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Abstract— The paper deals with efficient location-based de- Namely, each mobile device belongs to one or more
cision supporting content distribution to mobile groups. We flows, and all the nodes of the same flow use the

consider the case where a set of Information Dissemination

X = . same path.
Devices (IDDs) broadcast a limited amount of location-based . P . .
information to passing mobile nodes that are moving along well- !N the considered model, every flow is a group of mobile

defined paths. We develop a novel model that captures the main nodes moving along the same path. A set of static Information
aspects of the problem, and define a new optimization problem we Dissemination Devices (IDDs) is distributed throughoue th
call MBMAP (Maximum Benefit Message Assignment Problem). network. Each IDD can deliver location-based content to the

We study several variants of this problem in the case where . . o . .
the IDDs are cooperative and in the case where they are not. mobile nodes in the flows it is traversed by. A benefit function

We develop new approximation algorithms for these variants determines the bene@(f;mJ) a.ﬂOWf can obtain from a
and then focus on the practical effects of using them in realistic messagen from IDD i. This benefit depends on many factors,

networking scenarios. such as the volume of, the location ofi, and the content of
m. The problem is to determine what information each IDD
should broadcast. This new optimization problem is reférre

[. INTRODUCTION . , .
) ) o ~ to as MBMAP (Maximum Benefit Message Assignment Prob-
With the advance of mobile communication technologleﬁam)_

many new applications depend on the ability of the network \i\gMAP can be solved with or without cooperation among
to deliver location-based information to the mobile nodgge |DDs. When there is no cooperation, every IDD makes
in real time. Such applications can be found in the context|ocql decision regarding the most important information t
of Intelligent Transportation Systems (ITSs), networktten proadcast to the flows. This version of MBMAP is referred
operations (NCOs) and cellular networks. This work progosg; as |-MBMAP (local MBMAP), and its most important
a mathematical model and algorithms to determine how Hoperty is that no communication infrastructure is needed
distribute content in such networks. between the IDDs. This property is important, for instance,
The model we consider for location-based decision SUPPOihen the IDDs are sensors in a sensor network.
ing content distribution to mobile groups can be charazteli  \when cooperation between the IDDs is possible, a global
as follows: decision can be made while taking into account the fact that
(C1) Infrastructure to mobile: Information is transmitted flows pass through several IDDs. This version of MBMAP
from static IDDs to the mobile nodes. The mobilgs referred to as g-MBMAP (global MBMAP). It is easy to
nodes do not pass information to each other, as thege that the best solution for I-MBMAP can never be better
do, for example, in [24]. than the best solution for g-MBMAP. However, the improved
(C2) Location dependent multicast: The same infor- performance of g-MBMAP comes at the cost of coordinating
mation is multicast by an IDD to all the nodeshe broadcast of different IDDs, which requires a centealiz
in its vicinity. Moreover, the same information canmanagement entity and a communication infrastructure that
be delivered to a mobile node by several differerdonnects the IDDs.
IDDs. However, the mobile node benefits from this The rest of the paper is organized as follows. In Section I
information only once. we present application scenarios for the models and prablem
(C3) Swarm mobility: Instead of assuming random mo-considered in the paper and discuss related work. In Seldtion
bility, as in [4] and many other papers, we followwe formally define -MBMAP and g-MBMAP and discuss
recent studies that indicate predictable mobility iheir computational complexity. In Section IV we present
mobile applications [15], [22], which can be usecn algorithm that achieves a constant factor approximation
to improve communication protocol performance. Téor g-MBMAP, and analyze its performance and running
capture this property, we assume that a mobilitime complexity. In Section V we extend MBMAP to the
pattern is defined by flows as proposed by [26Lase where the different messages are correlated. In this
This is a journal version of a paper presented in Infocom 2008er the case, we also distinguish between two variants: |-E-MBMAP
title: “Locally vs. Globally Optimized Flow-Based Contentisfribution to (local extended MBMAP) and g-E-MBMAP (global extended
Mobile Nodes.” MBMAP). In Section VI we present a simulation study for the



various models discussed throughout the paper. In Sectibn Yiodes (soldiers, vehicles, tanks, etc.) [9]. Due to reliigbi
we discuss several approaches for defining flows. Finalgnd simplicity considerations, such systems usually udg on

Section VIII concludes the paper. infrastructure to mobile communication. Information isialy
delivered according to the nodes’ geographical locatiod)(C
II. APPLICATION SCENARIOS AND RELATED WORK For instance, a high resolution video stream of a certaia &re

