows:
before rescheduling/y, ., at timet, d(Jy+1) —t < 5(Jk+1) g :

; , c(e) Alg-2 (for CAB): This algorithm implements Algorithrh|2
hOIdS.’ Where_s(J) 1S the_ size of ﬂ(_)W']' In other words, ongthe(wide ins)tances an%l on the anrow instan?:es. Then, it
the t|mg uni th? deadline Oﬂk_“. s not enough for th? chooses the schedule with the largest profit to guarantee the
completion of this flow even if it was the only flow in approximation ratio stated in Theorém 3. After choosinbeit
the narrow or the wide instances, the algorithm tries to ovuer

the network. However, since = »°,_, % we get
%SU’) which contradicts the assumptionthe solution by adding non-selected instances. To this thed,

VI. SIMULATION STUDY

d(Jp+1) <

thatiy,io,...,i, IS a feasible schedule in the CAB modelalgorithm sorts the non-selected instances in descendiey o
taken in the non-decreasing order of the flows’ finishing §meof the ratio between their profit and size. Recall that each su
such that all of them start after the release time and finish rem instance is already associated with a specific bandwidth
later than by their respective deadlines. allocation.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://lwww.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation informe
10.1109/TCC.2015.2487964, |IEEE Transactions on Cloud Computing

Alg-3 and Alg-4 (for NAB): These algorithms implementfollowing wa)E. We first randomly place 30 network nodes in a
Algorithm [3 and Algorithm[4, respectively. In Alg-4, thel.0x1.0 plane, uniformly and independently. The probability to
windows inU are sorted in a decreasing order of have an edge with a unit capacity between every pair of nodes

p(w)e(w)(d(w) — r(w)) is a-exp(;%), whered is the Euclidean distance between the
, two nodes,L is the maximum Euclidean distance between any
two nodesa = 0.25, andb = 0.5. With these parameters, the
where for every windoww, p(w) is the window’s profit, average number of edges in each simulated graph 96. If
c(w) is the minimum capacity on its path(w) and d(w) the resulting graph is not connected, it is ignored and a new
are its release time and deadline, asidv) is the size of graph is drawn.
the flow of w. The intuition is to generalize the well-known We start with the case where the controller is given only one
greedy algorithm for the Knapsack problem, which aims atindow for each flow, and then study the case where every
maximizing the profit of the items chosen for a knapsadlow has multiple windows, each with different times and/or
with a given capacity [14]. In the Knapsack problem eagbaths. The release time for this possible window is randomly
item J only has a profitp(J) and a sizes(J), and the chosen according to the uniform distribution between 0 and
items are sorted according d.)/s(.J), which indicates the 100, namely[/[0, 100]. As already indicated, the width of the
profit per size unit. In our problem we want to take intgossible window is an important performance parameteref th
account two additional parameters: the width of each windovarious algorithms. Therefore, we will show several graphs
d(w) — r(w) and the availability of resources along the pattwith different widths: U[5,30] (i.e., the width is randomly
which is represented by(w). In general, windows whose chosen between 5 and 30 using uniform distributiéf}, 55|,
d(w) — r(w) is wider and whose(w) is bigger can be more andU 5, 15]. We use two approaches to assign profit to flows.
easily scheduled, and therefore their “overall schedutiogt” In the first, the profit is randomly chosen according/o, 10].
is smaller. Thus, we put both factors in the numerator of olm the second, the profit is a product of a random number
sorting criterion. chosen fromlJ[0, 10] and the flow’s size.

