To Drop or Not to Drop: On the Impact of
Handovers on TCP Performance

Reuven Cohen and Anna Levin
Dept. of Computer Science
Technion, Israel

Abstract—This paper presents a comparison between two
handover schemes: drop and forward. In the drop scheme, packets
received by the base station after the host has disconnected
are dropped, whereas in the forward scheme these packets are
forwarded to the new base station. We analyze various TCP
flavors and compare our findings to simulation results. Our results
can be used to determine which handover scheme and which
TCP flavor should be employed to minimize the negative effect
of handovers on TCP performance.

I. INTRODUCTION

Traditionally, cellular networks were based on the circuit
switching technology, because they were not intended to sup-
port data applications. Nowadays, however, data applications
acquire a lion’s share of the network bandwidth. In recent
years, several approaches have been developed for efficient
execution of data applications by cellular users [1], [2]. With
all the advantages of running a cellular network using packet
switching, the environment of mobile networks is quite differ-
ent from that of wired networks, for which packet switching
technology has been optimized in the last 30 years. The higher
loss rates, lower link capacities, and frequent handovers present
additional challenges to data protocols.

Data applications such as HTTP require reliable data deliv-
ery over the network. TCP is the most widely used transport
protocol for this purpose. It was developed to work with fixed
networks and optimized to allow good bandwidth utilization
with congestion control. However, in the case of handovers,
TCP considers packet losses as a sign of congestion. This
results in unnecessary timeouts and retransmissions.

This paper presents a mathematical analysis of the TCP
throughput for mobile hosts. As explained later, such an
analysis cannot simply consider all the outstanding packets
during handover as lost, and therefore cannot be performed
by extending previous studies for static TCP connections, like
[31, [4], [5]. We distinguish between three possible schemes for
treating TCP packets that reach a base station after the mobile
host has moved to a new cell served by a different base station:

1) Drop: the packets are silently dropped by the old base
station.

2) Forward: the packets are forwarded to the new base
station and then to the mobile host; since new packets
are routed from the sender to the host on the most direct
path, some of the forwarded packets might be received
out-of-order.

3) Forward-and-rearrange: the packets are forwarded to the
new base station and then to the host before new packets
that are routed over the direct path; this requires the new

978-1-4244-2219-7/08/$25.00 (¢)2008 IEEE

base station to delay new packets until the old ones have
been forwarded to the mobile host.

We discuss and systematically analyze the impact of han-
dover on various TCP flavors. This analysis takes into account
many parameters that affect TCP throughput for mobile hosts:

o The handover rate. Frequent handovers may result not
only in time wasted on recovery, but also in cwnd lim-
itation, because there may not be enough time between
consecutive handovers for the connection to reach its TCP
fair share of the available bandwidth.

o The delay on the path between the first common parent
and the old base station. This delay defines which portion
of the in-flight packets will be dropped by the drop
scheme or forwarded by the forward and forward-and-
rearrange schemes.

o The time it takes for the forwarded packets to reach the
new base station.

The rest of the paper is organized as follows. In Sec. II
we present related work. In Sec. III we describe the various
handover schemes in greater detail. In Sec. IV and Sec. V we
analyze the influence of the drop and forward schemes on the
TCP throughput of an individual connection. Sec. VI presents
simulation results and compares them to the results computed
using our prediction equations. Sec. VII concludes the paper.

II. RELATED WORK

There are many simulation-based investigations of the prob-
lematic aspects of TCP in wireless network environments. For
example, [6] shows that long sudden delays, mostly attributed
to handovers, are common in the GPRS wireless WAN. It
explores the influence of these delays on TCP performance
and concludes that the spurious timeouts they trigger may lead
to unnecessary retransmissions. Ref. [7] presents a simulation-
based investigation for measuring the effect of handovers on
several TCP versions. The authors suggest that forwarding
might improve TCP performance at handover, pointing out that
duplicate packets should be filtered at the access point.

There are also many surveys exploring the problematic
aspects of TCP over wireless networks (e.g. [8], [9]). Some of
them analyze existent solutions for dealing with TCP through-
put degradation due to handovers and lossy links. In [8] the
authors conclude that selective acknowledgements and explicit
loss notifications can significantly improve performance.