mainly relevant to the forces that are close to this areaalfyin
because a military force usually consists of many individua
We now describe two application scenarios for the considedes that move along the same route, the group mobility
ered model and problem. The first is in the context of acharacteristic (C3) holds as well.
Intelligent Transportation System (ITS) [13], [25]: a @altion It seems that for this application I-MBMAP is more relevant
of technologies intended to make surface transportatider sathan g-MBMAP, mainly because it is hard to predict the route
and more efficient. Such systems are often divided into two be taken by every flow. Thus, each IDD (sensor/radar) is
communication classes: vehicle-to-vehicle (V2V) and elehi more likely to make a local decision about what information t
to-infrastructure (V2I). The application we describe itated distribute, even if backbone communication between thedDD
to V2I. Consider a set of electronic road signs, locatedeveis available.
few miles along the highway. Each sign posts a small number
of short messages, relevant to the passing mobile nodes, on
traffic jams, closed exits, and so forth. Future intelligeans- B. Related Work
portation systems, which use V2l communication, are likely We start by discussing earlier work related to the mobility
to replace these electronic signs with IDDs that broadcasodel considered in this paper. Our model is similar to the
information to the passing mobile nodes [13], [25]. Thi8virtual track” model considered by [26]. Another approach
information will be displayed on the dashboard, using argroposed in the past for modeling the mobility of nodes is the
language chosen by the driver, and will be available to thgandom Wapiti (RWP) model [4], where each node selects
drivers for a much longer time than the information posted o random speed and moves to a random destination. After
the electronic signs. Regardless of the broadcast capabilif reaching its destination, the node remains idle for some tim
an IDD, the information it delivers to the passing mobile eed and then repeats the same process.
should be minimized for two main reasons: the limited space A model for group mobility, called RPGM, is presented
on the mobile node screen, and the desire not to distraardrivin [15]. In this model, each node in a group has two com-
with nonessential information. The problem of determiningonents in its movement vector. The first is an individual
what message(s) every road IDD should broadcast is exaattymponent, which is based on RWP. The second is a group
MBMAP. component, which is shared by all nodes in the same group
In the application described above, principle (C1) fromand is also based on RWP.
Section | clearly holds. Location dependent multicast (32) There are many applications of wireless communications
also part of this application because all the vehicles oftme in vehicular networks; the authors of [5] provide a broad
flow (group) are supposed to get the same information abawerview of these. However, most research efforts have fo-
traffic, weather and road conditions from each IDD they passised on using wireless communication technology for en-
by. Finally, (C3) holds because all the vehicles moving glorhancing the safety and efficiency of urban and highway traffic
the same highway can be considered as a single flow that goeBroadcast-based communication schemes for mobile nodes
through the same set of IDDs. This approach does not requane presented in [19], [23]. These schemes implementiintell
information about the exact route taken by each car, but orggnt rules to reduce the number of redundant transmissiuhs a
approximated statistics about the average volume of tridiffit increase broadcast reliability. In [23], mechanisms fdoty
uses each highway during each hour and the percentage ofdheess to reduce redundant retransmissions are discuased.
traffic that leaves the highway at each exit. When more detailgl9], the forwarding task is assigned only to one mobile node
information is available, better optimization can be ohe¢al. in every dissemination direction. Yet these approachesaio n
The above application is relevant both for -MBMAP andjuarantee full coverage and or a bounded delay.
for g-MBMAP. If the electronic signs (IDDs) are connected Cyclic Data Broadcast (CDB), also known as broadcast
to a backbone, they can share information and make glolalisks or data carousel, is a well-accepted approach falieli
decisions. But the IDDs might be self-contained sensors thaoadcast for unidirectional channels. The idea is that the
obtain local information by sensing the passing traffic, ibhroadcasting node broadcasts the required data items in a
which case the decision about what to broadcast must be locgkclic manner, according to some predetermined program.
The second application scenario for the considered modggveral models have been proposed in this context [1], [17],
is in the context of network-centric operations (NCO) [9][20].
[10]. NCO is a theory that uses networking to improve both Recall that in this paper we solve the problem of deciding
the efficiency and effectiveness of military operations. Whiwhat data items should be broadcast by every broadcasting
there is no single NCO architecture, in a typical systewevice (IDD). To some extent this problem is related to
there might be hundreds of radar stations and sensors ttie problem solved in [7]. However, the main difference is
gather tactical information. This information is then peesed, that here we consider many (hundreds or even thousands)
centrally or distributively, and delivered to thousandsrafbile broadcasting nodes, as opposed to one broadcasting node

A. Application Scenarios



considered in [7]. The large number of broadcasting nodes fa = fa4 451
complicates the decision because what data each node should

broadcast depends on the data to be broadcast by the other
nodes.

IIl. MBMAP AND ITS COMPUTATIONAL COMPLEXITY

We are given a tripletF, I, M), whereF is a set of flows,
1 is a set of IDDs andV/ is a set of messages. For a message Zin "
m € M, size(m) denotes the size ofn, and F(m) C F ="
f3 f2

denotes the set of flows for which this message is relevant. Fo "
an IDD € I, size(7) is the capacity of, namely the amount Fig. 1. A simple scenariom; andms are messages indicating traffic jams
of data the device can deliver to nearby mobile nodes whileL: and L» respectively

they are within its transmission rangB( f, m, ) indicates the

benefit flow f obtains from receiving message from IDD

i. Thus, f € F(m) if and only if there exists an such that the mobile nodes comprising the flow and by the size of the
B(f,m,i) > 0. For an IDD:, F(i) indicates the set of flows fow (in terms of mobile nodes per second). For instance, én th
that can benefit from assigning a message, thecause each example abovef, obtains no benefit from:; because it is not
of these flows are within the transmission range of IDBNd  5ffected by the traffic jams ifi,. In addition, as shown above,
B(m, i) is the benefit of assigning a messageto IDD i. the same flow may obtain different benefits from receiving the
Thus, same message in different places.
B(m,i) = Z B(f,m, ). (1) We start our discussion with I-MBMAP, where we seek to
maximize the local benefit obtained for each IDD, and we do

not take into consideration the dependency between IDOs tha

Lgt T be_ an assignment of messages to IDDs. We say AL visible to the same flow. In this model, the benefit of a
(m,i) € T if T contains an assignment of messagéo |IDD legal assignmert” is:

1. Of course, the same message can be assigned to multipfe
IDDs. Denote byr'(i) the subset of messages that are assigned B (T) = Y B(m,i)= »_ >  B(fm,i)
)

toi by T. We say that assignmefit is legal if and only if for (mA)eT (mA)eT fEF(i
eVeryi, Y., cr(; size(m) < size(i) holds.

Consider the case where a messagéds assigned to two = Z Z B(f,m,1).
different IDDs,i; andiy, and these two IDDs are traversed by iel meT(i),fEF ()

the same flowf. If we ignore the fact thaf is exposed to the
same message twice, then the total benefit obtainefi fiogm
m is B(f,m,i1) + B(f,m,iz). The solution for this model

The resulting optimization problem is:

is trivial, because there is no dependency between differen ~ Maximize BL(T),

IDDs. Thus, optimization is obtained by running the Knajsac

algorithm for every IDD. However, for the application sce- subject to: Z size(m) < size(i) for every i
narios we described earlier, adding the benefit from the same meT (i)

message multiple times does not make a lot of sense. Through@onsidering the computational complexity of the problem

out this paper we consi@e_r a more reasonable and difficb% can distinguish between two cases: the case where all
model, where the benefit imax{B(f,m, 1), B(f,m, i2)}. messages have the same size, and the one where different

;:esr:‘;;%nﬂgsfg; tze;z}l{tinlue)qtﬂlessSflrrcr)]raliifl:e?efri?vlvDrgge%?nr&]essages might have different sizes. In the former case,
9 P ' optimal solution can be found in polynomial time using

acquires each time a residual benefit which is upper boundg dsimple greedy algorithm that assigns the most profitable

by the maximum of all benefits. For exgmplej i the‘ bfene essages to each device. In the latter case, the problem is
from receg/mg the mgsslagar] fromf:DDshzl, ‘2, 13 ?]nd“ P;S he2quivalent to the well-known NP-complete Knapsack problem
e respectiey. e 3 v it Qo 12451 e reecy ot s o 2 pproximaton sl .
i 8-5=3 fromi~. and 0 fromi. The total bene:fit in this Casethere exist algorithms that find the optimal solution in pzu

2 B 3 4 polynomial time [12]. Moreover, this problem is known to

Is 3+2+3=81max 3, 5,8, 6. have an FPTAS[16].