Even if we assume that bandwidth is shared according toEach point on each graph is an average of 20 different
max-min fairness, in which casém, E) = m?|E| holds, experiments with the same parameters. In all the graphs we
the running time of both algorithms renders them impratticghow the “normalized profit” as a function of the “normalized
also for the simulations. To speed up these algorithms, \wad.” To compute the normalized profit, we calculate thaltot
slightly change them as follows. First, the reschedulingsegh profit obtained by each algorithm and divide this by the total
is executed only until the first time it succeeds. Second,mwherofit of all the flows. To determine the normalized load, we
a flow terminates, we invoke the rescheduling phase onlyfifst compute the load imposed by each flow as the flow’s size
sufficient time has elapsed since the previous reschedulimgltiplied by the length of the shortest path from the flow's
attempt. Third, a rescheduling is attempted only for flowsource and destination. We then sum up the loads of all the
whose path shares at least one edge with the path of fltevs and divide the result by the network capacity. The fatte
terminating flow. While these enhancements do not improwedefined as the aggregated bandwidth of all the networls link
the asymptotic running time of the algorithms, they improveultiplied by the time elapsed between the first release time
the actual time and make them feasible for our simulatiand the last deadline. To increase the normalized load, we
study. either increase the number of flows or increase their average

Alg-5 and Alg-6 (for CAB): These algorithms are thesize. The decision does not affect the results.

CAB equivalent of Alg-3 and Alg-4 respectively, without the

speedup enhancements mentioned above. In contrast to Alg-3Simulation Results

and Alg-4, Alg-5 and Alg-6 need to determine the bandwidth g indicated earlier, one of our goals is to understand the
allocated to each scheduled flow. This bandwidth is Chosens‘l‘?ength of the correlation between the scheduler's fliibi

be the widest possible bandwidth available along the path fr 5§ performance. The scheduler's flexibility is represeig

the source to the destination. We will also discuss a Versigil ratio between the average width of the possible windows
of Alg-5 and of Alg-6 where the allocated bandwidth is thg g the total time. This ratio is referred to as the “flextpili
narrowest that allows the flow to finish on time. ratio.” Obviously, the scheduler has more flexibility whést
ratio is closer to 1.

We start with the case where the possible window is

Because we have to make many decisions about the Siméﬁdomly chosen for each flow according &d5,30], and

lation model, and it is impossible to present and discuss g, 1ota] time is 130. This implies that the flexibility ratio
results for all possible combinations, we focus here on-data - . (30 + 5)/130 = 0.13. This case is presented in the

centers connected by a backbone and assume that the baCklR%egraphs of Figuré 2. As expected, for all the algorithms
is the bottleneck. This is a reasonable assumption bechase, increase in load results in a decrease in normalized profit
backbone consists of long-distance, expensive links. ;Tlvas

ab_StraCt each datacenter as a node in the backbone gr_aph. BlRaxman's model is very often used to abstract network backbone
build the backbone graph using Waxman’s model [22] in thébwever, when we used other models, we did not notice impodigatences.

s(w)

B. Simulation Model

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://lwww.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation informe
10.1109/TCC.2015.2487964, |IEEE Transactions on Cloud Computing

0.55

0.5

0.45

0.4

0.35

normalized profit

0.3

0.25

B

B
uuuuuu
o

Alg-2 -

Alg-5
reverse Alg-5 1
reverse Alg-6———

Alg-6 -~~~

LB
O
”””””
=t
o

DDDDDD
uuuuu o
o o
0500y, "
o

ook

e, e

ey, Wk

o

uuuuuu
uuuuuu

R

293
el

(22984

0.2

0.3

0.4

@

I I
0.5 0.6 0.7 0.8 0.9 1

normalized load

CAB algorithms
Fig. 2.

normalized profit

0.55

0.25

Alg-é ——
Alg-4 —

0.2

0.3

0.4

I I
0.5 0.6 0.7

normalized load

(b) NAB algorithms

Performance of the various algorithms for flexibiligtio= 0.13

0.8 0.9 1

10

This is simply because we try to accommodate more and maigorithms sort the instances according to their releanedi
flows during the same interval and therefore using the sarmed attempt to schedule new instances whenever a scheduled
capacity. Note that when the load increases, the total @isfit instance ends. Thus, these algorithms imitate the seccaskph
increases (this graph is not shown) because the scheduder dfaAlg-3 and Alg-5. We still see that the performance of Alg-3
more flows to choose from. However, the fraction of scheduleshd Alg-5 is significantly better than that of Alg-4’ and A&)-

flows decreases. It is also evident that the relative pedoga which indicates that the advantage of these algorithmsighou

of the various algorithms is not affected by the load.

