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Abstract— The paper deals with efficient location-based de-
cision supporting content distribution to mobile groups. We
consider the case where a set of Information Dissemination
Devices (IDDs) broadcast a limited amount of location-based
information to passing mobile nodes that are moving along well-
defined paths. We develop a novel model that captures the main
aspects of the problem, and define a new optimization problem we
call MBMAP (Maximum Benefit Message Assignment Problem).
We study several variants of this problem in the case where
the IDDs are cooperative and in the case where they are not.
We develop new approximation algorithms for these variants
and then focus on the practical effects of using them in realistic
networking scenarios.

I. I NTRODUCTION

With the advance of mobile communication technologies,
many new applications depend on the ability of the network
to deliver location-based information to the mobile nodes
in real time. Such applications can be found in the context
of Intelligent Transportation Systems (ITSs), network centric
operations (NCOs) and cellular networks. This work proposes
a mathematical model and algorithms to determine how to
distribute content in such networks.

The model we consider for location-based decision support-
ing content distribution to mobile groups can be characterized
as follows:

(C1) Infrastructure to mobile: Information is transmitted
from static IDDs to the mobile nodes. The mobile
nodes do not pass information to each other, as they
do, for example, in [24].

(C2) Location dependent multicast: The same infor-
mation is multicast by an IDD to all the nodes
in its vicinity. Moreover, the same information can
be delivered to a mobile node by several different
IDDs. However, the mobile node benefits from this
information only once.

(C3) Swarm mobility: Instead of assuming random mo-
bility, as in [4] and many other papers, we follow
recent studies that indicate predictable mobility in
mobile applications [15], [22], which can be used
to improve communication protocol performance. To
capture this property, we assume that a mobility
pattern is defined by flows as proposed by [26].

This is a journal version of a paper presented in Infocom 2009under the
title: “Locally vs. Globally Optimized Flow-Based Content Distribution to
Mobile Nodes.”

Namely, each mobile device belongs to one or more
flows, and all the nodes of the same flow use the
same path.

In the considered model, every flow is a group of mobile
nodes moving along the same path. A set of static Information
Dissemination Devices (IDDs) is distributed throughout the
network. Each IDD can deliver location-based content to the
mobile nodes in the flows it is traversed by. A benefit function
determines the benefitB(f,m, i) a flow f can obtain from a
messagem from IDD i. This benefit depends on many factors,
such as the volume off , the location ofi, and the content of
m. The problem is to determine what information each IDD
should broadcast. This new optimization problem is referred
to as MBMAP (Maximum Benefit Message Assignment Prob-
lem).

MBMAP can be solved with or without cooperation among
the IDDs. When there is no cooperation, every IDD makes
a local decision regarding the most important information to
broadcast to the flows. This version of MBMAP is referred
to as l-MBMAP (local MBMAP), and its most important
property is that no communication infrastructure is needed
between the IDDs. This property is important, for instance,
when the IDDs are sensors in a sensor network.

When cooperation between the IDDs is possible, a global
decision can be made while taking into account the fact that
flows pass through several IDDs. This version of MBMAP
is referred to as g-MBMAP (global MBMAP). It is easy to
see that the best solution for l-MBMAP can never be better
than the best solution for g-MBMAP. However, the improved
performance of g-MBMAP comes at the cost of coordinating
the broadcast of different IDDs, which requires a centralized
management entity and a communication infrastructure that
connects the IDDs.

The rest of the paper is organized as follows. In Section II
we present application scenarios for the models and problems
considered in the paper and discuss related work. In SectionIII
we formally define l-MBMAP and g-MBMAP and discuss
their computational complexity. In Section IV we present
an algorithm that achieves a constant factor approximation
for g-MBMAP, and analyze its performance and running
time complexity. In Section V we extend MBMAP to the
case where the different messages are correlated. In this
case, we also distinguish between two variants: l-E-MBMAP
(local extended MBMAP) and g-E-MBMAP (global extended
MBMAP). In Section VI we present a simulation study for the
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various models discussed throughout the paper. In Section VII
we discuss several approaches for defining flows. Finally,
Section VIII concludes the paper.