Figure 1 shows a simple example of a network with two We now focus on the global version of the problem, g-
possibla messages:( andn) that sre reatec 1 andz, MBVAP, where the assignment of messages to IDDs i
respectively. For this example, suppose thaf:, m 12. ) =1 performed while taking into account the fact that flows are

b Y. pi€. supp LI M ' likely to traverse many IDDs. Thus, the benefit obtained

B(f2,ma,i1) = 4, B(fa,ma,i2) = 6, B(fs,ma,iz) = 2 i
and B(fs.m1. i) — 5. For the rest of the assignments, thérom assigning a message to an IDD depends on whether the

penefit isQ. The benefit_ of a particular message for each flow1p, p7as is an algorithm which given a Knapsack instance andea
is determined by the importance of the message contentréms, in polynomial time, a solution that is within (%) of the optimum.



same message is also assigned to other IDDs. Specifically, B€f, m,i) = 1 for every flow f, messagen and devicei.
assume that if a message is assigned to two IDDs; and Observe that under this settii§(7") = |U,,, ;er F'(m))]. It

¢/, and a flowf passes in the transmission rangei@ndi’, is easy to see that an optimal solution for the MCP instance is
then the benefit obtained by from these assignments is thetranslated into an optimal solution for the g-MBMAP instanc

greater of the two. Hence, and vice versa. Since the transformation is size presemiy
can be performed in linear time, no approximation algorithm
B({(m,i)} U{(m,i)}) = for g-MBMAP can do better than the bound for MCP. =
> B(fmi) + > B(fmi) +
FEF()\F (i) FEF(iN\F (i) B. Our new approximation algorithm
> max{B(f,m,i), B(f,m,i)}. At first glance, it seems that g-MBMAP is similar to the
FEF()NF(i') Generalized Assignment Problem (GAP) [8]. The input for

GAP is a set of bins (knapsacks) and a set of items. Each bin
has a limited capacity, and for each itenand binj, s(i,7)
andp(i, j) indicate the size and benefit of itehin bin j. The

Under this model, the benefit obtained by a flgiwfrom a
messagen in a legal assignmerif’ is:

B(T, f,m) = max {B(f,m,i)}, objective is to find the subset of items to be assigned to each
(mi)eT bin such that the overall benefit is maximized. However,egher
and the total benefit of assignméfitis: are two important differences between g-MBMAP and GAP:
o o In GAP every item can be selected only for one bin,

Ba(T) = J;;B(T’ fim). @ whereas in g-MBMAP an item (a message) can be

o ] ) ) selected for multiple bins (IDDs).

The optimization problem in this case is: « In GAP the benefit associated with the selection of an
maximize Bg(T), item for a bin is independent of the selection made for
other bins. In contrast, in g-MBMAP there is a strong

subject to: Z size(m) < size(i) for every i correlation between assignments. As explained before, if

meT (i) a message is selected for multiple IDDs and the same

flow passes through some of them, the benefit this flow
obtains from this message is not equal to the sum of the
benefits, but to the maximum benefit.

We solve g-MBMAP using a technique similar to the one
presented in [8] for GAP. That is, given anrapproximation
algorithm ALG for the Knapsack problem, we build B+ «)-
approximation algorithm for g-MBMAP using the concept of
Local Ratio [3]. In our case we need a small generalization
IV. AN APPROXIMATION ALGORITHM FOR GMBMAP of _the Local Ratio Theorem presgnted in Theorem 9 of [3].

This theorem uses a benefit function of the typez, where
A. On the computational complexity of g-MBMAP w = wy + wy. Our benefit function cannot be presented in

We now show that g-MBMAP is not only NP-Hard, butthis way and thus we restate the theorem to make it slightly
also cannot be approximated within a factor better than. more general. The proof, however, is very similar to the proo
We show this by a reduction from the well-know Maximunof Theorem 9 in [3] and is not repeated here.

Coverage Problem (MCP) [14], defined as follows: Given a The generalized version of the Local Ratio Theorem is as
collection of subsetd, = {S;...5,,} of the universal set/ = follows. Let F' be a set of constraints and Iét, B;, and
{1,...,n}, and a positive integes, find a subsefd C L such B, be benefit functions as defined in Equation 2 on a set of
that |H| = p and the number of covered elements,cy 1| vectorsX, such that for every € X, B(x) = By (x)+ Bz (z)
is maximum. holds. Ifz is an r-approximate solution with respect(tb, B )

Theorem 1:g-MBMAP cannot be approximated within aand with respect tqF, Bs), then it is also an r-approximate
factor better than-, even if all messages are of fixed-sizesolution with respect t¢F, B).
unlessNP C DTIM E(n'o8lo™), We now present an algorithm for g-MBMAP. Given the
Proof: It is shown in [11] that MCP cannot be approx-benefit functionB(f,m,i) for every flow f, a messagen
imated within a factor better than®; unless NP C and a devicel, the algorithm returns a legal assignmeit
DTIM E(nl°gls™) We now show how to convert an instancéhat is (1 + «)-approximation to the optimal solution.
of MCP into an instance of g-MBMAP. Given an instance Algorithm 1: (an approximation algorithm for g-MBMAP)
of MCP, we define the set of flows in g-MBMAP to beDenote byBy(f,m,i) the benefit for flowf from assigning
U = {1...n} and the set of IDDs to béi, ;?:1_ For every Mmessagen to devicei at the kth iteration of the algorithm.
ij, we setsize(i;) = 1 and F(i;) = U. This implies that Initially, for every messagemn, device i and flow f, set
each device can carry exactly one message, which will B&(f,m,7) < B(f,m,i). Then, fork =1 to |I| do:
visible to all flows. In addition, for every subsét € L we 1) Run algorithm ALG for the Knapsack problem on the
define a message:; such thatF'(m;) = S;. Finally, we set following instance. The knapsack size s&ze(i). The

Consider again the example of Figure 1, and assume
that size(iy) = size(iz) = 1. For the assignment
{(m1,41), (m1,12)}, the total benefit isl + 5 = 6. For the
assignment (m1, i), (mao,i2)}, the total benefiti§ +6+2 =
9. For the assignmenit(ms, i1), (m1,i2)}, the total benefit is
4+5 =29, and for the assignmer{t(mz,i1), (m1,i2)}, the
total benefit is2 + max{4,6} = 8.