as a surprise because Alg-3 and Alg-5 are online algorithrtiee CAB algorithms.

be attributed to their first phase, were they sort the ingsinc
The performance of the CAB algorithms is shown in Figaccording to the instances’ release times. To compare the
ure/2(a), and of the NAB algorithms in Figure 2(b). For thactual running times of the various algorithms, we measured
CAB algorithms, the best performance is obtained by Alg-Zhem (in milliseconds) on an Int&).8 GHz computer with
which is based on the algorithms developed in Section INVindows 7. The results are presented in Figure 3(b) when full
The second best is Alg-5, which also performs better thdwad is obtained by 350 flows and each algorithm is executed
Alg-6. The superior performance of Alg-5 over Alg-6 and20 times for each input set. We observe that the running times
equivalently, of Alg-3 over Alg-4 in Figure 2(b), might comeof the NAB algorithms are significantly longer than those of

while Alg-4 and Alg-6 are offline algorithms. However, the Figurel4(a) shows the performance of the best CAB and
advantage of Alg-3 and Alg-5 can be attributed to the fatdAB algorithms when the flexibility ratio increases @b -
that they receive the flows sorted in ascending order of selegd55 + 5)/155 = 0.19. This ratio is obtained by drawing the
times. Thus, both algorithms try to schedule every flow fromvidth of the possible windows fror/(5,55) and extending

the moment this flow is ready for transmission.

flow to finish on time.

two algorithms are similar to Alg-4 and Alg-6 respectively5% in Figure 2.

the total time to 155. All the other parameters are identical
Figure[2(a) also shows the performance of two algorithnts those of Figure 2. When we compare Figure 4(a) to Fig-
that have not been mentioned earlier: reverse Alg-5 amde[3(a), we see that the performance is indeed considerably
reverse Alg-6. Recall that when Alg-5 and Alg-6 sort théetter for all the algorithms. This indicates that by giviihg
flows, they need to determine the bandwidth allocated to eastheduler enough flexibility, we can increase its perforrean
scheduled flow. This bandwidth is chosen to be the widesten for light loads. Another interesting observation can b
possible bandwidth available along the path from the sournede with regard to the performance of CAB vs. NAB. While
to the destination. In contrast, the reverse versions daethén Figure/2 we see that the best NAB algorithms perform
algorithms choose the narrowest bandwidth that allows tkkghtly better than the best CAB algorithms, in Figure 4tds
situation is reversed-his interesting observation indicates that
Figure[3(a) shows the same curves of Alg-2, Alg-3 antthe CAB algorithms are more sensitive to small flexibility-fa
Alg-5 from Figure[2(a) and (b), in order to compare théors than their NAB counterpartdo verify this observation,
performance of CAB vs. NAB for flexibility ratio of 0.13. we decrease the flexibility ratio @5 - (15 + 5)/115 = 0.11.
We can see that the best CAB algorithm (Alg-2) perform&he results are presented in Figlre 4(b). Indeed, we can see
better than the best NAB algorithm (Alg-3) for high loadshat all the algorithms perform worse than in Figure 2, arad th
(> 0.5), whereas for low loads the situation is reversed. Thbie difference in performance between the best CAB algorith
graph shows two new curves: of Alg-4' and Alg-6’. Thes@nd the best NAB algorithm is now 10%, compared to less than

with the only change that in their second phase these twoln Figure 5 we repeat the same experiment as in Figure 2,

