
INFOCOM 2000 1

Framework for Multicast in Hierarchical Networks
Reuven Cohen Eyal Felstaine Roy Emek

Dept. of Computer Science IBM Haifa Research Laboratory
Technion, Haifa 32000, Israel MATAM, Haifa 31905, Israel�

rcohen,eyalfe � @cs.technion.ac.il emek@il.ibm.com

Abstract—We propose a framework for the creation and maintenance
of multicast trees in hierarchical ATM networks. This framework aims
at coping with an inherent difficulty of topology aggregating in such net-
works. The main idea of the proposed framework is to distribute the tree
topology information among a set of hierarchical Multicast Group Servers
(MGSs) nominated for each multicast tree, while keeping regions that do
not have a member in the multicast group unaware of the tree. The frame-
work can be employed with every multicast routing algorithm designed for
non-hierarchical networks.

Keywords: multicast, hierarchical networks, PNNI, ATM
networks, NIMROD, scalable routing.

I. INTRODUCTION

This paper deals with multicast trees in hierarchical networks.
Such a network consists of a hierarchy of subnetworks called
domains [1]. To allow scalability, domains do not reveal details
of their internal structure to nodes in external domains. Instead,
every domain advertises only a summary, or aggregated, view of
its internal structure. This is the concept adopted by the ATM
Forum as the PNNI (Private Network to Network Interface) stan-
dard for hierarchical ATM networks [2].

In PNNI, every ATM switch is considered as a lower level
node. Such a node maintains detailed topology information
about the lowest cluster to which it belongs, namely about its
Peer Group (PG). Such a PG usually contains a small number of
switches and links. Hence, maintaining the detailed information
for the PG does not lay an excessive communication, storage
and processing burden on the PG nodes. In contrast, every node
maintains only compressed topology information for its parent
PG, because the latter contains a larger number of switches and
links. Similarly, the node stores more aggressively compressed
topology information about its “grandparent PG”, and so forth.
A detailed description of the PNNI model is presented in Sec-
tion II.

In a communication network multicast is treated as the prob-
lem of creating, maintaining and updating efficient forwarding
trees, rooted at the multicast source nodes and spanning the
groups of destination nodes. A multicast tree may be dynam-
ically created, as network nodes join and leave the destination
group. It is maintained by some of the network nodes, mainly
those sitting on its data path [3], [4]. It needs to be updated not
only following changes in the multicast group but also follow-
ing changes in the network connectivity and load. In a virtual
circuit switched networks like ATM, the multicast tree can be
represented by a single tree VC (virtual channel).

The computation of an efficient multicast tree required to
maximize usage of network resources is often modeled by the
Minimal Steiner Tree (MST) problem in graphs [5], [6]: Given
a weighted graph with a non-negative weight for each edge and
a subset of nodes called terminals, find a minimum cost con-

nected subgraph that covers all terminals. An even more gen-
eral problem in the context of network multicast is the dynamic
MST problem [7], where the tree needs to efficiently adapt to
dynamic changes in the multicast group. The basic MST prob-
lem is known to be NP-Complete, and heuristics for the problem
have been proposed in the past [8], [9]. However, all the heuris-
tics assume that the exact topology and location of the multicast
group members are known, which is not the case in hierarchical
networks.

In this paper we propose a framework for the adaptation of
multicast routing protocols to hierarchical networks. In the con-
text of this framework we address the various issues related to
multicast that arise in hierarchical networks, like the distribution
of information about the status of the tree, the distribution of in-
formation about layout of the multicast group members, and so
forth. The proposed framework, refered to as HMF (Hierarchi-
cal Multicast Framework), deals with dynamic groups, whose
members may join and leave at any time. The paper focuses on
the ATM PNNI model which gains great interest due to its ac-
ceptance as a standard by the ATM forum. Nevertheless, HMF
can be adopted to other hierarchical, packet switched (IP) or cir-
cuit switched, network models.

A complete scalable mechanism that constructs efficient mul-
ticast trees using reasonably compact data structure as well
as acceptable setup time and communication complexity, was
never presented for hierarchical networks. Each of the existing
schemes (which are discussed in Section III) has at least one
severe disadvantage with respect to either Memory storage re-
quirements, Tree size efficiency or Protocol execution load. The
proposed framework addresses all these disadvantages and does
not impose “new” ones.

As already indicated, one can use HMF in order to implement
multicast routing algorithm that have been originally designed
for flat networks [5], [10], [11] in a hierarchical environment.
Other properties of HMF are as follows:
1. It scales to very large networks. This is mainly because the
multicast-related activities are performed distributedly, and only
in those areas that have switches sitting on the tree data path.
Moreover, HMF allows to evenly distribute the multicast-related
overhead among many nodes in the network.
2. HMF generates an efficient multicast tree, that is comparable
to the trees generated by the same multicast algorithms in flat
networks where topology information is not hidden.
3. The setup time required for joining and leaving a multicast
tree is comparable to the setup time of a regular VC.
4. HMF supports the construction of multicast trees according
to the rules dictated by the multicast algorithm. For instance,
the tree can be generated based on QoS constraints, given a
QoS-based multicast routing algorithm for a flat network. To un-

INFOCOM 2000 2

derstand the importance of this property, consider a scheme for
hierarchical multicast routing, according to which a node that
needs to join to a tree is informed of the identity of a switch to
which it needs to create a virtual circuit. In such a case, the route
from the joining node to the switch on the tree will be deter-
mined by the underlying unicast routing algorithm. In contrast,
our scheme specifies not only the switch to which the joining
node needs to connect, but also a description of an hierarchical
route over which the circuit is to be established as determined
by the multicast algorithm. This feature allows the multicast al-
gorithm to create a tree which cannot be created if our scheme
had relied upon the unicast QoS-based routing algorithm.

The rest of this paper is organized as follows. Section II out-
lines the main concepts of PNNI network organization and uni-
cast routing. Section III describes the main issues in hierarchical
multicast routing, and discusses previous related works. In Sec-
tion IV we present the HMF. Section V presents a complexity
analysis of the HMF properties and demonstrates the efficiency
of the constructed trees. Section VI concludes the paper.

II. AN OVERVIEW OF ATM PNNI ROUTING

In computer networks, routing is a collection of algorithms
that determine the routes that data packets will traverse until
reaching their destination nodes. In order to make routing de-
cisions, the network nodes should obtain topology information
and maintain routing tables. There are two well-known ap-
proaches to perform this task distributedly. In the first approach,
called distance-vector routing [12], each node sends its neigh-
boring nodes its entire routing table. The receiving nodes use
the received information in order to update their own routing ta-
bles, which they then send to their own neighbors. In the second
approach, called link-state routing [12], each node broadcasts
information to all network nodes regarding the status of its local
links only. The network nodes use the received information in
order to create and maintain an up-to-date network map, from
which they deduce their routing tables.