II. A PPLICATION SCENARIOS AND RELATED WORK

A. Application Scenarios

We now describe two application scenarios for the consid-
ered model and problem. The first is in the context of an
Intelligent Transportation System (ITS) [13], [25]: a collection
of technologies intended to make surface transportation safer
and more efficient. Such systems are often divided into two
communication classes: vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I). The application we describe is related
to V2I. Consider a set of electronic road signs, located every
few miles along the highway. Each sign posts a small number
of short messages, relevant to the passing mobile nodes, on
traffic jams, closed exits, and so forth. Future intelligenttrans-
portation systems, which use V2I communication, are likely
to replace these electronic signs with IDDs that broadcast
information to the passing mobile nodes [13], [25]. This
information will be displayed on the dashboard, using any
language chosen by the driver, and will be available to the
drivers for a much longer time than the information posted on
the electronic signs. Regardless of the broadcast capabilities of
an IDD, the information it delivers to the passing mobile nodes
should be minimized for two main reasons: the limited space
on the mobile node screen, and the desire not to distract drivers
with nonessential information. The problem of determining
what message(s) every road IDD should broadcast is exactly
MBMAP.

In the application described above, principle (C1) from
Section I clearly holds. Location dependent multicast (C2)is
also part of this application because all the vehicles of thesame
flow (group) are supposed to get the same information about
traffic, weather and road conditions from each IDD they pass
by. Finally, (C3) holds because all the vehicles moving along
the same highway can be considered as a single flow that goes
through the same set of IDDs. This approach does not require
information about the exact route taken by each car, but only
approximated statistics about the average volume of trafficthat
uses each highway during each hour and the percentage of the
traffic that leaves the highway at each exit. When more detailed
information is available, better optimization can be obtained.

The above application is relevant both for l-MBMAP and
for g-MBMAP. If the electronic signs (IDDs) are connected
to a backbone, they can share information and make global
decisions. But the IDDs might be self-contained sensors that
obtain local information by sensing the passing traffic, in
which case the decision about what to broadcast must be local.

The second application scenario for the considered model
is in the context of network-centric operations (NCO) [9],
[10]. NCO is a theory that uses networking to improve both
the efficiency and effectiveness of military operations. While
there is no single NCO architecture, in a typical system
there might be hundreds of radar stations and sensors that
gather tactical information. This information is then processed,
centrally or distributively, and delivered to thousands ofmobile

nodes (soldiers, vehicles, tanks, etc.) [9]. Due to reliability
and simplicity considerations, such systems usually use only
infrastructure to mobile communication. Information is usually
delivered according to the nodes’ geographical location (C2).
For instance, a high resolution video stream of a certain area is
mainly relevant to the forces that are close to this area. Finally,
because a military force usually consists of many individual
nodes that move along the same route, the group mobility
characteristic (C3) holds as well.

It seems that for this application l-MBMAP is more relevant
than g-MBMAP, mainly because it is hard to predict the route
to be taken by every flow. Thus, each IDD (sensor/radar) is
more likely to make a local decision about what information to
distribute, even if backbone communication between the IDDs
is available.

B. Related Work

We start by discussing earlier work related to the mobility
model considered in this paper. Our model is similar to the
“virtual track” model considered by [26]. Another approach
proposed in the past for modeling the mobility of nodes is the
Random Wapiti (RWP) model [4], where each node selects
a random speed and moves to a random destination. After
reaching its destination, the node remains idle for some time
and then repeats the same process.

A model for group mobility, called RPGM, is presented
in [15]. In this model, each node in a group has two com-
ponents in its movement vector. The first is an individual
component, which is based on RWP. The second is a group
component, which is shared by all nodes in the same group
and is also based on RWP.

There are many applications of wireless communications
in vehicular networks; the authors of [5] provide a broad
overview of these. However, most research efforts have fo-
cused on using wireless communication technology for en-
hancing the safety and efficiency of urban and highway traffic.