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://lwww.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation informe
10.1109/TCC.2015.2487964, |IEEE Transactions on Cloud Computing

normalized profit

normalized profit

0.55

e o)
05| ™ Alg-5(CAB) -~ | 300000 - Alg-4'(NAB) 7
S ﬁ'lg-_‘é,((gﬁg; : oo | Alg-2, Alg-5 and Alg-6' (CAB) ——/ |

0.25

I I
0.5 0.6

running time

11

350000

200000

150000 [~

100000

50000

1 . . .
0.3 0.4 0.5 0.6 0.7

0.2 0.3 0.4 0 0.7 0.8 0.9 1 0.2 C 0.8 0.9 1
normalized load normalized load
(a) performance (b) running time (milliseconds)
Fig. 3. CAB vs. NAB for flexibility ratio= 0.13 (performance drrunning time)
0.7 T T 0.31 T T
Alg-2(CAB) -~ Alg-3(NAB) ——

065 b-. Alg-5(CAB) = | Alg-4(NAB
N N Alg-3(NAB) —— 03 i Alg-2(CAB) = 1
" . Alg-4(NAB) Alg-5(CAB)

0.55

0.5

0.45

0.4

0.35

0.3

0.2

0.3 0.4

I I
0.5 0.6

0.7

normalized load

0.8

(a) flexibility ratio= 0.19

normalized profit

0.29 -

-
0.27 [Fects,

0.26 -

0.24

0.2

I I
0.5 0.6 0.7

normalized load
(b) flexibility ratio= 0.11

0.3 0.4

Fig. 4. CAB vs. NAB for two different flexibility ratios

except that the profit of each flow is proportional to the flow’a shortest path from’ to the destination. We seesabstantial
size. While we see a drop in the performance, the relatiimprovementfor both models and for all normalized load
behavior of the various algorithms does not change companedues. For example, for Alg-2 (CAB), the normalized profit
to Figure 2. The performance drop can be explained by thcreases from 0.44 to 0.75 when the normalized load is 0.2
fact that in this case the bigger flows are assigned more prefitd from 0.44 to 0.5 when the normalized load is 0.5.

than in the previous case, but their possible window times doThe simulation setting for Figure | 6(b) is similar to that
not change. in Figure [6(a), except that for each possible transmission

Recall that in all the simulations described so far we us¥jndow the profit depends on the length of its path; i.e.,
only one possible transmission window for each flow. W€ multiply the flow profit by 1/patiength. This gives the
now show simulation results for the case where each figgheduler motivation to prefer transmission windows whose
has multiple possible transmission windows, not necdysar?ath is short compared_ to ot.her transmission windows of the
with the same profit. In Figure |6(a) we consider the sanf@me flow. By comparing Figure | 6(b) to Figurel 6(a), we
simulation setting as in Figufé 2, except that every flow nof#€an addltlonal_ substantial improvemefar both CAB and
has three possible transmission windows, each associdted WAB, for all traffic loads.

a different path. The first path is chosen to be a shortest pathFinally, Figure [6(c) shows results for the same simulation
(as in Figure 2). For the second path, a random intermediattting as in Figure [|6(a), but this time higher profit is
nodew is chosen and a shortest path from the source i® assigned to transmission windows with earlier release.time
used, followed by a shortest path fromto the destination We do this by assigning different release times to the three
(this is the concept known as 1-hub routing [8]). A differenpossible transmission windows and multiplying the profit of
random intermediate nodé is chosen for the third path; oncethe window with the first release time by 1, the profit of the
again, a shortest path from the source't@ used, followed by window with the second release time by 1/2, and the profit

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://lwww.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation informe