The main drawback of the distance-vector algorithm is that it
takes a long time to reconverge to alternate paths when a failure
occurs in the network [12]. During that time, the routing tables
may define loops that may cause congestion in the network. The
link-state protocol responds much faster to topology changes.
However, in large networks it lays an excessive communication,
storage and processing burden on the nodes. The concept of
hierarchical routing introduced by [13] is usually employed in
order to overcome this limitation of link state routing. The idea
of using hierarchical routing in order to avoid the excessive com-
plexity in topology advertisement is discussed in [14].

According to PNNI, the network nodes and links are orga-
nized hierarchically. At the lowest level of the hierarchy, each
node represents an ATM switch and each link represents a phys-
ical link or an ATM virtual path (VP). The nodes and links of
each level can be recursively aggregated into higher levels, such
that a high-level node represents a collection of one or more
lower level nodes, and a high-level link represents a collection
of one or more lower level links. The OSPF protocol [12], used
for autonomous system routing in the Internet, has two levels
of hierarchy. The ATM PNNI (Private Network-to-Network In-
terface)[2] is a hierarchical, dynamic link-state routing protocol,

1.1.2

1.1.4

1.1.31.1.1

PG(1.1)

2.1.3

2.1.4

PG(1.3)

2.2.1

2.2.3

2.1.1

PG(2.1)

2.1.2

2.2.2

2.32.2

PG(2)PG(1)

1.1

1.2

1.3

1 2

PG(1.2)

1.2.1

1.2.2

1.2.3

1.3.4

1.3.2

1.3.3
Level

0

Level
1

Level
2

PG(*)

*

3
Level

2.1

PG(2.3)

2.3.1

2.3.3

2.3.4

2.3.2

PG(2.2)1.3.1

Fig. 1. An example for ATM PNNI hierarchy.

designed to scale to the largest possible ATM networks, encom-
passing thousands of switches. It may support therefore a max-
imum of 105 hierarchy levels.

ATM PNNI uses hierarchical link-state routing. To support
this hierarchy, PNNI defines a uniform network model at each
level, with a set of logical nodes connected by logical links.
Each lowest level node represents a physical ATM switch with a
unique ATM address. Nodes within a given level are grouped
into sets of peer groups. A peer group (PG) is a collection
of logical nodes that exchange link-state messages, called PT-
SPs (PNNI Topology State Packets), with other members of the
group, such that all members maintain an identical view of the
group. Each PG is assigned a unique identifier and is repre-
sented in its parent PG as a single node, called logical group
node (LGN).

Figure 1 shows an example of ATM PNNI hierarchy. In this
figure, a logical node whose identity is of the form � , �%,�� repre-
sents a physical node (ATM switch). Nodes !�,�!�,�! " !8, !8, �

are
grouped into a PG called PG(1.1), and, in the same way addi-
tional 5 PGs are created. Hence the network has 22 logical nodes
in level 0 and 6 logical nodes in level 1. In level 2 there exist
only two logical nodes: PG(1), which consists of LGNs (1.1)-
(1.3), and PG(2), which consists of LGNs (2.1)-(2.2). The upper
level always has only one logical node (LGN � in Figure 1). The
links between the physical (level 1) nodes, like (1.1.1,1.1.4) or
(1.3.2,2.2.1), represent physical links or virtual path (VP) con-
nections. By contrast, the links between logical nodes in level 2
or above, like (1.1,1.3) or (1,2), represent a set of physical links
and VP connections.

As already indicated, each PG is represented in the next hi-
erarchical level by a single LGN. The functions associated with
an LGN are actually performed by the peer group leader (PGL).
The PGL is determined by means of a distributed election pro-
cess, executed by all the nodes in the PG (See [2] for more de-
tails). In Figure 1, the PGLs are those LGNs represented by

INFOCOM 2000 3

1

2.2.1

2.2.3

2.2.2

2.32.2

PG(2)

1 2

PG(*)

2.1

PG(2.2)

2.3

1

1

2.1

1

Fig. 2. Local view of the network from nodes in PG(2.2).

black circles. Note that physical node 1.1.4 functions as a PGL
of PG(1.1). However, since LGN 1.1 is the PGL of PG(1) and
LGN 1 is the PGL of PG �%�=� , the functions that LGNs 1.1 and 1
are supposed to perform as PGLs are actually implemented by
physical node 1.1.4.

Topology information flows horizontally through a peer group
and downward in to and through child peer groups. A PGL
within each peer group has the responsibility of creating PT-
SPs that represent the status of the links connecting its PG with
other PGs, and broadcasting these PTSPs to the other LGNs in
its parent PG. In Figure 1, LGN 1.1.4 is the PGL of PG(1.1),
LGN 1.2.1 is the PGL of PG(1.2), and LGN 1.3.2 is the PGL of
PG(1.3). Hence, these three LGNs exchange PTSPs in PG(1).
The PTSPs created by 1.1.4 indicates the status of the links
connecting PG(1.1) with other PGs: (1.1.4,1.3.1), (1.1.4,1.3.4),
(1.1.3, 1.2.2) and (1.1.2,1.2.1). This PTSP exchange may be
thought of as the PGL feeding information up the hierarchy. It
is necessary for creating the hierarchy and for distributing rout-
ing information about child peer groups. Conversely, feeding
information down the hierarchy is necessary to allow nodes in
the lower level PGs to obtain knowledge about the full network
hierarchy in order to select routes to destinations. When infor-
mation is fed down from one level to a lower level, it is aggre-
gated (summarized) [15], [16], [17], [18]. Hence, at the lowest
level each node has full information about its peer group, ag-
gregated information about its parent group, more aggregated
information about its parent’s parent group and so on.

By exchanging topology information among nodes, each
node obtains the information needed to create its “view of the
world”. Figure 2 depicts the local view obtained by the nodes
in PG(2.2) of Figure 1. The solid lines at PG(2) and PG(*) rep-
resent aggregated logical links, like (2.1,2.2), or physical links,
like (2.2.1,2.2.2), inside peer groups.