Broadcast-based communication schemes for mobile nodes
are presented in [19], [23]. These schemes implement intelli-
gent rules to reduce the number of redundant transmissions and
increase broadcast reliability. In [23], mechanisms for priority
access to reduce redundant retransmissions are discussed.In
[19], the forwarding task is assigned only to one mobile node
in every dissemination direction. Yet these approaches do not
guarantee full coverage and or a bounded delay.

Cyclic Data Broadcast (CDB), also known as broadcast
disks or data carousel, is a well-accepted approach for reliable
broadcast for unidirectional channels. The idea is that the
broadcasting node broadcasts the required data items in a
cyclic manner, according to some predetermined program.
Several models have been proposed in this context [1], [17],
[20].

Recall that in this paper we solve the problem of deciding
what data items should be broadcast by every broadcasting
device (IDD). To some extent this problem is related to
the problem solved in [7]. However, the main difference is
that here we consider many (hundreds or even thousands)
broadcasting nodes, as opposed to one broadcasting node
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considered in [7]. The large number of broadcasting nodes
complicates the decision because what data each node should
broadcast depends on the data to be broadcast by the other
nodes.

III. MBMAP AND ITS COMPUTATIONAL COMPLEXITY

We are given a triplet(F, I, M), whereF is a set of flows,
I is a set of IDDs andM is a set of messages. For a message
m ∈ M , size(m) denotes the size ofm, and F (m) ⊆ F
denotes the set of flows for which this message is relevant. For
an IDD i ∈ I, size(i) is the capacity ofi, namely the amount
of data the device can deliver to nearby mobile nodes while
they are within its transmission range.B(f,m, i) indicates the
benefit flowf obtains from receiving messagem from IDD
i. Thus,f ∈ F (m) if and only if there exists ani such that
B(f,m, i) > 0. For an IDDi, F (i) indicates the set of flows
that can benefit from assigning a message toi, because each
of these flows are within the transmission range of IDDi, and
B(m, i) is the benefit of assigning a messagem to IDD i.
Thus,

B(m, i) =
∑

f∈ F (i)

B(f,m, i). (1)

Let T be an assignment of messages to IDDs. We say that
(m, i) ∈ T if T contains an assignment of messagem to IDD
i. Of course, the same message can be assigned to multiple
IDDs. Denote byT (i) the subset of messages that are assigned
to i by T . We say that assignmentT is legal if and only if for
every i,

∑
m∈T (i) size(m) ≤ size(i) holds.

Consider the case where a messagem is assigned to two
different IDDs,i1 andi2, and these two IDDs are traversed by
the same flowf . If we ignore the fact thatf is exposed to the
same message twice, then the total benefit obtained byf from
m is B(f,m, i1) + B(f,m, i2). The solution for this model
is trivial, because there is no dependency between different
IDDs. Thus, optimization is obtained by running the Knapsack
algorithm for every IDD. However, for the application sce-
narios we described earlier, adding the benefit from the same
message multiple times does not make a lot of sense. Through-
out this paper we consider a more reasonable and difficult
model, where the benefit ismax{B(f,m, i1), B(f,m, i2)}.
The rationale for themax model is simple: if a flow receives
the same message multiple times from different IDDs, then it
acquires each time a residual benefit which is upper bounded
by the maximum of all benefits. For example, if the benefit
from receiving the messagem from IDDs i1, i2, i3 and i4 is
3, 5, 8 and 6 respectively, then a flow that goes through these
4 IDDs in the same order will acquire 3 fromi1, 5-3=2 from
i2, 8-5=3 fromi3, and 0 fromi4. The total benefit in this case
is 3+2+3=8=max 3, 5, 8, 6.