10.1109/TCC.2015.2487964, |IEEE Transactions on Cloud Computing

12

0.38 T T

: :
Alg-2 = Alg-3 —
asl Alg5 | 036 Alg-4
) Reverse Alg-5 034 L e
= MNoe | 2 0wl
= Reverse Alg-6 =032 e .
g 03 E‘?E‘:‘““ 1 g_ oal .
. o ey } —_
° - e, - - S
) oo e o @ 028 . .
N e T e M*M"W N o e -
= R T omf .
£ o5 W el e ‘x,@(m” g c - e
= e R = 024 : \N\""‘:
o ‘\k“ uuuuuuu o, Hrexn o -
c g 05650 C o022}
‘*«\ PO E e,
02} \\\ - 02}
.
P 018 |-
\ \ \ \ L e 0.16 \ \ \ \ \ \ \
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
normalized load normalized load
(a) The CAB algorithms (b) the NAB algorithms

Fig. 5. Performance of the various algorithms for flexibilitio= 0.13 (but profit is proportional to the flow size)

of the window with the third (latest) release time by 1/3algorithms, whose implementation is impractical, have e p

By comparing Figure[|6(c) to Figuré] 6(a), we see again darmance advantage compared to the CAB algorithms. Thus,

additional substantial improvement for both CAB and NABwe believe that CAB is the best model for inter-datacenter

and for all traffic loads. We also see that for light loads thecheduling, which means that a TCPBrotocol should be used

performance in Figure 6(c) is better than that in Figure 6(lr) the Transport layer, and bandwidth should be allocated to

and vice versa. the scheduled flows by the controller and not by the network.
We can summarize this section as follows:

1) Our new approximation algorithm (Algorithmj 2) is the
best algorithm for CAB, not only because it is fasterlhe Proof of Theorem! 2

APPENDIX

but also because it yields the top performance. The first two parts of the theorem are proven by first
2) The most important factor in the performance of all thehowing that everyi-maximal schedule is an appropriate
algorithms is the length of the possible windows. approximation with respect to;, and then applying the local

3) Even if the NAB scheduler has full knowledge of theatio technique to prove the approximation ratio by indumti
exact bandwidth allocated by the network to evergn the algorithm’s invocation.
flow, the NAB algorithms perform better than the CAB To prove part (a) of the theorem, we start with three lemmas.
algorithms only for low loads and large flexibility ratio) _ _
values.This indicates that CAB scheduling is the best =€Mma 5. If for every instancei : w(i) > p, then at most
model for inter-datacenter flow scheduling. % — 1 instances can be scheduled at the same time on the
4) By allowing each flow to be scheduled over one dfame edge.
multiple (three) different transmission windows, we can T this | hedule at leddt] inst
substantially increase the performance. Moreover, by O prove _'S emma, we _SC edule at legg ms anpes
tuning the profit of each window according to attributed@t the same time. Then, their aggregated bandwidth is larger

1 o . : _
such as path length and release time, further substanif¥n#; = 1, which is the maximum normalized capacity of
improvement is obtained. an edge.

= a([L]—1)-intersct(z
Lemma 6. vs;pl(s)<p1(i).(1+ ([3]-1)-int t<>)_

Cmin(z)

VIl. CONCLUSIONS

In this paper we defined and addressed a new schedulingo prove this lemma, we note that the boyndS) < p; (7)-
problem, called CAB. This problem arises when many datégp holds for
centers need to transfer astronomical amounts of data among
themselves on a timely basis. We proved that this problembopt: 1 +a([1_‘ —1). Z 1 i}
is not only NP-hard, but that it also does not admit a PTAS. p min (%)
Then, we developed an efficient approximation algorithm and ~
two heuristics for solving it. We also defined a related peat| o [ﬂ — 1) - intersct(z)
called NAB-scheduling, which differs from CAB-scheduling =1+ Cmin (1)
in the way bandwidth is assigned to flows. Our approximation e
algorithm was not only faster than the heuristics, but was Obviously, we can take at most one instance frdifi) in
also shown to perform better. We also showed that the NABy solution. Moreover, from Lemma 5 it follows that, for

z - C
elecini for i€Z(z)

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://lwww.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation informe
10.1109/TCC.2015.2487964, |IEEE Transactions on Cloud Computing