The ATM PNNI is supposed to provide sophisticated QoS
routing [19] while still allowing flexibility in the choice of route
computation. Hence, each implementation is free to use its own
algorithm. This gives rise to source routing, which does not re-
quire different switches to agree on the same computation. The
switch of the source host creates a hierarchical route consisting
of a detailed path within the source node’s PG, a less detailed
path within the source node’s parent PG and so on until reaching
the lowest level PG which is an ancestor PG to both the source

and destination nodes. When the LGN that contains the destina-
tion node in the lowest level common ancestor is reached, a new
“source” route is computed to descend to the final destination.
A “source” route is also computed when necessary by a node
which is the first of its PG along a certain path (a border node).
Such a node determines the best way to cross its PG.

A path is encoded as a set of Destination Transit Lists (DTLs),
which is explicitly included in a stack within the PNNI signaling
call setup request. Each DTL contains the description of a path
for one level in the hierarchy. It explicitly specifies every LGN,
and optionally every link, used to cross the PG. Each DTL is
associated with a pointer that indicates the next element in the
list to be processed.

As an example, assume a VC connection is to be set up be-
tween a host of 2.2.3 and a host of 1.1.2 in Figure 1. Node
2.2.3 examines its local view of the topology (Figure 2), and
finds three possible paths to reach node 1, which is an LGN in
the lowest level ancestor PG it shares with 1.1.2: (2.2.3,2.2.2,1),
(2.2.3,2.2.1,2.1,1) and (2.2.3, 2.2.1,1). Suppose that on the basis
of metrics and policy, node 2.2.3 chooses the last option: (2.2.3,
2.2.1,1). The DTL stack representing this path is:
)+4%,+4%,+& � 4�,+4%,�!	2 ,)+4%,+4 2 ,)+4 � ! 2
where the underline indicates the location of the pointer in each
DTL. Before forwarding the call setup message to 2.2.1, node
2.2.3 advances the pointer of the first DTL which becomes:
[4�,+4%,+& � 4%,+4%, !]. When node 2.2.1 receives the message, it notices
that the top DTL points to its own ID. Since the first and the
second DTLs are exhausted, node 2.2.1 looks at the third DTL
and finds that the message should be routed to node 1. Hence,
it advances the pointer in the third DTL and forwards the call
setup message to the border node 1.3.2 over link (2.2.1,1.3.2)
with the following DTL stack:) 4 � ! 2 .

Node 1.3.2 receives the message and realizes that the current
DTL destination has been reached. It therefore needs to build
a new “source” route to descend to the final destination based
on its local view of the network. It can select a path that goes
through 1.2 to 1.1, or a path that goes directly from 1.3 to 1.1.
Suppose it chooses the second option. It also needs to determine
the exact routing inside 1.3, e.g. (1.3.2,1.3.4). It then sends
the call setup message with a new DTL stack which looks as
follows:
)�!�,+&%,+4 � !8, & , � 2 ,)�!�,+& � !8,�!	2 ,)+4 � ! 2 .
Node 1.3.4 removes the top DTL, advances the pointer of the
new top DTL, and hands the message to node 1.1.4, which is its
neighbor in 1.1, with the following DTL stack:
)�!�,+& � !�,�! 2 ,)+4 � ! 2 .
Node 1.1.4 notices that it is the current target, and therefore
needs to find a route to 1.1.2 through PG(1.1). It chooses the
route (1.1.4,1.1.1,1.1.2) and sends the call setup message to
1.1.1 with the following DTL stack:
)�!�,�!�, � � !8, !=,�! � !�,�!8, 432 .
Node 1.1.1 advances the pointer of the top DTL, and forwards
the message to the final destination — node 1.1.2.

III. RELATED WORK

Hierarchical and dynamic link-state routing algorithms are
designed to scale to the largest possible networks, encompassing

INFOCOM 2000 4

thousands of nodes. To support the demand for multicast appli-
cation, multicast schemes, and in particular PNNI, need to sup-
port the construction of multicast trees. The cost of such trees
with respect to their link metrics should be close to what can be
achieved in a flat network, when a complete view of the network
topology is available at every node. This is a great challenge, as
the main concept behind hierarchical networks is that no single
node knows the complete topology of the network. In what fol-
lows we describe several schemes for building multicast trees in
flat networks. We also describe some of the ideas proposed in
recent years with regard to multicast routing in PNNI.

Algorithms for the construction of efficient and dynamic mul-
ticast trees in non-hierarchical networks are extensively covered
in the literature. The Waxman dynamic algorithm for computing
efficient multicast trees [8] is one of the most popular. Accord-
ing to this algorithm, a new node that joins an existing multicast
tree is connected to the nearest node on the tree. A different ap-
proach was taken by the Core Based Trees (CBT) algorithm [3].
In CBT, a multicast tree has a single predefined node, known as
the tree core, from which branches towards group members are
established. These branches are created along the shortest path
between a new joining member and the core node. The main ad-
vantage of the CBT over the Waxman algorithm is that the join-
ing node needs only to know the address of the core whereas in
Waxman algorithm it must know the exact structure of the whole
tree. The main disadvantage is that the cost of the CBT tree is
generally higher. Several other algorithms and heuristics were
proposed over the years.

ATM provides two important building blocks for multicast
routing. First, an ATM switching fabric is capable of multicas-
ting cells coming from one input port to a pre-defined list of
output ports. Second, the ATM standard specifies two distinct
mechanism to join a multicast tree: Leaf Initiation Join (LIJ)
and Root Initiated Join (RIJ). In RIJ the root triggers the process
of joining new nodes to the tree, whereas in LIJ the process is
triggered by the joining nodes. However, PNNI has not speci-
fied any mechanism for supporting these two requests. Several
solutions have been proposed for filling this gap:
L In the context of IP over ATM, it was proposed to use a
centralized multicast server that maintains the topology of the
whole network and controls new connections [20]. This scheme
suffers from lack of scalability, and does not take advantage of
the benefits of a hierarchical network.L Multiple CBT [21]: This scheme establishes a core based tree
for each PG for every multicast group. When a node wishes to
join a multicast group, it tries to attach itself to the core node
within its PG. If the core node is not on the tree, it first joins the
multicast tree by approaching the core node in the parent PG.
This procedure is performed recursively, until an “active” core
node is found. The main advantages of the scheme we propose
in this paper (HMF) over Multiple CBT are:

1. Our scheme supports any multicast routing algorithm,
whereas this scheme supports only a specific routing algo-
rithm. This scheme uses CBT which has been designed for
flat packet switched network (the Internet), and cannot be effi-
ciently adapted to an hierarchical circuit switched network. For
instance, in CBT a join or a leave message is sent from one
router to another on the path towards the core, taking advantage

of the underlying packet based routing.
2. In this scheme, if a single core is used in every PG for all the

multicast trees, this core is likely to become a bottleneck. If a
different core is defined for every group, the overhead for main-
taining the core and spreading information regarding the cores
will be excessive. Our scheme nominates a “core” (called MGS,
“multicast group server”) only when needed. Namely, a PG that
has no members in a multicast group will not have an MGS for
this group. This reduces the maintenance cost significantly.L In [22], an improvement for Multiple CBT was proposed. In-
stead of core nodes, this scheme uses Rep nodes. A Rep node
performs multicast routing decisions inside its PG, but does not
have to be a part of the multicast tree. This eliminates the first
disadvantage of the previous solution, but does not affect the
second.L Another proposed solution is the Distributed Multicast Rout-
ing Protocol (DMRP) presented in [23], [24]. This solution re-
lies heavily on the use of peer group leaders (PGLs) for the cre-
ation and maintenance of the multicast tree. Under this scheme,
a joining node locates the nearest active node in the network in
the following way:

– In a ! -level PG, the node floods a request to find out which
nodes are members of the multicast tree. After collecting the
replies, it determines the identity of the closest active node.

– If none of the nodes in the ! -level PG is on the multicast
tree, the nearest ! -level PG with active nodes is located by the
! -level PGL, and this process continues recursively.
PGLs are used in this scheme to handle the multicast though
they are already excessively occupied by unicast-related tasks.
Therefore, the scheme lays overhead on the network, especially
for small multicast groups, and does not scale to large networks
where hierarchical routing is likely to be employed. As already
noted, HMF may assign the multicast-related tasks to any switch
in the PG.
Another advantage of HMF over this scheme is that HMF selects
a node to which the joining switch should connect in a top-down
manner, whereas this scheme selects it in a bottom-up manner.
This not only results in less communication overhead, as noted
above, but also allow to use a multicast routing algorithm that
aims in achieving global optimization rather than only local op-
timization.

IV. THE HIERARCHICAL MULTICAST FRAMEWORK

In this section we present the proposed Hierarchical Multicast
Framework (HMF). HMF creates a single shared tree for every
multicast group. This tree is shared by all the senders, which are
assumed to belong to the group. The construction of the tree is
performed by a series of join actions.

HMF is based on the definition of a set of Multicast Group
Servers (MGS), associated with each multicast tree. An MGS
exists in every PG that participates in the tree. An MGS ad-
ministers a single PG in the multicast tree, in a similar way to
a PGL that administers a PG with respect to the PNNI flooding
algorithm. The main purpose of an MGS is to store the struc-
ture of the multicast tree within its PG. The view of the multicast
tree a single MGS stores relates only to its administered domain.
More detailed information is stored in lower level MGSs.

The addition of a new leaf (an ATM switch) to the multicast

INFOCOM 2000 5

Multicast Tree

key-level:2

key-level:3

key-level:1

1 1

1

1

3
2

2

i

Joining node

Member node

PG of level i

Fig. 3. Demonstration of the key-level concept

tree is taken care of by the MGSs of that tree in a top-down order.
The leaf initiates a joining process by approaching the top level
MGS. The latter contacts an appropriate lower level MGS and
so forth until a switch is found in the tree, from which a physical
a physical connection with the joining node is created. Routing
decisions are carried out by the MGSs that govern the nodes
along the newly created branch.

A. Notations

The following notations are used throughout the paper; with
respect to every multicast group:L � : The number of levels in the PNNI hierarchy.L ������� �D� � : An

�
-level Multicast Group Server, in charge of

peer group � . Hence,
��� � ���3� is the only top level MGS

whereas
��� � � ���.� represents the multicast functionality of a

single ATM switch � .L � � � � � � : An
�
-level PG that contains a peer group called�

, where
�

might be a physical switch or a higher level PG.
� ��� � � � can be represented as a graph: � ����� � where

�
is a set

of (
� " !)-level child PGs and

�
is the set of logical links (edges)

connecting the child PGs.L Active Peer Group: A PG is said to be active (again, with
respect to a given multicast group) if it contains switches that
are members of the multicast tree. Note that by definition the
parent of an active PG is an active PG as well. Also note that
HMF nominates an MGS to every active PG.L�� �D� � : A subset of peer group � , that contains the nodes and
links belonging to the tree.L key-level: For a switch

�
that joins the multicast tree, the key-

level � is defined as:

� � �
	���� �
� � � � � � ��� � � � � � � is an Active Peer Group �

This definition is demonstrated in Figure 3. From the definition
follows that when

�
is added to the multicast tree, at least � " !

PGs become active (one in every level � , for *�� ��� �).

B. Joining a Multicast Group

Adding a new switch to a multicast tree is the most complex
process in HMF. For clarification, we first describe the simple
case where a switch joins the tree when its ! -level PG is ac-
tive. Namely, another switch in the same ! -level PG has already

joined the tree. Only then we address the general case, where
the ! -level PG of the joining node is not necessarily active. For
simplicity, throughout this section it is assumed that the underly-
ing multicast routing algorithm aims at finding the shortest path
between the joining node and the existing tree. However, as al-
ready noted a multicast algorithm based on other considerations
can be used as well.

B.1 The Simple Case: the ! -level PG of the Joining Node is
Active (key-level � !)

As an example, consider the hierarchical network depicted
in Figure 4. In this figure a & -level hierarchical network is de-
scribed. To simplify the figure, MGSs of level � also serve as
MGSs of levels ! through � " ! . Assume that switch B.4.1
wishes to join the multicast tree. It therefore sends a JOIN-REQ
message to the highest level MGS—

����� � ���3� which resides in
switch D.4.3. The latter finds out that B.4.1 is placed in an active
4 -level PG, PG(B). It therefore forwards the message down the
hierarchy to

����� 	 ��� � that happens to be B.3.2. MGS B.3.2
then finds out that the joining switch resides in an active ! -level
PG (B.4). It therefore forwards the join message to the MGS of
B.4, namely to B.4.3. Based on the underlying routing proto-
col and the topology view B.4.3 has, B.4.3 computes a shortest
path within its PG from the joining switch B.4.1 to a switch in
T(B.4). Let this switch be B.4.2. To this end, B.4.3 must know
not only the structure of B.4, but also the structure of T(B.4).

MGS B.4.3 then constructs a JOIN-PATH message contain-
ing the information about the computed route. This message is
sent to the connecting switch (B.4.2). Upon receiving the mes-
sage, B.4.2 sends a BRANCH-SETUP message to establish the
branch to B.4.1. When B.4.1 receives the BRANCH-SETUP
message, the joining process is completed.