In this paper we develop a model for predicting TCP
throughput for mobile hosts. We address three TCP flavors:
Reno [10], New-Reno [11] and SACK [12]. Several works
propose models for TCP throughput prediction, e.g., [3], [4],

[5]1, [13], [14]. An overview of these works can be found in [3],
[4]. In what follows we focus on the model proposed in [5].
However, the discussion pertains to most of the other models
as well.

The authors of [5] present a model for studying the effect
of general packet loss caused by network congestion on TCP
Reno. It predicts the throughput of a TCP connection as a
function of loss rate and RTT. It assumes that if a packet is lost,
all the remaining packets transmitted until the end of that round
will be lost as well. The effect of handovers on TCP under the
drop scheme can be studied using this model by considering
the loss sequence caused by each handover exactly like the
loss sequence caused by congestion. However, the model we
use is different for several reasons:

o When some of the packets are dropped due to handover,
we do not necessarily assume that all in-flight packets
are also lost. If the network devices (routers or switches)
in the vicinity of the new and the old BSs are quickly
informed about the new location of the mobile node,
only a fraction of these packets will be affected by the
handover.

o We address also the forward scheme. In this case the
mobility of the host to a new cell does not necessarily
result in loss of packets, but only in out-of-order delivery,
which has a different effect on throughput.

o« We take into account some network-related parameters
that affect the throughput in the case of handover but do
not appear in the model of [5].

Another major difference between our model and that of [5]
is that we do not address the effect of network congestion
on the connection throughput. We do not ignore this effect,
of course, but rather use the connection throughput without
handovers as a parameter in our equation. This follows from
our motivation, which is to understand the effect of various
handover schemes on the throughput for different TCP flavors,
and not the correlation between packet loss rate and throughput.

In the last years, the impact of mobility on the performance
of TCP has drawn a lot of attention. For example, the authors
of [15] and [16] perform analysis of the drop scheme. In [15],
they analyze possible packet drop scenarios in a cellular en-
vironment, including handovers, poor wireless link conditions
and congestion in the wired network. They show that their an-
alytical results outperform throughput prediction based on the
Ambherst model. In [16], the authors calculate the probabilities
for packet loss, taking into account network congestion and
the loss caused by handovers. Then, they incorporate these
probabilities into the prediction equations from the Amherst
model. The main difference between[15], [16] and our work is
as follows. In [15], [16], the authors concentrate on calculating
loss probabilities and finding the throughput as a function of
the amount of lost data. In contrast, our analysis aims to predict
the amount of lost data as a function of the handover frequency
and network delays. Another difference is that in [15], [16],
only TCP Reno is analyzed. We also address New-Reno and
SACK, and show significant differences in their behavior.

In [17], the authors analyze the forward scheme for New-
Reno. They suggest improvement to the buffer management
algorithm in order to prevent overflow, and show that it is

978-1-4244-2219-7/08/$25.00 (¢)2008 IEEE

N I I Y 0 0 A MR

Mobile Nodes

Fig. 1. Network model

better to drop new packets rather than old ones. Our paper
presents throughput prediction for TCP Reno and SACK, in
addition to analyzing the New-Reno’s behavior. Furthermore,
our analysis takes into account network parameters, like the
delay on the path between the first common parent and the old
base station.

In [18], the authors present an overview of mobility man-
agement protocols based on Mobile IP, TCP Migrate, and SIP,
and study the effect of handover. Their estimation is based on
latency and throughput degradation time. Unlike the study in
[18], our study is not technology dependent. Our performance
estimation is based on the measurement of overall throughput
and extra bandwidth requirements. In addition we analyze the
drop scheme, which is not mentioned among the possible
schemes for TCP-based applications in [18].

III. HANDOVER SCHEMES
A. Drop vs. Forward

Fig. 1 depicts our schematic network model. The sender
node represents the server with which the considered host
communicates. BS1 is the old base station and BS2 is the
new one. The First Common Parent (FCP) is the lowest
common predecessor of BS1 and BS2. Throughout the paper
we consider the following handover model. When the mobile
node decides to switch from BS1 to BS2, it informs both
nodes. A control message is then sent by BS1 or BS2 to
FCP, asking FCP to direct new packets for this mobile node
through BS2 rather than through BS1. We assume that when
FCP makes the required change in its forwarding/routing table,
the mobile node switches from BS1 to BS2. This is considered
the handover time.