items to be packed are the set of messadésThe mi m2

benefit for everym € M is > ... Bi(f,m, i), and B?: 1:1 0 0
the weight for everym € M is size(m). Let N}, be the ip | {(f1, D)} | {(f2,2)}
set of messages selected by ALG.
2) If k=|I|retunT = Uljjzll{Nj x {ij}}. Then, B, is set to be equal t&? (only nonempty rows are
3) For every message:, devicei, and flow f € F" shown):
« Decompose the benefit functioBy(f, m,) into my Mo
two functionsB.(f, m,i) and BZ(f,m,i) such that B2: iy ({0 [ {2 2] ]

the following holds:

a) By(f,m,i) = Flow f> has already gained a benefit of 4 from the assignment

B’?(fbm’i) N B . Ior Z - Z’“ of ms to i;. Therefore, the extra benefit fofs from the
min{ By, (f,m, i), Br(f,m ix)} Ordl 7 ZkN assignment ofn, to iy is only 6 — 4 = 2.
0 a?h m € N Again, we build and solve a Knapsack instance iforWe
otherwise get N, = {ms}, and by decomposin@- correspondingly we
_ ) _ get:
b) B,%(f,m,z) = Bk’(fa m, Z) - B]i(f7m7l)'
e SetByyi(f,m,i) = B2(f,m,i) . L - 2
T KA TR By ip [{(fu, D} [ {(fe,2)} ]
C. Execution Example mi My
BZ2:.
We now show an example of the execution of the algorithm. 2 "2

Let the initial benefit matrix be: _ ) _
The final assignment is, therefore,, to ¢; and ms to is.

] ho o s Ja The total benefit is 82 of which is due toB(f3, ms,i1) and
B(f’ml’z.l) 0 0 0 > 6 due tOB(fg,mQ,iQ).
B(f,my,i2) | 1|1 0] 0] O
B(f, ma, il) O 4 2 0
B(f,mayiz) [ 0] 6 [ 05 D. A proof of worst-case performance guarantee

In order to use the Local Ratio Theorem, we first prove that
By (T) satisfies the required conditions.

where the size of all messages and 1DDs is 1. Lemma 1:For each iteration of the algorithnt,= 1 to |1],

To simplify the presentation, for each device and message i g 1 2
we consider only flows with nonzero benefit. Consequent%‘gr:go?er = Uj=iAN; x{i;}}, Be(Ti) = By (Tk) + B (Tk).

the initial B matrix looks as follows:

my mo Bk(T) = Z Z (JPS'}E(T{BK(fva)}
5. i [0 {9, (7. perTm ™
io | {(f1.D} {(f2,6)} =% Z(qui&;}e{T{B’i(f’m’i) + B2(f,m, i)}
fer m

We setB; to be equal taB: Given a flow f, we now prove that for every message

my ma max {Bi(f,m,i)+ B:(f,m,i)} =
5. 0 [T {24, (5.2 g P8 B )
2 AU DF ] {2060} max {BE(f,m,i)} + max {B}(f,m,i)}.
(m,i)eT (m,i)eT
Now, we build a Knapsack instance for. The size of this We distinguish between two cases:
knapsack is 1, the items are; andms, the benefit ofm, 1) The case wherém,i;) € T, i.e., m is assigned tay
is 5 and ofmsy is 6 (4 for f3 and 2 for f»); the weight of in T. Since Bi(f,m,i) = Bi(f,m,i) + Bi(f,m,1),

every item is 1. We run a Knapsack algorithm to solve this ~ for every message m  max {Bj(f,m,i)} +
instance. The output of this algorithm is,. Thus, we have (m.5)eT

2 . .
Ny = {ma}. Jex {Bi(fm,d)} 2 max By(fm,i). It
Next, we decompose the benefit functi®h into B} and remains to show that X By(f,m,i) >
B as follows: max {BL(f,m,i)} + max {Bi(f,m,i)}. If
(m,i)eT (mi)eT
. mi ma2 max Bi(f,m,i) = 0, then we are done.
Bl . 31 {(f4a5)} {(f2a4)a (f372)} (m,i)ET. 9 .
L, 0 {(f2,4)} Otherwise, max Bj(f,m,i) = | > 0. Suppose

(m,i)eT
that the maximum holds fori; (# i), ie.,



B2(f,m,i;) = l. Then, according to the constructionthe best solution with respect ta, would obtain at most

Bi(f,m,i;) = Bi(f,m,ix) = (mmngBk(f,m Vi) QYN Yger BJ(f,m,i). Any SO|I.1]'[i0n with respect to
Thus, max {Bu(f,m,i)} > Bp(fim.i;) = © W|I_I gain at mosthE_Nk > fer Bk(f,m,z), since the
(m,i)eT benefit of every entry in this component is set to be not larger

By (f,m,ij) + Bi(f,m,i;) = m_aXT{Bk<f7m,’L)} + than the benefit of3}.(f,m, ;). Note also that the benefit a
(m.i)¢ flow obtains is at most the greatest between these benefits, no
max {Bi(f,m,i)}. : : .
(m,i)eT _ . matter how many devices cover this flow. Finally, component
2) The case whergm,ix) ¢ T, i.e, m is not as- 5 has no contribution to the benefit. Thus;, is a (1 + a)-
signed to iz, in T. According to the construction, approximation with respect &} (f,m,i). SinceT} contains

(m%)éT{Bk(fam ,i)} = 0. This is because the onlyall the assignments itV it is a (1 + «)-approximation with

entry that does not equal to O iBL(f,m,iz), respect toB}.(f,m, i), which concludes the proof. [

but (m,i,) ¢ T. Thus we get also in this Corollary 1: Algorithm 1 is a (1 + «)-approximation for

case that max {B}(f,m,i) + Bi(f,m,i)} = g-MBMAP. .

(mi)eT ) . Observe that when the messages are of equal size, we can

(nllngéT{Bk(f, m, i)} + (fi?;gT{Bk(f,m,l)}- replace algorithm ALG by an algorithm that finds an optimal

We conclude that for both cases the following holds: assignment for each IDD. In this case= 1, and we obtain
a 2-approximation for g-MBMAP.
By (T) Recall that ALG is an algorithm for solving the Knapsack
_ BL(/, + B2(/, p_roblem. To analyze the running t|n_1e complexny of Algo-
Z Z@fﬁa}é{ k(s m 1) efm, i)} = rithm 1, assume that the running time of ALG §g|M]|).