The JOIN-REQ and JOIN-PATH messages are sent from an
� -level MGS to an (�0" !)-level MGS by means of a special multi-
cast signaling VC established between every MGS to its parent
MGS. We could have used the reverse order of the same sig-
naling VCs in order to inform

�
of the connecting switch � .

However, this would significantly increase the delay and com-
munication overhead of HMF.

In the simple example considered above, where the joining
switch resides in a ! -level active PG, the BRANCH-SETUP
message can be viewed as a regular PNNI SETUP message that
establishes a unicast VC. However, we shall see later that in the
general case, the BRANCH-SETUP message should also nomi-
nate MGSs in PGs that were non-active and became active due
to the new branch.

B.2 The General Case: key-level
	

1

We now describe the more general case, where the ! -level PG
of the joining node,

�
, is not active. In such a case, the scheme

becomes more complicated since some inactive PGs need to be-
come active. HMF identifies these PGs, and nominate an MGS
in each of them. Consider Figure 5 and let the joining node
be

�
=A.1.2.

�
joins the tree when PG(A) is inactive. It sends

a JOIN-REQ message to
����� � �%�3� —switch D.4.3. D.4.3 re-

alizes that
�

belongs to an inactive 4 -level PG. Based on the
underlying multicast routing algorithm, D.4.3 determines the 4 -
level PG path between A.1.2 and the tree. As noted before, sup-

INFOCOM 2000 6

A.3
A.2

A.1

C.2

C.1

21 3
4

1
3

4

2

1 3

4

5

1
2

3

2

1

2

3

1

3

4

3

2
1

B.1

B.4

B.2
B

1

1

2

2

3

3

3 1

23

4
5

D

E

D.1

D.2

E.1
E.2

E.4

3 4

1 2

1

2
3

5

43

2

1

2

1 3 5

4

1

1
2

31

2

3

2

1

3
4

5

1

2

3

1

3

6

5

2

4

2

1
3

56

4

5

3

1

4
3

4

D.3

2

4

2

MGS of level 3 (highest level)

MGS of level 2

MGS of level 1

Member of the multicast group

Joining Node

2

C

1

2

4

A

5

E.3D.5D.4
C.3

C.4

C.5

B.3

E.6

E.5

Fig. 4. Adding a Switch to the Tree - the Simple Case

pose that the multicast routing algorithm searches for the active
PG closest to

�
. In such a case

����� � �%�=� would select either
the path [C,A] or the path [B,A]. Let the selected path be [C,A].
A JOIN-PATH message is therefore sent to

����� 	 ��� � , namely
to switch C.2.2.

Switch C.2.2 computes a ! -level route within PG(C) from the
multicast tree to the logical link connecting PG(C) to PG(A).
The resulting path, [C.4, C.5], is attached to a JOIN-PATH mes-
sage sent to the MGS of C.4, namely C.4.4. The latter repeats
the process by finding a route that crosses C.4 towards C.5:
[C.4.3, C.4.5, C.4.1]. This implies that a new branch should
be set up between

�
and switch C.4.3. Let C.4.3 be referred to

as � .
When � (C.4.3) receives the message from C.4.4, it constructs

a BRANCH-SETUP message and sends it towards the joining
switch

�
(A.1.2). This message contains a DTL stack that was

created during the HMF execution and describes the route from
� to

�
, as selected by the specific underlying routing algorithm.

In our example, the DTL stack is as follows:
Level MGS Route
1 C.4.4 [C.4.3, C.4.5, C.4.1]
2 C.2.2 [C.4, C.5]
3 D.4.3 [C, A]

Physical border nodes along the created branch (the dashed
line in Figure 5) should perform two operations:L Calculate the route within their PGs. Switch C.5.4, for ex-
ample, replaces the lowest level route in the BRANCH-SETUP
message with a new route [C.5.4, C.5.2, C.5.1]. Switch A.2.1
calculates new routes for both level 1 and level 2 of the DTL
stack, and so forth. This is a normal procedure performed by an
entry node when a regular unicast SETUP message is received.
However, it can be performed according to the specific underly-
ing multicast routing algorithm.L Nominate MGSs in their PG: a ! -level border node (A.1.1)
should nominate only one MGS, a 4 -level border node (A.2.1)
should nominate 2 MGSs, and so forth.
A newly created MGS can deduce from the BRANCH-SETUP
message the identity of other related MGSs. It uses this informa-

tion in order to create a signaling VC with each of them. When
the joining node receives the BRANCH-SETUP message, the
process is completed.

As described above, in HMF only active PGs need to maintain
information about the tree. This is one of the most important
features of HMF, that enables its scalability.

New MGS of level 1

A.3

C.2

C.1

1 3
4

1
3

4

1 3

4

5

1

3

2

1

2

3

1

3

4

3

2
1

B.1

B.4

B.2
1

1

2

2

3

3

3 1

23

4
5

D

D.1

D.2

3 4

1 2

1

2
3

5

43

2

1

2

1 3 5

4

15

3

1

4
3

4

2

4

2

2

1

2

4

2

2

2

5

A

C

BA.1

A.2

B.3

D.5D.4

D.3
C.5

C.3

C.4

New MGS of level 2

To E

Fig. 5. Adding a Switch to the Tree - the General Case

We now summarize the four phases required for adding a new
switch to a multicast tree:
1.

�
sends a JOIN-REQ(

�
) message to

����� ���3� .
2. The JOIN-REQ message is sent down the MGS hierarchy
towards the PG of

�
. In every level

�
, starting with

� � � , the
message is sent from

��� ��� ��� ��� � � �@� to
������� � � ��� ��� � � � � � .

INFOCOM 2000 7

This phase ends when the JOIN-REQ message reaches the MGS
of the lowest level active PG that contains

�
— the key-MGS.

3. After the key-MGS is reached, at every level
�
:L A route of (

� " !)-level PGs between the existing tree and�
is determined. The first PG along this route must be active,

whereas the other PGs are inactive.L A JOIN-PATH message is then forwarded to the active lower
level PG. This message contains information about the route
found so far, for levels

�
,
� & ! , ..., ����� -

� ����� � " ! .
This process is repeated until � is located, and a DTL-list de-
scribing the route between � and

�
is generated.

4. A connection is established between � and
�

, and MGSs are
assigned to all the PGs along that route. These PGs must be
inactive, because otherwise the route would have been created
from the last active PG. The branch from � to

�
is setup along

the path calculated during the previous phase, using BRANCH-
SETUP messages.