13

.. Alg-2 - ' Alg-2 -
ixan \"a,\‘\‘\ A|g_3 - 0.85 ‘\‘\"'«..‘ Alg-3 A
g - g e, g
Q oes| T, S % T, 1 <]
S S, S e, S
) e T o7 T o
8 06 S, _g \""'~.., g
= S, T o7 T, K]
£ e E T £
8 055 e 8 o6) 8
—
05 06 \\\~
0.45 L L L L L L L 0.55 L L L L L L T\~~N 05 L L L L L L L
02 03 0.4 05 06 0.7 08 09 1 0.2 03 04 05 0.6 07 08 0.9 1 02 03 0.4 05 06 07 08 09 1
normalized load normalized loa normalized load
(a) each window has a different path (b) profit depends on the path) prdéit depends on the release time

Fig. 6. Performance of the best CAB/NAB algorithms when eaclv fias three possible transmission windows

every edge common toand to an instance iff(i), we can We now prove part (b) of the theorem. From Lemrhas 8

add at most% to the profit. This lemma is relevant since®Nd 9 we obtain an approximation ratio of at least

by the choice ofi, all the instances that intersect within 1 Comin (7)

time also intersect with each other. 1+ intersct(i) _ = Cmin(8) + C(El) — intersct @)
Lemma 7. For every i-maximal S, pi(S) > pi(i) - =) o) 1 .

min{l, lex(%)} holds. z 1+ (C(iEn)ti}I;)S)szin = Cmin_’_0(131)7,) intersct

This lemma holds because amymaximal solution either ~ To prove part (c) of the theorem, we need the following
contains an instance of(i) or an obstructing instance fromlemma, which extends a result from [4]:
1

Z(). Lemma 10 (Combining Approximations) Given a -
We now prove part (a) of the theorem. From Lemgpproximation solution for a subset of the input elements
mas[6 and 7 we obtain an approximation ratio of at leaghg a 5 -approximation solution for all the remaining input

1 Cmin (;)

By e " Coum ()+([L] 1) intersct(7) which can be elements, we obtain gi—ﬁ-gpproximation for the whole set
* i by choosing the solution with the larger profit.

Cmin (i)
simplified to:
To prove this lemma, denote the two subsets of input

1 _ Cmin elements byA; and A,. Let the output schedule of thg—

(] -Dinterset +(PW ~ 1) intersct approximation fotd; beS;, and the output schedule of t
r approximation forA, be S,. Let S* be an optimal solution

To prove part (b) of the theorem, we need the following tWB)r the whole input setd. Either p(S* N A;) > ﬁp(s*)
lemmas. or p(§* N ;42) > aLiﬂp(S*) n:ust hold. Therefore, elither
~ p(S1) = 5 - 25Ep(ST) = s5p(ST) or p(S2) = 5 -
Lemma 8. For every S, pi(9) < pi(i) - ,%BP(S*) _ %Jrﬁp(s*) holds. Thus, a solution with the

1+

Cmin

—L _intersct(i
1+ ”“C’(l)()) holds. greater profit is a5-approximation for the whole set.
We now prove part (c) of the theorem. By setting
To prove this lemma, we note thak (S) < bop holds , — 0.5¢(F), we obtain the ratio of ——ter =
for bopt = 1 + C(;)%pze\eemi, for i€Z (i) ﬁ = 1+ . . 1+<E)7£
ﬁ'imefsmi), because we can take at most one instanéei"“c(g;)_n) fierscr (0 the wide subset ang e
Cumin (%) Emin for the narrow subset. Then, part (c)

+2 intersct /c(E)

from A(z) in a feasible solution. Also, for every edge commonf‘gﬁ'(‘)ws directly from Lemma 10.

to 7 and an instance if(z), we can add at mosg% to the
profit. This is because of the capacity constraints, anduseca
all the instances that intersect witlin time also intersect with
each other.