The three considered handover schemes — drop, forward, and
forward-and-rearrange — are different in their implementation
complexity and their effectiveness. At first glance the forward-
and-rearrange scheme seems to be the most efficient in
terms of bandwidth utilization and delivery time minimization.
However, our simulation study, presented in Sec. VI, reveals
that forward-and-rearrange has only a very small advantage
over forward, and sometimes even compares negatively to it.
Therefore, it cannot justify the added complexity. For this
reason, and due to lack of space, we focus in the rest of the
paper only on forward and drop.

There are many TCP variants and flavors, the most important
of which are TCP SACK][12], Reno[10] and New-Reno[11]. In

this section we discuss the behavior of these three protocols for
each of the two handover schemes. The following discussion
serves as a background for the analysis in Sec. IV and Sec. V.

B. TCP Behavior in the Drop Scheme

The typical behavior of TCP Reno under the drop scheme
is depicted in Fig. 2. The loss of the dropped packets is
discovered by the sender upon the receipt of 3 duplicate
ACKs. As a result, the sender enters fast-recovery mode: it
reduces cwnd by half and retransmits the first dropped packet.
The sender exits fast-recovery after receiving an ACK for the
retransmitted packet, even if this ACK does not cover all the
packets transmitted before entering fast-retransmit. Usually,
after 1 or 2 phases of fast-recovery the sender does not receive
enough duplicate ACKs to detect the loss of additional packets
and it therefore encounters a timeout. In fact, when three
or more packets are dropped, a Reno sender almost always
encounters a timeout [12]. In Fig. 2 the timeout occurs after a
single phase of fast-recovery.

Loss recovery in New-Reno is different. The sender does not
exit fast-recovery upon receiving an ACK for the retransmitted
copy unless this ACK covers all the packets sent before fast-
recovery began. Rather, it sends the next dropped packet and
stays in fast-recovery until an impatient timeout [11] The
sender is usually able to retransmit 3-4 lost packets in this
way before a timeout. After a timeout, the New-Reno sender
enters slow-start, exactly like in Reno.

The recovery from handover losses when the connection
implements the SACK option is somewhat different. Upon
receiving 3 duplicate ACKs — signalling a possible loss — the
sender enters fast-recovery and retransmits the missing packets
one after the other until all of them reach the mobile node.
Then, SACK sender exits fast-recovery phase and continues
with congestion avoidance. TCP allows the sender to have no
more than “"2—”‘1 outstanding packets during the fast-recovery
phase. Therefore, a burst loss of more than ”’éid packets does
not allow a TCP SACK sender to send new packets during the
fast-recovery phase, forcing it to wait for a timeout.

C. TCP Behavior in the Forward Scheme

Our discussion of the forward scheme begins with New-
Reno and SACK. At handover, the packets located along the
path between FCP and BS1 are forwarded from BS1 to BS2.
The delay of these packets on the forwarding path is likely
to cause them to be received by BS2 after some subsequent
packets. This is the case shown in Fig. 3. If at least 3 packets
arrive at BS2 before the forwarded packets, 3 duplicate ACKs
are generated by the receiver, and the sender enters fast-
recovery. Consequently, cwnd is reduced by half, and the
sender retransmits packets that have already been forwarded to
the receiver. The sender stays in fast-recovery until it receives
an ACK for the last forwarded packet. In the meantime, each
duplicate ACK may cause a new packet to be sent if cwnd is
sufficiently large, and each partial ACK causes an unnecessary
retransmission in New-Reno. The difference of SACK is that
it retransmits the forwarded packets first, and only then starts
sending new packets.