B.3 MGS nomination

One of the most difficult tasks performed by HMF is nominating
a new MGS for every PG that becomes active. Theoretically,
there are two ways to perform this task: top-down or bottom-up.
We first show that a top-down scheme would not work well, and
then propose a bottom-up scheme.
In the top-down scheme, the MGSs of level ����� "$! are directly
nominated by the key-MGS. They then nominate the ������� " 48� -
level MGSs, and so forth. However, the key-MGS does not
know the exact topology of its administered PG. Hence, it can
nominate an MGS only after somehow collecting topological in-
formation for every relevant lower level PG, thereby increasing
the complexity of HMF considerably.
We propose to use a bottom-up scheme, performed during the
setup of the branch from � to

�
in phase 4, in the following

way. A border node of level
�
	 ! determines the (

� " !)-level
PG where the

�
-level MGS will reside. It attaches the identity of

this MGS to the BRANCH-SETUP message. When the border
node of the selected PG receives the BRANCH-SETUP mes-
sage, it repeats the process by determining the (

� " 4)-level PG
that will contains the MGS, and so forth. This process ends
when a border node of ! -level PG determines the specific phys-
ical node that will serve as the

�
-level MGS.

In terms of the example consider in Figure 5, MGSs are nom-
inated for PGs of both ! -level (C.5, A.2, A.1) and 4 -level (A)
PGs.

����� � ��� ,+18� and
����� � ��� ,+4�� are nominated by the ! -

level border node at the entry to their PG—switches C.5.4 and
A.2.1 respectively.

����� 	 �� � , however, is through the follow-
ing process:L The 4 -level border node of A for this particular BRANCH-
SETUP, namely switch A.2.1, determines that

����� 	 ��� �
should reside in PG A.1.L The border node at the entry to A.1, namely switch A.1.1,
deduces from the BRANCH-SETUP message it receives that
a 4 -level MGS should be appointed in its ! -level PG. It then
decides to nominate itself as

�����
	 ��� � . In addition it should
nominate a ! -level MGS for A.1, and for some reason it decides
to take this task as well. In general, the entry switch may select
the MGS randomly or based on knowledge regarding the load
imposed on every switch.

In principle, the above process could be simplified if we agree
that an

�
-level physical border node will serve as an MGS of all

the
�

levels. However, the border nodes are usually the bottle-
neck of an ATM network [25] and therefore will probably not
be able to assume further tasks.

B.4 Joining the Multicast Group: Discussion

As explained above, two simultaneous activities occur dur-
ing the third phase of HMF: the connecting switch � is chosen,
and the route from � to

�
is computed. The routing computa-

tions during this phase are performed by the MGSs of different
hierarchy levels. One may argue that � could have computed
the route towards

�
as if it was a regular unicast setup process

thereby avoiding the need to collect routing information when
the JOIN-PATH message is forwarded from one MGS to an-
other. However, this would be a bad approach for the following
reasons:
L The considerations made by the unicast routing algorithm
might be different from those made by the underlying multicast
routing algorithm. For example, some multicast algorithms may
choose a longer path that goes through regions which contain
hosts that are likely to join the group in the future. By deter-
mining the route between � and

�
during the propagation of

the JOIN-PATH message, we actually allow the multicast rout-
ing algorithm to determine how the tree would look like. Note,
however that our scheme is still compatible with PNNI, because
the BRANCH-SETUP message has a DTL-stack exactly like ev-
ery unicast SETUP message has (see Section II). The difference
is that HMF computes this stack based on considerations of the
multicast algorithm, rather than of the considerations of the uni-
cast algorithm.L � does not hold any information about the structure of the
tree in higher levels of the hierarchy. Hence, it might choose a
route that goes through active PGs (e.g. C.4.3, may choose the
path [C, B, A] in our example). Trying to setup a new branch
through such PGs can lead to multiple MGSs in the same PG,
which contradicts one of the basic assumptions of HMF.L Another, less significant, reason is the issue of computational
complexity. Parts of the route from � to

�
are already computed

by the MGSs during the selection of � . Therefore, it makes no
sense to repeat this computation after � is selected.

HMF aims at minimizing the information a joining node must
have in order to join the tree. This property is essential in an en-
vironment where many multicast groups will be active at the
same time, but only a small fraction of the nodes in the net-
work is likely to join each group. In HMF a joining node needs
only know the identity of the highest level MGS. The identity
of

����� ���3� can be found by means of some directory service
like DNS or LDAP. If a specific multicast group is only intended
for a subset of the network which fully resides in a PG of some
level

�
, the top level MGS of the group can be defined for this

PG, rather than for PG(*). This will reduce communication and
time complexity.

Deadlocks and loops are prevented due to a central control
of MGSs. During the time when branches are established or
deleted, the multicast tree is not stable. However, the scope of
this instability is bounded to the PG where changes are made.
For that reason, an MGS suspends JOIN-PATH messages that

INFOCOM 2000 8

need to traverse an unstable child PG, until the setup process of
a previously joined switch nominates an MGS for that PG.

C. Leaving a Multicast Tree

Suppose that a switch wants to leave a multicast group. If the
switch is a leaf of the multicast tree, its branch is pruned. If it
is not a leaf, it cannot be pruned. However, it should notify its
MGS that it does not belong to the multicast group anymore.

The mechanism for branch pruning in HMF is based on the
use of a PRUNE message initiated by the leaving leaf. This
message is then repeatedly forwarded by the nodes along the
pruned branch, until it is blocked by a switch that is a member
of the group, or by a switch that is the origin of another branch.

As an example, consider Figure 5 and assume the case where
switch A.1.2 leaves the multicast group. It therefore sends a
PRUNE message to switch A.1.1, thus initiating the removal
of the the branch [A.1.2, A.1.1, ..., C.4.5, C.4.3] from the tree.
The pruning ends only at C.4.3, because it is a fork of another
branch. A significant by-product of the pruning is the deacti-
vation of PG A (including A.1 and A.2) and PG C.5. When an
PG becomes inactive, its MGS is cancelled, and the MGS of its
parent MGS is informed.

������� ��� ,+1�� (switch C.5.2), for ex-
ample, is informed of the pruning by the physical border node
C.5.4. Consequently, C.5.2 informs

�����
	 ��� � (switch C.2.2)
that C.5 became inactive, and stop functioning as an MGS. The
same mechanism is used recursively in PG A.