Figure 1 shows a simple example of a network with two
IDDs (i1 and i2), four flows (f1, f2, f3 and f4) and two
possible messages (m1 andm2) that are related toL1 andL2

respectively. For this example, suppose thatB(f1,m1, i1) = 1,
B(f2,m2, i1) = 4, B(f2,m2, i2) = 6, B(f3,m2, i2) = 2
and B(f4,m1, i2) = 5. For the rest of the assignments, the
benefit is0. The benefit of a particular message for each flow
is determined by the importance of the message content to

L1

f2

f3

i2
i1

f3

L2

f4

f1

f2

f4 f1

Fig. 1. A simple scenario:m1 andm2 are messages indicating traffic jams
in L1 andL2 respectively

the mobile nodes comprising the flow and by the size of the
flow (in terms of mobile nodes per second). For instance, in the
example above,f2 obtains no benefit fromm1 because it is not
affected by the traffic jams inL1. In addition, as shown above,
the same flow may obtain different benefits from receiving the
same message in different places.

We start our discussion with l-MBMAP, where we seek to
maximize the local benefit obtained for each IDD, and we do
not take into consideration the dependency between IDDs that
are visible to the same flow. In this model, the benefit of a
legal assignmentT is:

BL(T ) =
∑

(m,i)∈T

B(m, i) =
∑

(m,i)∈T

∑

f∈F (i)

B(f,m, i)

=
∑

i∈I

∑

m∈T (i),f∈F (i)

B(f,m, i).

The resulting optimization problem is:

maximize BL(T ),

subject to:
∑

m∈T (i)

size(m) ≤ size(i) for every i.

Considering the computational complexity of the problem,
we can distinguish between two cases: the case where all
messages have the same size, and the one where different
messages might have different sizes. In the former case,
an optimal solution can be found in polynomial time using
a simple greedy algorithm that assigns the most profitable
messages to each device. In the latter case, the problem is
equivalent to the well-known NP-complete Knapsack problem.
The greedy algorithm is only a 2-approximation solution, but
there exist algorithms that find the optimal solution in pseudo-
polynomial time [12]. Moreover, this problem is known to
have an FPTAS1 [16].

We now focus on the global version of the problem, g-
MBMAP, where the assignment of messages to IDDs is
performed while taking into account the fact that flows are
likely to traverse many IDDs. Thus, the benefit obtained
from assigning a message to an IDD depends on whether the

1An FPTAS is an algorithm which given a Knapsack instance and any ǫ,
returns, in polynomial time, a solution that is within (1 -ǫ) of the optimum.
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same message is also assigned to other IDDs. Specifically, we
assume that if a messagem is assigned to two IDDs,i and
i′, and a flowf passes in the transmission range ofi and i′,
then the benefit obtained byf from these assignments is the
greater of the two. Hence,

B({(m, i)} ∪ {(m, i′)}) =∑

f∈F (i)\F (i′)

B(f,m, i) +
∑

f∈F (i′)\F (i)

B(f,m, i′) +

∑

f∈F (i)∩F (i′)

max{B(f,m, i), B(f,m, i′)}.

Under this model, the benefit obtained by a flowf from a
messagem in a legal assignmentT is:

B(T, f,m) = max
(m,i)∈T

{B(f,m, i)},

and the total benefit of assignmentT is:

BG(T ) =
∑

f∈F

∑

m

B(T, f,m). (2)

The optimization problem in this case is:

maximize BG(T ),

subject to:
∑

m∈T (i)

size(m) ≤ size(i) for every i.

Consider again the example of Figure 1, and assume
that size(i1) = size(i2) = 1. For the assignment
{(m1, i1), (m1, i2)}, the total benefit is1 + 5 = 6. For the
assignment{(m1, i1), (m2, i2)}, the total benefit is1+6+2 =
9. For the assignment{(m2, i1), (m1, i2)}, the total benefit is
4 + 5 = 9, and for the assignment{(m2, i1), (m1, i2)}, the
total benefit is2 + max{4, 6} = 8.

IV. A N APPROXIMATION ALGORITHM FOR G-MBMAP

A. On the computational complexity of g-MBMAP

We now show that g-MBMAP is not only NP-Hard, but
also cannot be approximated within a factor better thane

e−1 .
We show this by a reduction from the well-know Maximum
Coverage Problem (MCP) [14], defined as follows: Given a
collection of subsetsL = {S1...Sm} of the universal setU =
{1, ..., n}, and a positive integerp, find a subsetH ⊆ L such
that |H| = p and the number of covered elements| ∪h∈H h|
is maximum.