The main difference between Reno and New-Reno/SACK
for the forward scheme is the shorter fast-recovery phase. After

978-1-4244-2219-7/08/$25.00 (¢)2008 IEEE

Sender Receiver

cwnd = 10

Packets 1-10

Fast—recovery (cwnd=8) — —
Packet 1 is
re—transmitted

Exit fast—recovery
(cwnd=5)

RTO

Time—out,
enter slow—start
Packet 2

Packets 3,4

Packets 5-8 |

Duplicate _
ACK

Regular
packet/ACK

Unnecessary R
retransmission

Fig. 2. The drop scheme for TCP Reno

Sender Receiver

cwnd = 10

Packets 1-10

Fast-recovery(cwnd=8)« -
Packet 1
is re—transmitted

Exit fast-recovery

Regular Partial
packet/ACK ACK Unnecessary
retransmission
Duplicate Forwarded__ _
ACK - packet
Fig. 3. The forward scheme for TCP New-Reno

a quick fast-recovery phase, which ends upon reception of an
ACK from the first forwarded packet, the cwnd in Reno is
halved and no new packets are sent until the new window
allows it. This prevents many unnecessary retransmissions,
presented in New-Reno in Fig. 3.

IV. ANALYSIS OF THE DROP SCHEME

In order to predict the TCP throughput of a mobile host,
we distinguish between two cases: the Slow-Mobility (SM)
case and the Fast-Mobility (FM) case. In the SM case cwnd
drops one or more times between handovers (Fig. 4(a)). The
SM case is typical when there are many connections sharing
bandwidth and infrequent handovers. Hence, the connection is
able to reach its TCP fair share, after which it behaves like
a regular static connection until the next handover occurs. In

12O s|----

14O s~~~

| time (in RTT units)

handover handover

(a) {New-Reno|drop|SM}

1209f|---

14 Or| =~

time (in RTT units)

handover handover

(b) {New-Reno|drop|FM}

handover

Fig. 4. The dynamic of cwnd for New-Reno under the drop scheme

the Fast-Mobility case, cwnd does not drop between handovers
because it is not able to reach its TCP fair share before the
handover takes place (Fig. 4(b)).

We shall use O to denote the expected value of cwnd when
handover takes place. For the FM case, © is replaced by O,
while for the SM case it is replaced by ©;. Therefore, by [19],
©, = 3CWND, where CWND = E[CWND;].

Let the expected total time period between two consecutive
handovers be Ay, measured in RTT units. The value of ©f
can be computed if Ay is given from the equation:

3
AfZRTO—F(lOgQ@f—Z)-FZ@f, (1)

. We now estimate the throughput of a New-Reno connection
in FM and SM by computing the area bounded by the cwnd
curve. As it is shown in [19], this area is equal to

1 15
Sy = @f(RTOJrQl 2+16@f) T

Unlike in the FM case, in the SM case (Fig. 4(a)) the value
of Oy is not a function of Ag, but rather a property of the
specific connection in the specific setting. The computation of
the area bordered by the cwnd curve gives:
RTO 1 9 1

g 1Ot s 59 T g
So far we have approximated the amount of data sent between
handovers. However, the data spread between the first common
parent (FCP) and the old Base Station BS1 when the handover
takes place will be dropped. The amount of this data can be
approximated by: Dropped,/; = Drcp—ps X O/, Where
Drgcp_ps is the delay between FCP and BS1 in RTT units.
We can now summarize:

Ss = ®S(A5 -

1
Throughput(New-Reno|drop| FM) = A— X 2)
[©(ELO + + 430 — Drcp—ps) —

41 rL2 n2]

978-1-4244-2219-7/08/$25.00 (¢)2008 IEEE

o -
1 S2 /
12095)---
z—#—recover duration time (in RTT units)
handover As handover
Fig. 5. The dynamic of cwnd in {SACK|drop|SM,Drcp_ps < 5} and in
{|forward|SM.,fast forwarding}
Throughput(New-Reno|drop|SM) = X 3)
RTO 1 9
Os(Ay — 2 — 10020, + 2+ —— — —O,—
O 2 92 An2 32"
Drcp—8s) — 7a5)-

Eq. 2 and Eq. 3 can be converted from New-Reno to
Reno by incorporating the timeout from additional losses that
occur after one or more fast-recovery phases, each lasting one
RTT (see Fig. 2). In [12] it is claimed that no more than 3
consecutive fast-recovery phases are likely to take place. In
order to simplify the discussion, we assume that there is only
one such phase, followed by a timeout, as presented in Fig. 2.
Therefore, we get:

Ay =RTO+1+ (log, O —2) + 26y, and

1
Throughput(Reno|drop|FM) = X 4)
I

[O©p(BL9H 4 L4 150 — Drcp—ps) — 155

and
Throughput(Ren0|drop|SM) = <
BLO _1og©, + 3 S+ 15 — 359s —

X [@s(As— ()

— Decp—8s) — 73

The analysis of SACK is somewhat different. Unlike in
Reno and New-Reno, the probability that handover will prevent
a SACK sender from entering slow-start is high. A SACK
sender enters slow-start only if the number of dropped packets
is larger than % , namely cwnd X Dgcp_ps > cw2"d, or
Dgcp_ps > % In this case we have for SACK the same
throughput prediction equations as for New-Reno.

When Dgcp_ps < %, we consider only the Slow-Mobility
(SM) case as depicted in Fig. 5. The analysis for FM can
be conducted in a similar way. The fast-recovery phase lasts
until all dropped packets are retransmitted and acknowledged.
Moreover, every partial ACK received during this phase trig-
gers the sending of two additional packets, a process which
is very similar to the increase of cwnd during slow-start [5].
Therefore, the average time period Dpg.; during which the
sender retransmits the dropped packets can be extracted from
the following equation:

DpRet
/ 2% dx = DFCP—»BS X @S.
0

Now, we can estimate the connection throughput as

Throughput(SACK |drop|SM, Dcp—ps < %) =

O 1.1

KS(s ™ i[m X In(Dpcp—ps X O5 X In2+ 1)]—
i- é@e — Drcp—ps)- (6)

V. ANALYSIS OF THE FORWARD SCHEME

The main advantage of the forward scheme over the drop
is the shorter time required for the last packet affected by the
handover to be acknowledged, as discussed in Sec. III. In
fact, if the ACKSs are received relatively quickly, it is possible
to complete the handover without encountering a timeout and
entering slow-start. We therefore distinguish in this analysis
between three forwarding speeds: very fast, fast and slow.

With very fast forwarding, the first forwarded packet arrives
at the new BS (BS2) before the third packet sent directly to
BS2. In the fast forwarding, it is assumed that all the forwarded
packets arrive before their retransmissions, as shown in Fig. 3.
In the last case, referred to as slow forwarding, it is assumed
that the forwarded packets are delayed for a relatively long
time and arrive only after their retransmitted copies. The above
classification into three cases leaves a grey area between fast
and slow forwarding, where some of the first packets arrive
after their retransmitted copies, while the last packets arrive
during the fast-recovery phase before their retransmissions. In
some of these cases the forwarding might still be worthwhile.
The merit of forwarding in these cases can be estimated by
interpolating the results of fast and slow forwarding.

As already noted, very fast forwarding has almost no effect
on the throughput, while slow forwarding has effects similar
to those of the drop scheme. Therefore, in what follows we
analyze only the fast forwarding case. Moreover, we also ignore
the combination of Fast-Mobility and forward, both because it
is rare and because this analysis is very similar to the FM
analysis of the drop scheme.

Our discussion on fast forwarding for SM begins with New-
Reno. The cwnd curve for this case is shown in Fig. 5. We
assume that the time interval between the receipt of the third
duplicate ACK and the acknowledgment of the last forwarded
packet is approximately RTO. This time cannot be longer than
RTO, of course, but it might be shorter. Again, we predict
the throughput for New-Reno by subtracting the penalty due
to handover from the throughput without handovers ©. Since
S1=136,xRTO and Sy = § x 6, x 0, = 62, we have

T hroughput(New-Renol|forward|SM, (7)
Dforward < DFCP—>BS + RTTand

maX(Dforward) < RTO) = %i [AS _ # _ %}

The cwnd curve for TCP Reno is similar to New-Reno, as
depicted in Fig. 5, except that the fast-recovery phase lasts
RTT only. Therefore, we have

Throughput(Renolforward|SM, (8)
Drorwara < Drcp—ps + RTT) = = x [A, — § — $6,].

s

Finally, the analysis of SM for SACK is similar to New-
Reno, except that we do not have the limitation of impatient

978-1-4244-2219-7/08/$25.00 (¢)2008 IEEE

0.8

07 b L 4

Throughput

06 |]

05 | S forward predicted i

' forward simulated --------

forward-and-rearrange ---------
drop simulated

ﬂirup prediclefi 77777

04 ! ! ! ! !
4 6 8 10 12 14 16 18 20

A (seconds)
Throughput for New-Reno as a function of A

Fig. 6.
timeout. Therefore,

T hroughput(SACK|forward|S M, Diorwara < 9)

Decpps + RTT) = §= x [A; — 3RTO — 6,].