F m . . . .
/e In step 1 we build a knapsack instance. The running time

E E max {BL(f,m,i)}+ E E max {Bk f,m,i)} of this construction is bounded by/| - |F|. In step 3 we
(m,i)eT m,i) . . .
feEF m fEF m construct the benefit functions. The number of relevantiestr
" i .
— BL(T) + BX(T). nagmely n.on_zero values IBk(f,m,z)' anq updated values in
Bj.(f,m,i), is upper bounded by - size(ix) - (|I| — k). Thus,
®  the running time of this step for all of the]| iterations is
Theorem 2:For everyl < k < |I|, the assignment}, = " "

N, 1 tion with t to
U;2{V; x {i;}} is a(1 + a)-approximation with respec Z size(in) - (1T — k)-|F| < Q'Cmaz'Z(|I| k) |F|

Bk(f,m z)

Proof: We prove this by a reverse induction on the value b= k=1

of k, starting with & = |I|. The induction basisk = = O(Cmaz - |F| - |T]?),

|I]) follows from the validity of ALG, which produces an

a—approximation for the Knapsack problem. where cpe, = max;es size(i). Consequently, the total run-

For the inductive step, assume thf,; is a (1 + «)- hing time of Algorithm 1 is:
approximation with respect t@y.1(f,m,4). We now prove 9
in two steps thafl}; is a (1 + «)-approximation with respect O ((g(IMI) + 1M - |F]) - || + emaz - [F| - [IF)
to By (f,m,i). If Ty, is a(1 + «)-approximation with respect \we can improve the algorithm’s running time by making a
to B(f,m,i), and T} is also a(1 + «)-approximation with minor change in step 3. Instead of calculating the whole fiene
respect tOBk(fvm i), then since by Lemmd By (Tx) = function B(f,m,i), it is sufficient to calculate the value of
By, (Ty) + BE(Ty), we can use the Local Ratio Theorem tghe function fori,. However, in this calculation one should
prove Theorem 2. Itis therefore left to prove thatis indeed consider the effect of all previous assignments. To this, end
a (1 +a)-approximation with respect &, (f,m, i) and with e define a new matrixQ, such thatQ[f,m| indicates the

respect toB;(f, m, ). _ benefit already obtained by floy from messagen.
By construction, for every message, device: and flow

f» Bea1(f,m, i) is identical toBZ(f,m,i). By the induction
assumption 41 is a (1 + a)-ap%roximation with respect to V. THE EXTENDED MBMAP
B2(f,m,i). T}, contains all the assignments .. Thus, Our definition of MBMAP assumed no dependency between
Ty, is a (1 + «)-approximation with respect t&7(f,m, ). the benefit of different messages in the same or differentsIDD
Now, we prove thatT}, is a (1 + «)-approximation with However, when such a dependency exists, it will certainly
respect toB; (f,m,i). The benefit functionB}.(f, m,i) has affect the optimal assignment. For example, consider the ap
three components. The first componemnt, is the benefit of plication scenario where the IDDs are electronic signs &ed t
assigning a message. to ix, namely ZfeF By (f,m,ir). mobile nodes are vehicles. Let; andm, be two messages
The second componenty, is the benefit of messages seposted in two consecutive IDD$;, andi,. Suppose thatn,
lected to N, whose benefit inBi(f,m,i) is set to be not informs motorists that “the next exit to Hwy. 200 is closed.”
larger than the benefit they obtain from their assignment uppose thatu, informs that “the next 3 exits are closed due
ix. The third componentgs, consists of all the remaining to construction.” In this example, the messagenof is not
entries, which are set to 0. Algorithm ALG guarantees fully covered bym, because this message emphasizes that it
approximation for devicei, with respect toc;. Therefore, is not possible to take Hwy 200. Still, it is clear that if the



same flow is exposed to both messages, the benefit is less fi&). BMCP is defined as follows. Le$ be a collection of
the sum of benefits. sets with associated costs defined over a domain of weighted
We extend MBMAP to capture possible dependency belements. Letl, be a budget. Find a subsgt C S such that
tween different messages and define two new problems: gike total cost of sets irt” does not exceed, and the total
MBMAP (global extended MBMAP) and I-E-MBMAP (local weight of elements covered by is maximized.
extended MBMAP). In both new problems, we consider a We define the Generalized Budgeted Maximum Coverage
given setE of events and assume that each message frétroblem (GBMCP) as follows. LetS be a collection of
M covers a subset of events from Each flow has a benefit sets with associated costs, where every set includes veeight
from being notified about every event in every message. Felements. Find a subset &’ C S such that the total
example, if a flow is notified about the same event by tweost of sets inS’ does not exceed the budgét and the
different IDDs, it obtains only the maximum benefit assaailat total weight of elements covered I/ is maximized. In the
with thi_s> event and the two IDDs. generalized problem an element may have different weights
Let B(f,m,i) be abenefit vectorepresenting all possible in different sets. The algorithm for BMCP described in [18]
events in the considered system. Entip this vector indicates can be easily extended for GBMCP while guaranteeing the
the benefit obtained by flowf when it is notified about same approximation ratiol — 1). In [6] the authors introduce
through message: in IDD . If messagen does not give any a more generalized variation for BMCP, referred to as “The
information regarding:, this entry is 0. Given a séf of such Generalized Maximum Coverage Problem,” and present an
vectors, letw = max{U} be a vector such that for every(-%; +¢) approximation for every > 0. In this variation, not

e—1
evente, v’ [e] = max{w[e]}. In addition, given any vector only does the benefit of the element differ from one subset to
weU

T let [T =3 %»[e] another but also its weight.
We start W|the the definition of I-E-MBMAP. The benefit The reduction of I-E-MBMAP to GBMCP is sim-
ple: the budget issize(iy); for every m € M, let

vector obtained by a flow from a legal assignmerit' is

— — .
BL(T7f): Z B(f,m,z).
(mi)eT
The total benefit from assignment is: E\L(T) =

D fer |]?£(T,f)|, and we seek to:

maximize B\L(T),

subject to: Y size(m) < size(i) for everyi.
meT (i)

For g-E-MBMAP, the benefit vector obtained by a flgv
from a legal assignmerit is

—
BG(Taf) (IHE;“X {B(fvm Z)}
m,i)eT
The tot;at benefit from assignment’ is: ]§\G(T) =
> ter |Ba(T, f)], and we seek to:
maximize BZ;(T),
subject to: > size(m) < size(i) for every i

meT (i)
For example, consider two messages,, ms, two IDDs, iy
andi», and one flowf that passes through both and is.
Suppose thaLthere are 5 events and th?a(f, my,i1) =
(3 0 8 0 0) (']i)mg,ll) (3 4 0 0 1) (f,ml,lz) =
(_1),2,5,0,3) and B(f,ms,i2) = (1,0,0,0,3). Each entry in

B represents the benefit obtained from a specific event. By as-

signing bothm; andmg to¢; and onlym; to1 i, 9- E-MBMAP
gets the benefltBG(T ) = max(y,; 6T{B(f,m i)} =
(3,4,8,0,3). Since f is the only flow in this example, the
total benefit isﬁ(T) = |B_G)(T, f)l =18.