Theorem 1:g-MBMAP cannot be approximated within a
factor better than e

e−1 , even if all messages are of fixed-size,
unlessNP ⊆ DTIME(nlog log n).
Proof: It is shown in [11] that MCP cannot be approx-
imated within a factor better than e

e−1 unless NP ⊆
DTIME(nlog log n). We now show how to convert an instance
of MCP into an instance of g-MBMAP. Given an instance
of MCP, we define the set of flows in g-MBMAP to be
U = {1 . . . n} and the set of IDDs to be{ij}

p
j=1. For every

ij , we setsize(ij) = 1 and F (ij) = U . This implies that
each device can carry exactly one message, which will be
visible to all flows. In addition, for every subsetSi ∈ L we
define a messagemi such thatF (mi) = Si. Finally, we set

B(f,m, i) = 1 for every flow f , messagem and devicei.
Observe that under this settingB(T ) = |

⋃
(m,i)∈T F (m))|. It

is easy to see that an optimal solution for the MCP instance is
translated into an optimal solution for the g-MBMAP instance
and vice versa. Since the transformation is size preservingand
can be performed in linear time, no approximation algorithm
for g-MBMAP can do better than the bound for MCP.

B. Our new approximation algorithm

At first glance, it seems that g-MBMAP is similar to the
Generalized Assignment Problem (GAP) [8]. The input for
GAP is a set of bins (knapsacks) and a set of items. Each bin
has a limited capacity, and for each itemi and binj, s(i, j)
andp(i, j) indicate the size and benefit of itemi in bin j. The
objective is to find the subset of items to be assigned to each
bin such that the overall benefit is maximized. However, there
are two important differences between g-MBMAP and GAP:

• In GAP every item can be selected only for one bin,
whereas in g-MBMAP an item (a message) can be
selected for multiple bins (IDDs).

• In GAP the benefit associated with the selection of an
item for a bin is independent of the selection made for
other bins. In contrast, in g-MBMAP there is a strong
correlation between assignments. As explained before, if
a message is selected for multiple IDDs and the same
flow passes through some of them, the benefit this flow
obtains from this message is not equal to the sum of the
benefits, but to the maximum benefit.

We solve g-MBMAP using a technique similar to the one
presented in [8] for GAP. That is, given anα-approximation
algorithm ALG for the Knapsack problem, we build a(1+α)-
approximation algorithm for g-MBMAP using the concept of
Local Ratio [3]. In our case we need a small generalization
of the Local Ratio Theorem presented in Theorem 9 of [3].
This theorem uses a benefit function of the typew · x, where
w = w1 + w2. Our benefit function cannot be presented in
this way and thus we restate the theorem to make it slightly
more general. The proof, however, is very similar to the proof
of Theorem 9 in [3] and is not repeated here.

The generalized version of the Local Ratio Theorem is as
follows. Let F be a set of constraints and letB, B1, and
B2 be benefit functions as defined in Equation 2 on a set of
vectorsX, such that for everyx ∈ X, B(x) = B1(x)+B2(x)
holds. Ifx is an r-approximate solution with respect to(F,B1)
and with respect to(F,B2), then it is also an r-approximate
solution with respect to(F,B).

We now present an algorithm for g-MBMAP. Given the
benefit functionB(f,m, i) for every flow f , a messagem
and a devicei, the algorithm returns a legal assignmentT
that is (1 + α)-approximation to the optimal solution.

Algorithm 1: (an approximation algorithm for g-MBMAP)
Denote byBk(f,m, i) the benefit for flowf from assigning
messagem to devicei at thekth iteration of the algorithm.
Initially, for every messagem, device i and flow f , set
B1(f,m, i)← B(f,m, i). Then, fork = 1 to |I| do:

1) Run algorithm ALG for the Knapsack problem on the
following instance. The knapsack size issize(ik). The
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items to be packed are the set of messagesM . The
benefit for everym ∈ M is

∑
f∈F Bk(f,m, ik), and

the weight for everym ∈M is size(m). Let Nk be the
set of messages selected by ALG.