The Proof of Theorem| 3

Fore = 0, the algorithm acts as Algorithij 1 would act on an
infinite number of instances. Since Theorem 2 and Lemma 10
B ~ are correct even for an infinite number of instances, therclai
Lemma 9. For every i-maximal S, p1(S) > pi(¢) - holds in this case. Whea > 0, the approximation ratio of
min {17 1 _ } holds. Algorithm[2 is reduced by a factor df— ¢. The proof in this
Omax(2) case is similar to that proposed in [4], and is briefly presént
This lemma holds because afynaximal solution contains to keep our paper self-contained.
an instance ofA(i) or some obstructing instances frdf:) Since we can partition the windows to the finally obtained
whose total bandwidth is more thafi) — w(z) > ¢(i) — p. windows before the algorithm begins, we can assume without

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://lwww.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation informe

10.1109/TCC.2015.2487964, |IEEE Transactions on Cloud Computing

loss of generality that the algorithm never splits windows|7]
Call a window that is deleted during the execution of step (3)
of the algorithm a “bad window.” When a bad windowis
selected (and deleted), let be its profit. Consider now how (8]
the algorithm runs and how it would have run if we changed
the profit of every bad window to p(7) — ¢, and invoked a
precise algorithm (the same algorithm, but without detedim
step [(3). The precise algorithm can run in the second saenari
exactly as the deleting algorithm would do in the first scenarl10]
with regard to what is chosen and the final schedule, excepf
that the profit of every bad window that has not yet been
deleted in the first scenario will be higher by than its profit [12]
in the second scenario. Letand p’ be the profit functions

in both scenarios angosr and pl,, be the optima in both [13]
scenarios, respectively. For any feasible schedule(D) >
p'(D) = (1 —€)p(D), and thereforepi,; > (1 — €)poer. SO,
if the solution S of the precise algorithm is-approximation,
thenp(S) > p'(S) > rpgpr > (1 — €)popr, @and the solution
returned by our algorithm i8(1 — ¢)-approximation.

To prove the running time, we extend the analysis| of [4]7]
(Section 3.3.1). Thus, we follow their stack-based iteeati
implementation. At the first phase, we pustonto a stack
and iterate till there are no more instances. At the second
phase, we pop the items from the stack, adding them if they @8l
not violate the feasibility. Since the algorithm deletedeaist
one window during each iteration, the number of iteratians j20]
bounded by the number of windows (we treat a split window
as two windows). This number is less thﬁn because the [5q;
number of non-empty iterations is at mo%t Note that the
instances whose weight is ¢ of their or|g|nal profit can be [22]
removed while updating the profits. Thus, their removal does

(9]

(14]
(18]

[16]

(18]

14

Y. Chen, S. Jain, V. K. Adhikari, Z.-L. Zhang, and K. Xu. Asdt look
at inter-data center traffic characteristics via "yahodtabets. INEEE
INFOCOM 2011

R. Cohen and G. Nakibli. On the computational complexityd an
effectiveness of N-hub shortest-path routingEE/ACM Transactions
on Networking 16(3), June 2008. An earlier version was presented in
Infocom’2004.

Y. Feng, B. Li, and B. Li. Postcard: Minimizing costs onéntdatacenter
traffic with store-and-forward. IHEEE Distributed Computing Systems
Workshops (ICDCSWpR012.

S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equaltiased
congestion control for unicast applications. S=tGCOMM 2000

S. Floyd, M. Handley, J. Padhye, and J. Widmer. TCP fiiendte
control (TFRC): Protocol specificatiorRFC 5348 2008.

C. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. MNami, and
R. Wattenhofer. Achieving high utilization with softwadeiven wan.
In Sigcomm2013.