VI. SIMULATION STUDY

The purpose of the simulation study in this section is
twofold: first, to validate the mathematical analysis conducted
in Sec. IV and Sec. V, and second, to understand the impact
of the various TCP flavors and handover schemes on the
performance of a mobile TCP connection.

We developed a simulation model for the network depicted
in Fig. 1 using ns-2. We used as a platform the wired (rather
than wireless) ns-2 [20] infrastructure, which is renowned for
its reliability, and adapted it to our needs by connecting and
disconnecting mobile nodes from the network. We start by
considering 10 mobile nodes and taking the bandwidth of
each wireless link to be 10 times smaller than the bandwidth
of the wired links. The propagation delay from the sender
to the mobile nodes is 40ms: 25ms between FCP and BS,
Sms between BS and the mobile node, and 10ms on the path
between the sender and FCP.

We start with the graph in Fig. 6 This graph depicts the
throughput of a mobile host for the New-Reno case as a
function of an average handover rate A. We consider in the
simulations two cases: the case where the bandwidth of each
shared backbone link is 100Mb/s while the bandwidth of each
private wireless link is 10 Mb/s, and the case where these
bandwidths are 1Gb/s and 100 Mb/s respectively (Fig. 6).
However, due to the lack of space only the wide bandwidth
graph is presented. The graph contains 5 curves: two for the
drop scheme (predicted vs. simulated), two for the forward
scheme (predicted vs. simulated), and one for the forward-and-
rearrange scheme (simulated only) as discussed in Sec. III.
Each curve indicates the fraction of bandwidth used for data
delivery (i.e., throughput) from the total available bandwidth
for each connection. The maximum theoretical throughput 1
indicates 100Mb/s.

The most important conclusions we draw from the graph are
as follows:

o The predicted and the simulated results are very close.

09

08 -

0.7

Throughput

SACK predicted
y SACK simulated --------
04 e New-Reno simulated ---------
New-Reno predicted
Reno predicted -----
Rgno slmu\ateg —————

03
4 6 8 10 12 14 16 18 20
A (seconds)
(a) 5rop

0.9

Throughput
°
a
T

07 4

Reno predicted

06 - Reno simulated -------- i

SACK and New-Reno predicted ---------
SACK simulated

New'F\e‘no simu\ateg 77777

055 L L L L L
4 6 8 10 12 14 16 18 20

(seconds)

(b) forward

Fig. 7. Reno, New-Reno and SACK performance comparison

o As expected, the forward scheme outperforms the drop
scheme by up to 20%.

o Compared to the forward scheme, the contribution of the
forward-and-rearrange scheme might even be negative
for the fast backbone! The negative effect is attributed to
the fact that the direct packets consume important buffer
space at BS2 while waiting for the forwarded packets to
be received. Consequently, more packets are lost in BS2.
Increasing the buffer space of BS2 slightly decreases the
negative impact of forward-and-rearrange.

Fig. 7 depicts the performance of New-Reno, Reno and SACK
for the 1Gb/s network under the drop and forward schemes.
As before, the precision of our prediction equations is very
high. The forward scheme for Reno is even better than for
New-Reno and SACK (Fig. 7(b)), because there is only one
unnecessary retransmission per handover. It is evident that for
the drop scheme SACK performs significantly better than Reno
and New-Reno. As discussed in Sec. IV, this is because the
SACK sender is able to retransmit the dropped packets before
encountering a timeout.

The additional simulation results, including the influence of

the Dpcp_ps on the throughput of a mobile TCP connection
and the overhead caused by handover presented in [19].