2) If k = |I| returnT =
⋃|I|

j=1{Nj × {ij}}.
3) For every messagem, devicei, and flowf ∈ F :

• Decompose the benefit functionBk(f,m, i) into
two functionsB1

k(f,m, i) andB2
k(f,m, i) such that

the following holds:

a) B1
k(f,m, i) =





Bk(f,m, i) for i = ik
min{Bk(f,m, i), Bk(f,m, ik)} for i 6= ik

andm ∈ Nk

0 otherwise

b) B2
k(f,m, i) = Bk(f,m, i)−B1

k(f,m, i).

• SetBk+1(f,m, i) = B2
k(f,m, i).

C. Execution Example

We now show an example of the execution of the algorithm.
Let the initial benefit matrix be:

f1 f2 f3 f4

B(f,m1, i1) 0 0 0 5
B(f,m1, i2) 1 0 0 0
B(f,m2, i1) 0 4 2 0
B(f,m2, i2) 0 6 0 5

where the size of all messages and IDDs is 1.
To simplify the presentation, for each device and message,

we consider only flows with nonzero benefit. Consequently,
the initial B matrix looks as follows:

m1 m2

B :
i1 {(f4, 5)} {(f2, 4), (f3, 2)}
i2 {(f1, 1)} {(f2, 6)}

We setB1 to be equal toB:

m1 m2

B1 :
i1 {(f4, 5)} {(f2, 4), (f3, 2)}
i2 {(f1, 1)} {(f2, 6)}

Now, we build a Knapsack instance fori1. The size of this
knapsack is 1, the items arem1 and m2, the benefit ofm1

is 5 and ofm2 is 6 (4 for f3 and 2 for f2); the weight of
every item is 1. We run a Knapsack algorithm to solve this
instance. The output of this algorithm ism2. Thus, we have
N1 = {m2}.

Next, we decompose the benefit functionB1 into B1
1 and

B2
1 as follows:

m1 m2

B1
1 :

i1 {(f4, 5)} {(f2, 4), (f3, 2)}
i2 ∅ {(f2, 4)}

m1 m2

B2
1 :

i1 ∅ ∅
i2 {(f1, 1)} {(f2, 2)}

Then,B2 is set to be equal toB2
1 (only nonempty rows are

shown):

m1 m2

B2 : i2 {(f1, 1)} {(f2, 2)}

Flow f2 has already gained a benefit of 4 from the assignment
of m2 to i1. Therefore, the extra benefit forf2 from the
assignment ofm2 to i2 is only 6− 4 = 2.

Again, we build and solve a Knapsack instance fori2. We
getN2 = {m2}, and by decomposingB2 correspondingly we
get:

m1 m2

B1
2 : i2 {(f1, 1)} {(f2, 2)}

m1 m2

B2
2 : i2 ∅ ∅

The final assignment is, therefore,m2 to i1 andm2 to i2.
The total benefit is 8:2 of which is due toB(f3,m2, i1) and
6 due toB(f2,m2, i2).

D. A proof of worst-case performance guarantee

In order to use the Local Ratio Theorem, we first prove that
Bk(T ) satisfies the required conditions.

Lemma 1:For each iteration of the algorithm,k = 1 to |I|,
and forTk =

⋃|I|
j=k{Nj×{ij}}, Bk(Tk) = B1

k(Tk)+B2
k(Tk).

Proof:

Bk(T ) =
∑

f∈F

∑

m

max
(m,i)∈T

{Bk(f,m, i)}

=
∑

f∈F

∑

m

max
(m,i)∈T

{B1
k(f,m, i) + B2

k(f,m, i)}.

Given a flowf , we now prove that for every messagem:

max
(m,i)∈T

{B1
k(f,m, i) + B2

k(f,m, i)} =

max
(m,i)∈T

{B1
k(f,m, i)}+ max

(m,i)∈T
{B2

k(f,m, i)}.