S. Jain et al. B4: Experience with a globally-deployeftware defined
wan. InSIGCOMM 2013.

H. Kellerer, U. Pferschy, and D. Pising&napsack ProblemsSpringer,
Berlin, 2004.

E. Kohler, M. Handley, and S. Floyd. Datagram congestgmntrol
protocol (DCCP).RFC 4340 2006.

N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguézter-datacenter
bulk transfers with netstitcher. I8igcomm2011.

K. Le, R. Bianchini, M. Martonosi, and T. Nguyen. Costidaenergy-
aware load distribution across data centersHotPower 2009.

J. Liu, F. Zhao, X. Liu, and W. He. Challenges towardssgtapower
management in internet data centers|BEE International Conference
on Distributed Computing Systen009.

A. Mahimkar et al. Bandwidth on demand for inter-data eent
communication. InProceedings of the 10th ACM Workshop on Hot
Topics in NetworksACM, 2011.

R. Prasad, C. Dovrolis, M. Murray, and K. Claffy. Bandith estimation:
metrics, measurement techniques, and tooletwork, IEEE 17(6),
2003.

F. C. R. Spieksma. On the approximability of an intervahestuling
problem.J. Scheduling2:215-227, 1999.

E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. Howntodel an
internetwork. ININFOCOM, 1996.

not affect the asymptotic complexity. Consider a non-empty Reuven Coherreceived the B.Sc., M.Sc. and Ph.D. degrees

iteration. Choosing takesO(n) and updatlng the profits takes

O(n|E|). Thus, the first phase take3(™—— ‘E|) The second
phase unwinds a stack whose size(d$”), since it was
built only by non-empty iterations. Checking the feastpilbf
adding an instance that is known to end first takd$E| n).

Thus, the second phase ta@ﬁ@) time, and the whole
algorithm takesO(@) time.

REFERENCES

[1] S. Agarwal et al. Volley: Automated data placement for gksiributed
cloud services. INSDI’2010Q

[2] U. Akyol, M. Andrews, P. Gupta, J. D. Hobby, I. Saniee, aAdL.

Stolyar. Joint scheduling and congestion control in mobitehac

networks. InNINFOCOM 2008

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huand,Aanvahdat.

Hedera: dynamic flow scheduling for data center networksthin7th

USENIX Conf. on Networked Systems Design and Implemamta@a0.

[4] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. &bler. A

unified approach to approximating resource allocation amedding.

J. ACM 48(5):1069-1090, 2001.

R. Bar-Yehuda and S. Even. A local-ratio theorem for appnating

the weighted vertex cover problemAnnals of Discrete Mathematics

25:27-45, 1985.

R. Bar-Yehuda, M. M. Hall@rsson, J. Naor, H. Shachnai, and I. Shapira

Scheduling split intervalsSIAM Journal on Computing36(1), 2006.

(3]

(5]

(6]

i Computer Science from the Technion - Israel Institute of
Technology, completing his Ph.D. studies in 1991. From 1991
to 1993, he was with the IBM T.J. Watson Research Center,
working on protocols for high speed networks. Since 1993, he
has been a professor in the Department of Computer Science
at the Technion. He has also been a consultant for numerous
companies, mainly in the context of protocols and architesst

for broadband access networks. Reuven Cohen has served as
an editor of the IEEE/ACM Transactions on Networking and
the ACM/Kluwer Journal on Wireless Networks (WINET).
He was the co-chair of the technical program committee of
Infocom 2010 and headed the Israeli chapter of the IEEE
Communications Society from 2002 to 2010.

Gleb Polevoyreceived the B.A. (Summa Cum Laude) in
Mathematics and Computer Science and M.Sc. in Computer
Science from the Technion - Israel Institute of Technology,
Haifa, Israel, in 2004 and 2011, respectively. From 2004620
he also worked as a software engineer and from 2011-2012
he worked as a researcher in the Technion. Since 2012, he is a
Ph.D. student in the EEMCS Department at Delft University
of Technology, working on Multi-Agent systems and game
theory.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://lwww.ieee.org/publications_standards/publications/rights/index.html for more information.