VII. CONCLUSIONS

In this paper we compared the impact of handover on various
TCP flavors under two schemes: drop and forward. In the drop
scheme, packets received by the base station after the host has
disconnected are dropped, whereas in the forward scheme these

978-1-4244-2219-7/08/$25.00 (¢)2008 IEEE

packets are forwarded to the new base station. We developed
equations for predicting the loss of throughput encountered
by TCP connections due to handover. Our equations take into
account several important parameters, such as the handover
rate, the relative length of the path from the first common
parent of the old and the new base stations to the old base
station, and the forwarding speed.

We then conducted simulations using ns-2 in order to
validate the mathematical analysis, and in order to understand
the impact of the various TCP flavors and handover schemes
on the performance of a mobile TCP connection. When we
take into account only TCP throughput while ignoring its cost,
our main conclusions are that the forward scheme is the most
attractive one, re-arranging the forwarded packets at the new
base-station is not a good idea, and SACK outperforms both
Reno and New-Reno. However, when the wireless bandwidth
is a major concern, dropping the packets at the old base-station
is preferable.

REFERENCES

[1] C. Bettstetter, H. Vogel, and J. Eberspacher, “GSM phase 2+ general
packet radio service GPRS: Architecture, protocols, and air interface,”
IEEE Communications Surveys, vol. 2, no. 3, 1999.

[2] M.Eriksson and et al, “GSM/EDGE radio access network-GERAN;
system overview and performance evaluation,” VTC '00, pp. 2305-2309.

[3] E. Altman, K. Avrachenkov, and C. Barakat, “A stochastic model of
TCP/IP with stationary random losses,” IEEE/ACM Transactions On
Networking, vol. 13, no. 2, pp. 356-369, April 2005.

[4] M. Goyal, R. Guerin, and R. Rajan, “Predicting TCP throughput from
non-invasive network sampling,” INFOCOM, 2002.

[5] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling TCP
Reno performance: a simple model and its empirical validation,” IEEE/
ACM Transactions on Networking, vol. 8, no. 2, pp. 133-145, 2000.

[6] A. Gurtov, “Effect of delays on TCP performance,” PWC 01, pp. 87—
108.

[7] J. Schuler and T. Schwabe, “A comparison of the performance of four
TCP versions during mobile handoff,” JEEE MWCN’02, Sept. 2002.

[8] H. Balakrishnan and et al, “A comparison of mechanisms for improving
TCP performance over wireless links,” Trans. on Net., vol. 5, pp. 756—
769, 2000.

[9] V. Tsaoussidis and I. Matta, “Open issues on TCP for mobile computing,”

Wireless Communications and Mobile Computing, vol. 2, pp. 3-20, 2002.

K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno

and SACK TCP,” Computer Communication Review, July 1996.

S. Floyd and T. Henderson, “The NewReno modification to TCP’s fast

recovery algorithm,” RFC 2582, April 1999.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective

acknowledgement options,” RFC 2018, October 1996.

A. Kumar, “Comparative performance analysis of versions of TCP in a

local network with a lossy link,” Trans. on Net. ’98, vol. 6, pp. 485-498.

M. Mathis, J. Semke, and J. Mahdavi, “The macroscopic behavior of

the TCP congestion avoidance algorithm,” Computer Communications

Review, vol. 27, no. 3, 1997.

F. Hu and N. Sharma, “The quantitative analysis of tcp congestion control

algorithm in third-generation cellular networks based on fsmc loss model

and its performance enhancement,” INFOCOM 2002, pp. 407-416.

A. Argyriou and V. Madisetti, “Wlc47-1: Modeling the effect of mobile

handoffs on tcp and tfrc throughput,” GLOBECOM ’06, pp. 1-5.

C.-T. Chou and K. Shin, “Smooth handoff with enhanced packet

buffering-and-forwarding in wireless/mobile networks,” QSHINE ’05.

S. Mohanty and I. F. Akyildiz, “Performance analysis of handoff tech-

niques based on mobile ip, tcp-migrate, and sip,” IEEE Transactions on

Mobile Computing, vol. 6, no. 7, pp. 731-747, 2007.

R. Cohen and A. Levin, “Technical report.” [Online]. Available:

http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-list.cgi/2007/CS

S.McCanne and S. Floyd, “ns network simulator.” [Online]. Available:

http://www.isi.edu/nsnam/ns/

[10]
[11]
(12]
[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