We solve I-E-MBMAP using an algorithm for a generaliza-
tion of the Budgeted Maximum Coverage Problem (BMCP)

{f;] such thatB(f,m ir)[j] >0} is a subset with a cost of
size(m), where the weight of elemernf; is B(f,m k)]

To solve g-E-MBMAP, we use the Budgeted Maximum
Coverage Problem (BMCP) [18] as a subroutine. Let ALG’
be as-approximation algorithm for GBMCP. We now build a
(1 + B)-approximation for g-E-MBMAP. This algorithm is a
generalization of Algorithm 1 to vectors.

Algorithm 2: (an approximation algorithm
MBMAP)

Denote byBk(f, m, i) the benefit vector obtained by flow
f from assigning message to device: at thek'" iteration
of the algorlthm Initially, for every message, device: and
flow f, setB 1(fymyi) — B(f,m i). Then, Fork =1 to |I|
do:

1) Run algorithm ALG’ for GBMCP on the following
instance: the budget isize(ix); for every m € M,
let {f;| such thatB(f,m,i)[j] > 0} be a subset with
a cost ofsize(m), where the weight of elemernt; is

for g-E-

§(f,m,ik)[j] . Let N, be the set of messages selected
by ALG'.

2) If |1] = k, retun T = U} {N; x {ij}}.

3) For _every flow f, let Bk(f) =

max{B;~C f,m,ig)m € N}, which is the benefit
vector for flow f from assigning the messages vy,
to 7.

4) For every message:, devicei, and flow f:

o Decompose the benefit vectﬁfk(f,m 1) into two
vectors, Bl w(fym, i) and B2 <(f,m, 1), such that the
following holds

—
a) Bi(fim,i) =
- .
Bk(f;ma Zk‘) N
min{Bk(fvma Z.)7 Bk(f)}
where the minimum of two benefit vectors is a
vector, such that the value of every element is the

for i = iy,
for i #* i,



minimum between its values_i}n the two vectorspassing vehicles (see further details below on how evemts ar
b) Bi(f,m,i) = By(f,m,i) — BL(f,m,q). chosen). The average size of each IDD is 40. From the chosen
R Set§k+1(f,m,z’) - §i(f,m,i). a ©vents we derive a set of messages. The average length of a
We analyze the worst-case performance of Algorithm Pessage is 10. The benefit of a message depends on the events
using the same method used for Algorithm 1. In order to uge@nnounces, the location of the IDD and the volume of the

the Local Ratio theorem, we first prove theg,(T) satisfies flow to which it is relevant. For example, if a message
the required conditions. is assigned to an IDD to which the vehicles of a flowf

Lemma 2:For every iteration of the algorithrrk;l: 1to %re equsedoonly after they are affected by the event, then
1], and forT}, = U‘jI:‘k{Nj x{ij}}, Bar(Tk) = Bay(Tk) + (f,m, ) = L
2 ' Group mobility is simulated as follows. For every flow
Ba.(Tk)- ) . i we choose random source and destination points. Then, we
The proof is presented in the Appendix.

_ 1| ) compute the shortest path between these points. This is the
Theorem 3:For everyl < k < [I|, T = gj:k{Nj x{i;}}  path traversed by the flow’s nodes. We also choose a random
is a (1 + )-approximation with respect t& . (f, m, 7). size for each flow, which indicates the number of mobile
The proof is presented in the Appendix. devices in this flow per minute. In this section we consider
Corollary 2: Algorithm 2 is a (1 + 3)-approximation for each of the flows independently. In the next section we show
g-E-MBMAP. how the number of flows can be minimized by merging some

In order to analyze the running time of Algorithm 2, assumef them, in a similar fashion to that proposed by the virtual
that the running time of any operation we make on two vectotack (VT) group mobility model [26].
is O(k), wherek is the number of possible events. Assume Events and messages are generated in the following way.
also that the running time of algorithm ALG" ig|[ M|, k-|F'|). A random place is chosen on the graph. It can be either a
In step1 we build a GBMCP instance. The running time ohode (junction) or an edge (road). An event is defined for
this construction is bounded b§(|M| - [F| - k). In step3  each road and junction. Then, 15 or 50 events are randomly
we calculate the benefit obtained by each flow, which takefosen and the other are ignored. Each flow obtains a benefit
O(|F'| - [Ng| - k) = O(|F| - [M]| - k). The running time of step if it is informed about a relevant event. The sooner the flow
4 is O(|M| - |F| - [I| - k). Hence, the total running time ofjs exposed to a message on a relevant event, the higher the
Algorithm 2 is: corresponding benefit is. However, we received similarltesu
O(M| - |F|- I k+|I] - g(|M], k- |F])). when we used different benefit aisignmeht functions, such
as a uniform one. We then compute(f, m,i), namely, the
VI. SIMULATION STUDY vector of bgnefits from the assignment of to 7 for every
m and i. Recall that in -MBMAP and g-MBMAP we