In general, the MGS of a PG where pruning is performed is
informed either by:
L A switch that receives a PRUNE message, but stops the
PRUNE cascade, or byL A border node, that is the last switch in the PG that belongs
to the multicast tree. In this case, the MGS notifies its parent
MGS.

V. HMF PROPERTIES

In the following section we investigate several aspects of mul-
ticast tree performance: protocol execution load, setup time, tree
cost and memory complexity. As already mentioned, each of the
existing hierarchical multicast schemes bears at least one severe
disadvantage with respect to these aspects of performances.

A. Protocol Execution Load

In order to measure the processing load imposed by the HMF
on the network switches, we count the number of switches that
need to process a signaling message when a new switch joins the
tree. Consider a uniform hierarchical network, where different
PGs have identical internal topology regardless of their hierar-
chy level. Let � be the size of the average path in a PG, namely
the mean number of child PGs a message needs to pass in order
to cross the PG including the entry and exit nodes.

Theorem 1: The communication processing load imposed by
HMF during the join process is in the same order of the process-
ing load imposed by the setup of a unicast VC.

We prove this by showing that in both cases the number of
switches that process a signaling message is � ���� � where � is
the level of the topmost PG.

Lemma 1: The maximal number of switches residing along a
path between two switches whose lowest common PG is in level� is ��� .

The proof is by induction. The claim clearly holds for a ! -
level PG. Suppose that it holds for an (� "�!)-level PG. In the
case where the lowest common PG resides in level � , the path
crosses on the average � (� " !)-level PGs, and the total number
of switches is therefore ������� � � ����� .

From Lemma 1 follows that the number of nodes involved in
the processing of a unicast VC setup messages is at most � � .
Hence, the processing load imposed by a unicast VC setup is
� ��� � .

We next estimate the processing load imposed by HMF for the
join process. To this end, we distinguish between the following
phases:
1. The joining node

�
sends a signaling message to

����� ���3� .
Whether

�
establishes a VC to this end, or it uses an embedded

“packet switched signaling network”, the processing complexity
is � ��� � .
2. Forwarding the JOIN-REQ � times, from one MGS to an-
other over existing VCs. � switches (MGSs) need to process a
signaling message during this phase.
3. Forwarding a JOIN-REQ from the ! -level MGS of � to � .
At most � switches will have to process the JOIN-REQ during
this phase.
4. The BRANCH-SETUP message travels from � to

�
. By

Lemma 1, � ���8��� switches are involved, where � is the key-level
in the particular join process.
5. Finally, a signaling VC needs to be established between ev-
ery PG that becomes active and its parent PG. These VCs will
serve switches that will join the multicast tree later. Therefore,
for a dense tree the contribution of the processing load during
this phase per a single joining switch is negligible. In any case,
by Lemma 1, the number of switches involved in the setup of
a signaling VC between an (� " !)-level MGS and its parent
is � ��� � � . Therefore, for setting up � such VCs between a ! -
level MGS to its parent, and then from the 4 -level MGS to its
parent and so forth, the total processing complexity would be
� ��� �� � � � � � �!� �����#" � � . This concludes the proof of Theo-
rem 1.

B. Tree Size

The cost of the tree is mainly determined by the underlying
“flat multicast routing algorithm”. However, the purpose of this
section is to show how efficient is the tree generated by a given
multicast routing algorithm when implemented in the contest of
HMF, comparing to the tree generated by the same algorithm
in flat network. To this end, we ran simulations on a randomly
generated hierarchical networks, and on the associated copy of
the underlying flat networks. The aggregation mechanism for
additive metrics in our hierarchical network model is that each
PG advertises one metric denoting the average delay needed for
crossing it between all border node pairs.

In every simulation instance, we constructed the same multi-
cast group in the two hierarchical and flat networks by repeat-
edly adding and deleting nodes from the group. We used the
function

� �%$/��
�� �D�/��� � � � "$�/�
� � � " �.�'& �@! " � �@�

INFOCOM 2000 9

1

1.2

1.4

1.6

1.8

2

2.2

0 2 4 6 8 10 12 14 16

H
ie

ra
rc

hi
ca

l W
ax

m
an

 u
si

ng
 H

M
F

 /
fla

t W
ax

m
an

% joiners of network nodes

density factor: 1
density factor: 3
density factor: 5

Fig. 6. Waxman Tree Cost — Hierarchical vs. Flat Networks

to determine the probability that an event is a node addition or
deletion, where � is the total number of physical nodes in the
network, � is the current size of the multicast group, and � is the
expected fraction of nodes in the multicast group.

To simulate “locality of interest”, where nodes from the same
neighborhood are more likely to join the same multicast group,
we use a density factor, denoted � . After uniformly choosing a
candidate node

�
for addition, the probability of adding

�
to the

group is ���	��
������������������� � where � is the key-level of
�

. With
probability !#"$� �	��
������� ���%� , � is ignored and another candidate
is selected. Due to the space constraint, we show the results
achieved only for Waxman [8] algorithm.

Figure 6 shows the ratio between the cost of the tree generated
by this algorithm when adapted to run with HMF, and the cost
of the tree generated by this algorithm in a flat network. We
generated a & -level network with an average of 25 nodes per PG
(approximately 15,000 physical nodes). We ran simulations for
�('$)+*-,.,/,0!/132 , and with density factors of 1, 3 and 5.

It is evident that ratio between the performance in a flat net-
works and in hierarchical network ranges from almost 4 in very
small groups (�5�6*%,+4�187), when the members of the group
are evenly spread in the network (�9�:!), to approximately 1.3
when the size of the group reaches 3% of the network popula-
tion. As expected, the hierarchical Waxman multicast routing
algorithm performs better for dense multicast groups because
when the group is denser, the key-level for an arbitrary joining
node becomes lower, and the aggregation error decreases. Con-
sequently, the decisions made by the multicast routing algorithm
are more accurate.

C. Memory

As opposed to previously proposed schemes [20], [21], [22],
HMF requires only the MGS of an active PG to store a record
for the multicast tree. Hence, one record is needed for every
multicast group in every PG. In practice, small local multicast
group span only few PGs, and impose a much lower memory
complexity. We used our simulation model to measure the num-
ber of all active PGs, including * -level PGs (i.e switches that sit
on the tree data path) as a function of the number of physical

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

0 2 4 6 8 10 12 14 16

of

 r
ec

or
ds

 p
er

 p
hy

si
ca

l s
w

itc
he

s
in

 th
e

tr
ee

% joiners of network nodes

density factor: 1
density factor: 3
density factor: 5

Fig. 7. Number of nodes in the generated tree: ;=<�>@?BADC	EFGIHKJ ?BADC	E

nodes in the tree. The results are presented in Figure 7. It is
evident that the memory cost per every switch on the tree data
path ranges between 1.15 and 1.3.