In this section we introduce Monte Carlo simulation resultijé]'nore the dependency between different messages braadcas
for the various models and algorithms presented in theerarl'by the same IDD. Hence, for these models wezit, m, i) —
sections. The simulation is built from scratch on a Linu B(f.m, i) ' B

machine using C++. We consider the following four models: _ )
(@) the -MBMAP model; (b) the g-MBMAP model; (c) the For each model_ we execute the corresponding angnthm
I-E-MBMAP model; (d) the g-E-MBMAP model. While it on the _correspondlng input. The output of each execution is
is clear that in general the global algorithms perform ettd" as&gnmenT c {M < {I},}' To measure the quahty.of
than the local algorithms, our main purpose in this sectio‘leaCh a_sagnmen'g, we divide its tOt"’_‘l benefit by the maximum
is two-fold: first, to study the effect of the extended modé eoretical benefit that can _be obtained when there is na Iw_m
on the performance; second, to better understand the eﬁecpn_the volume of information each IDD can broadcast, in
some network parameters on each of the various models Jiych case all messages are broadcast by all IDDs.
algorithms. For -MBMAP, we solve the Knapsack problem using the
We simulate the various models in the context of IDDEynamic programming algorithm described in [21]. This al-
broadcasting messages to cars in a vehicular network. T#@ithm finds an optimal solution. It has a pseudo-polyndmia
network of roads is simulated as a weighted graph, with 2¢@nning time ofO(|/] - [M|), which is reasonable for all the
vertices spread out on a grid. Each vertex has a potentia edgodels considered in this paper. Therefore, Algorithm 1 is
with each of 4 potential neighbors. However, we randomf 2-approximation for g-MBMAP. For I-E-MBMAP and g-E-
determine for each potential edge whether it appears in tNBMAP, we solve the Budgeted Maximum Coverage Problem
graph. Every vertex represents an intersection of roadd, a#sing the —=;-approximation proposed in [18]. This guar-
every edge represents a directional road between two int@ptees an—<;-approximation for I-E-MBMAP and a<=!-
sections. A vertex can be connected to at most four edg@pproximation for g-E-MBMAP.
The weight associated with each edge represents the delayhe g-MBMAP model is better than the I-MBMAP because
encountered by a vehicle upon traversing the correspondiings aware of the dependency between messages assigned to
road. This delay is a function of the distance and the volundéfferent IDDs. In particular, g-MBMAP knows that assiggin
of traffic on the road. the same message to closely related IDDs, i.e., IDDs that are
We then uniformly place IDDs along the busiest roads arthversed by a similar set of flows, allows the traversing flow
consider a list of events that are likely to be of interesthie t benefit only from one message, while I-MBMAP does not take
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Fig. 2. The normalized benefit as a function of the number of IDDs

such considerations into account. Thus, we expect g-MBMAJPowth rate declines because, when a flow traverses more and
to perform better than I-MBMAP. For the same reason, gnore IDDs, it is less likely to receive a new message. When
E-MBMAP is better than I-E-MBMAP. If we compare thecomparing the curves for the different models, we see that
two global models, g-MBMAP and g-E-MBMAP, the latter is-MBMAP indeed exhibits the worst performance, whereas g-
obviously better than the former. While both models are awaEeMBMAP exhibits the best. The graph also shows that when
that it is pointless to assign the same message to two closttlg number of IDDs is small, I-E-MBMAP outperforms g-
related IDDs, g-E-MBMAP is also aware that two differenMBMAP. However, with more IDDs, g-MBMAP is better than
messages might give similar information. To summarize, wee-MBMAP.
expect g-E-MBMAP to exhibit the best performance and I- We now increase the number of possible events from 15
MBMAP the worst. to 50 without changing the other parameters. This reduces
Figure 2(a) depicts the normalized benefit as a function tfe dependency between the different messages because two
the number of IDDs for 30 messages, 30 flows, 20 IDDs, Ifiessages are less likely to announce similar events. Thiges
relevant messages for every flow on the average, and 10 ID&e presented in Figure 2(b). The performance for all the
traversed by every flow on the average. The number of possibh@dels is lower than what we saw in Figure 2(a) because every
events is 15, and for every message there are 5 possiblesevemtssage covers relatively few events. Since the IDD capacit
on the average. The ratio between the number of messagebmited, fewer events are covered in this case. In addljtio
and the number of event indicates the dependency between see that the advantage of g-E-MBMAP over g-MBMAP
the different messages. Obviously, for all the models, thi& now smaller, because of the decreased dependency between
total benefit increases with the number of IDDs. However, thibe different messages. For the same reason, we see that the
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advantage of I-E-MBMAP over I-MBMAP is much smaller. Figure 3 shows the simulation results. In all the graphs, the

Figure 2(c) shows the results for the same parameteesxis indicates the fraction of ignored flows while the y-
considered in Figure 2(a), except that the average numberaafs indicates the “normalized benefit.” The normalizeddin
messages relevant to each flow is reduced from 10 to 5. Asfor each scheme indicates the total benefit obtained for this
Figure 2(a), we see again that the performance of g-MBMAdtheme divided by the total benefit obtained when all the flows
is closer to the performance of g-E-MBMAP. This is becausare considered. Hence, we see that for all the schemes hreall t
fewer messages can be broadcast by the same IDD for evergphs the normalized benefit is 1 when no flow is ignored, and
flow, so there is less dependency between messages for tthie benefit decreases with the number of dropped flows. The
same flow. This reduces the advantage of g-E-MBMAP ovedecrease rate depends on the scheme and on the parameters
g-MBMAP and of I-E-MBMAP over [-MBMAP. of each scenario.

Finally, Figure 2(d) shows the results for the same parame-Figure 3(a) depicts the normalized benefit as a function of
ters considered in Figure 2(a), except that the average eumthe fraction of dropped flows for 50 IDDs and 50 messages.
of IDDs traversed by each flow is reduced from 10 to 5. ASchemes” and D exhibit the best performance in this case,
expected, the benefit for all the models is smaller than thecause with these parameters there are many available IDDs
benefit shown in Figure 2(a). In addition, we can see that &llit not many messages to disseminate. Schemes C and D keep
four curves are much closer to each other. This is because tlovs that can benefit from more messages and consequently
probability that the same message will be assigned to difter have higher potential benefit when there are enough IDDs.
IDDs is smaller, which reduces the advantages of g-MBMABomparing the curves of schemés and D, we see that
and g-E-MBMAP. SchemeD achieves better performance for low drop rates,

We conclude that the global models and algorithms awghile for high drop rates the performance decreases. This
significantly better than the local ones for large-scaléirsgt. is because, for low drop rates, the competition between the
Nonetheless, the actual setting is what determines whétheflows on the available IDDs is fairly high, and Scheme
is advantageous to consider the dependency between evé&reps flows that obtain higher benefit from their messages.
in different messages. For the local model, we see that |-Eer high drop rates, the competition is significantly lower,
MBMAP has no real advantage over I-MBMAP for almosaind Schemé&’, which keeps flows that need many messages,
every setting. g-E-MBMAP has an advantage over g-MBMARchieves better performance. Schemksnd B do not take
for almost every setting, but the performance gain is moigto account the small number of messages, so they consider
significant when the number of dependencies is small antany flows that obtain a low benefit.
when the number of messages affecting every flow is large. Figure 3(b) shows the simulation results for 20 IDDs and

120 messages. In this case, scheend D achieve the best
VII. FLOW DEFINITIONS performance. This is because most flows encounter a small
. . ) number of IDDs but need many messages. Thus, the IDDs are

In the previous sections we assumeq t_hat We are given a 3% carce resource. Schenie keeps flows that pass through
of flows as a parameter. However, defining such flows is ngf, . \pps. Thus, this scheme decreases the competition on
a tr|v_|al task. We seek a scheme that defines flows in a w. & IDDs and increases the number of relevant IDDs for
that is not only accu_rate, but also sc_:alable. We compare ry message. Comparing Schetewith SchemeD, we
accuracy and scalability of the following four schemes: see that Schemé exhibits a better performance for lower

« Scheme A: In this scheme we ignore flows whose volumgyop rates whereas Schenieis better for higher drop rates.

in terms of mobile nodes per second, is small. Thehis is because Schenie seeks to increase the local benefit,
rationale is that such flows are not likely to obtain a Iofyhereas Schem® seeks to decrease the competition among
of benefit and thus can be ignored. different flows and to increase the global benefit. Scherhes
+ Scheme B: Here we ignore flows whose volume multgnd¢ show poor performance in this case because they mostly
plied by the number of IDDs they pass is small. This igonsider flows that pass through few IDDs, thereby increpsin
because it is more difficult to obtain benefit for thESﬁ]e Competition and decreasing the total benefit.
flows without affecting the benefit obtained for other Figure 3(c) shows the results for 50 IDDs and 120 messages.
flows. In this setting, the competition between the messages on the
+ Scheme C: Here we ignore flows whose volume multipps is high, with only a small benefit for many of the
plied by the number of messages they encounter is sm@thws. Scheme A is the worst for this setting, whereas the
This is for the same reason stated in Scheme B. other three schemes perform similarly. When the number of

« Scheme D: Here the considered metric is the benefit evayws decreases, Scheme C shows the best results because it
flow could obtain if it was the only flow in the network,js more likely to keep flows that can benefit even in a highly
normalized by the resources it requires to obtain thiggmpetitive environment.
bengfit. Again, those flows for which this metric is small Figure 3(d) shows simulation results for 20 IDDs and 50
are ignored. messages. Since we have few IDDs and messages, the number

We compare the proposed schemes by running each of tfelows that encounter many IDDs or are interested in many
four algorithms with each scheme. For lack of space, we teponessages is small. Thus, all the schemes extepte likely
here only the results obtained for g-E-MBMAP. However, theo keep flows with a low potential benefit that either pass
results obtained for each of the other algorithms were simil through few IDDs or are interested in few messages. Scheme
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Fig. 3. The normalized benefit as a function of rate of the deopflows

D is more likely to keep flows with high potential benefit, and Our results indicated that the cooperative solutions, in
it therefore has the best performance in this case. which the assignment is made for all the IDDs together, are
To conclude this section, we believe that Scheme C astnificantly better than the non-cooperative ones. In rest
Scheme D vyield the best trade-off between scalability artlde contribution of the extended models, that also captuze t
performance. dependencies between messages broadcast by the same IDD,
is relatively minor.
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APPENDIX
The proof of Lemma 2: By definition

éz:k Z|Bka|—Z\ m&;:éT{Bk(f,m i)Y
fer fer !
:JZ;|(WI1HS}€(T{B (f,mz)+B (f;m, 1)}

Given a flow f, a messagen and an indexj, we need to
prove that:

<mmSéT{B L(fym, i)+ BE(f,m,i)})

(mmf)”éT{B k(fsm, Z)}[J]+(nrglgx {B3(f.m.0)}J].

feF
— —2

The proof of Theorem 3: We prove this by a reverse
induction on the value oft, starting with k& = |I|. The
induction basigk = |I|) follows from the validity of ALG’,
which produces g-approximation for the GBMCP problem.

For the inductive step, assume that,, is a (1 + 9)-
approximation with respect & k+1(f,m, 7). We now prove
in two steps thafl}, is a (1 + 3)-approximation with respect
to Bk(f,m i). If T} is a (1 + 3)-approximation with respect
to Bi(f,m, z) and Ty is also a(1 + 3)-approximation with

— —~ 1
respect toBk(f,m,z‘), then sinceBg(Tk) = Beay(Tk) +

EEk(Tk) (by Lemma2) we can use the Local Ratio Theorem
to complete the proof. Thus, it remains to prove tfatis



(1 + 3)-approximation with respect t(ﬁ}(f,m,i) and with
respect toB%(f,m,i). .
By the construction ofB(f,m, ), for every message,

J = i . —, ) PLACE
devicei and flowf, By41(f, m, %) is identical toB;(f, m, ). PHOTO
By the induction assumptiofy, ;1 is a(1+ 3)-approximation HERE

with respect toﬁi(f, m, ). T} contains all of the assignments
in Ti4+1. Thus, Ty is (1 + [)-approximation with respect to

B3 (f,m, ).
Now, we prove thatT} is also a(1 + [3)-approximation
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with respect toB i (f,m, 7). The benefit function3 ;. (f,m,i)  2000-2001-2003, IM-NOMS 2001-2007. He is an Editor of thEEEACM
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of assigning a message to iy, namelyzfeF E)k(f,m7z’k).

committee in IM 2009. His primary research interest is the theand
plication of management related problems in IP networks) wispecial

The second compone is the benefit of messages selecteal;phasis on efficient resource utilization.

to Ny, whose benefit inB }.(f, m, ) is set to be not larger than
the benefit from their assignment 1. The third component

c3 consists of all the remaining entries, which are set to
0. Algorithm ALG’ guarantees3-approximation fori; with
respect toc;. Therefore, the best solution ﬂith respect to
c1 has benefit of at mos8 - >°, v > ;cp | BL(f,m,i)l.
Any solution wi@> respect t@y will have benefit of at most

D omeNy 2 feF | BL(f,m,1)|, since the benefit of every entry
in tﬂs component is set to be not larger than the benefit
of Bi(f,m,ix). Note also that the benefit a flow obtains
is at most the maximum between these benefits, no matter
by how many IDDs it is covered. Finally, component
has no contribution to the benefit. Thusl is a (1 + f)-
approximation with respect t@ . (f, m, ). SinceT} contains

all the assignments iV, it is a (1 + )-approximation with
respect toB L (f,m, i), which concludes the proof.
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