VI. CONCLUSIONS

We presented a novel framework for the creation and man-
agement of multicast trees in hierarchical networks. The frame-
work is tailored for the ATM PNNI hierarchical model. The
essence of HMF is the distribution of information and rout-
ing decisions between dynamically nominated Multicast Group
Servers (MGS).

The proposed framework addresses disadvantages of the ex-
isting schemes without imposing new disadvantages: It creates
cost efficient and hot-spot-free trees compared to CBT based
algorithms such as [21] and [22] (which disregard available
link-state information). Unlike [20],[21] and [22] the proposed
scheme imposes marginal storage requirements on the network
nodes. Finally, the communication cost associated with the new
mechanism is of the same order as that of PNNI-unicast, as op-
posed to expensive flooding which is performed in [23], [24].

Other advantages of HMF are as follows:
L The MGS functionality for different multicast groups can be
spread between all physical nodes. This prevents overloading
specific nodes, such as the peer group leaders.L Routing decisions concerning the addition of a new node to
the tree are performed in a top-down manner. This enables the
underlying flat multicast routing algorithm to employ global op-
timization considerations rather than local ones.L Inactive nodes and inactive PGs need not store any informa-
tion about the multicast tree.

We achieve these advantages through an MGS nomination
mechanism, whose role is to appoint new MGSs to PGs that
become active during the addition of new nodes to the tree.

We showed that when using the Waxman routing algorithm,
HMF generates efficient trees, exploits compact memory space,
and imposes acceptable setup and protocol execution load.

INFOCOM 2000 10

VII. ACKNOWLEDGMENT

We would like to thank Jenny Sannikov, Nelly Bluvshtein and
Yoav Manor for their help in coding the simulation software.

REFERENCES

[1] B. Awerbuch and D. Peleg, “Sparse partitions,” in Proceedings of the 31st
Annual Symposium on Foundations of Computer Science, IEEE, Ed., St.
Louis, MS, Oct. 1990, pp. 503–513, IEEE Computer Society Press.

[2] ATM Forum PNNI SWG 94-0471R13, ATM Forum PNNI Draft Specifi-
cations, Mar. 1996.

[3] T. Ballardie, P. Francis, and J. Crowcroft, “Core based trees (CBT) - an
architecture for scalable inter domain multicast routing,” in ACM SIG-
COMM, 1993.

[4] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, and L. Wei, “The
PIM architecture for wide-area multicast routing,” IEEE Transactions on
Networking, pp. 153–162, 1996.

[5] E. Gilbert and H. Pollak, “Steiner minimal tree,” SIAM J. Appl. Math.,
vol. 1, 1968.

[6] P. Winter, “Steiner problem in networks: A survey,” NETWORKS, pp.
17:129–167, 1987.

[7] E. Aharoni and R. Cohen, “Restricted dynamic Steiner trees for scalable
multicast in datagram networks,” IEEE/ACM Transactionson Networking,
vol. 6, no. 3, June 1998.

[8] B. Waxman, “Routing of multipoint connections,” IEEE JSAC, J. Selected
Areas of Communication, vol. 1, Dec. 1988.

[9] K. Kumar and J. Jaffe, “Routing to multiple destinations in computer net-
works,” IEEE Transactions on Communications, pp. 31:343–351, 1983.

[10] M. Imase and B. Waxman, “Dynamic steiner tree algorithm,” SIAM J.
Disc. Math., vol. 1, Aug. 1991.

[11] J. Kadirire, “Comparison of dynamic multicast routing algorithms for
wide-area packet switched networks,” in IEEE INFOCOM, 1995.

[12] C. Huitema, Routing in the Internet, Prentice Hall, 1995.
[13] L. Kleinrock and F. Kamoun, “Hierarchical routing for large networks;

performance evaluation and optimization,” Computer Networks, vol. 1,
pp. 155–174, 1977.

[14] D. Peleg and E. Upfal, “A trade-off between space and efficiency for rout-
ing tables,” Journal of the ACM, JACM, vol. 36, no. 3, pp. 510–530, July
1989.

[15] W. Lee, “Topology aggregation for hierarchical routing in ATM net-
works.,” in ACM SIGCOMM Computer Communication Review, Apr.
1995.

[16] W. Lee, “Spanning tree method for link state aggregation in lrage commu-
nication networks,” in IEEE INFOCOM, 1995.

[17] B. Awerbuch and Y. Shavitt, “Topology aggregation for directed graph,”
Tech. Rep. 98-14, DIMACS, Feb. 23 1998.

[18] B. Awerbuch, Y. Du, B. Khan, and Y. Shavitt, “Routing through networks
with hierarchical topology aggregation,” Journal of High Speed Networks,
vol. 7, no. 1, 1998.

[19] E. Felstaine, R. Cohen, and O. Hadar, “Crankback prediction in hierarchi-
cal ATM networks,” in IEEE INFOCOM, 1999.

[20] G. Armitage, “Support for multicast over UNI3.0/3.1 based ATM net-
works,” Contribution to the ATM Forum Technical Committee, November
1996, RFC 2022.

[21] R. Vekateswaran, C.S. Raghavendra, X. Chen, and V.P. Kumar, “Hierar-
chical multicast routing in ATM networks,” in IEEE International Confer-
ence on Communications v 3 1996, Dallas, TX, USA, 1996.

[22] R. Vekateswaran, C.S. Raghavendra, X. Chen, and V.P. Kumar, “A scal-
able, dynamic multicast routing algorithms in ATM networks,” in 1997
IEEE International Conference on Communications, Towards the Knowl-
edge Millenium. ICC ’97, New York, NY, USA, 1997.

[23] R. Vekateswaran, C.S. Raghavendra, X. Chen, and V.P. Kumar, “Drmp: A
distributed multicast routing protocol for ATM networks,” in Proceedings
of the 1997 IEEE ATM Workshop, 1997.

[24] R. Vekateswaran, C.S. Raghavendra, X. Chen, and V.P. Kumar, “Support
for group multicast in PNNI,” Contribution to the ATM Forum Technical
Committee, February 1997, ATM FORUM/97-0076.

[25] E. Felstaine and R. Cohen, “On the distribution of routing computation
in hierarchical ATM networks,” IEEE/ACM Transactions on Networking,
vol. 7, no. 6, Dec. 1999.