We distinguish between two cases:
1) The case where(m, ik) ∈ T , i.e., m is assigned toik

in T . SinceBk(f,m, i) = B1
k(f,m, i) + B2

k(f,m, i),
for every message m max

(m,i)∈T
{B1

k(f,m, i)} +

max
(m,i)∈T

{B2
k(f,m, i)} ≥ max

(m,i)∈T
Bk(f,m, i). It

remains to show that max
(m,i)∈T

Bk(f,m, i) ≥

max
(m,i)∈T

{B1
k(f,m, i)} + max

(m,i)∈T
{B2

k(f,m, i)}. If

max
(m,i)∈T

B2
k(f,m, i) = 0, then we are done.

Otherwise, max
(m,i)∈T

B2
k(f,m, i) = l > 0. Suppose

that the maximum holds forij (6= ik), i.e.,
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B2
k(f,m, ij) = l. Then, according to the construction,

B1
k(f,m, ij) = B1

k(f,m, ik) = max
(m,i)∈T

B1
k(f,m, i).

Thus, max
(m,i)∈T

{Bk(f,m, i)} ≥ Bk(f,m, ij) =

B1
k(f,m, ij) + B2

k(f,m, ij) = max
(m,i)∈T

{B1
k(f,m, i)} +

max
(m,i)∈T

{B2
k(f,m, i)}.

2) The case where(m, ik) /∈ T , i.e., m is not as-
signed to ik in T . According to the construction,
max

(m,i)∈T
{B1

k(f,m, i)} = 0. This is because the only

entry that does not equal to 0 isB1
k(f,m, ik),

but (m, ik) /∈ T . Thus we get also in this
case that max

(m,i)∈T
{B1

k(f,m, i) + B2
k(f,m, i)} =

max
(m,i)∈T

{B1
k(f,m, i)}+ max

(m,i)∈T
{B2

k(f,m, i)}.

We conclude that for both cases the following holds:

Bk(T )

=
∑

f∈F

∑

m

max
(m,i)∈T

{B1
k(f,m, i) + B2

k(f,m, i)} =

∑

f∈F

∑

m

max
(m,i)∈T

{B1
k(f,m, i)}+

∑

f∈F

∑

m

max
(m,i)∈T

{B2
k(f,m, i)}

= B1
k(T ) + B2

k(T ).

Theorem 2:For every1 ≤ k ≤ |I|, the assignmentTk =⋃|I|
j=k{Nj ×{ij}} is a (1 + α)-approximation with respect to

Bk(f,m, i).
Proof: We prove this by a reverse induction on the value
of k, starting with k = |I|. The induction basis(k =
|I|) follows from the validity of ALG, which produces an
α−approximation for the Knapsack problem.

For the inductive step, assume thatTk+1 is a (1 + α)-
approximation with respect toBk+1(f,m, i). We now prove
in two steps thatTk is a (1 + α)-approximation with respect
to Bk(f,m, i). If Tk is a (1 + α)-approximation with respect
to B2

k(f,m, i), andTk is also a(1 + α)-approximation with
respect toB1

k(f,m, i), then since by Lemma1 Bk(Tk) =
B1

k(Tk) + B2
k(Tk), we can use the Local Ratio Theorem to

prove Theorem 2. It is therefore left to prove thatTk is indeed
a (1 + α)-approximation with respect toB1

k(f,m, i) and with
respect toB2

k(f,m, i).
By construction, for every messagem, device i and flow

f , Bk+1(f,m, i) is identical toB2
k(f,m, i). By the induction

assumption,Tk+1 is a (1 + α)-approximation with respect to
B2

k(f,m, i). Tk contains all the assignments inTk+1. Thus,
Tk is a (1 + α)-approximation with respect toB2

k(f,m, i).
Now, we prove thatTk is a (1 + α)-approximation with

respect toB1
k(f,m, i). The benefit functionB1

k(f,m, i) has
three components. The first component,c1, is the benefit of
assigning a messagem to ik, namely

∑
f∈F Bk(f,m, ik).

The second component,c2, is the benefit of messages se-
lected toNk whose benefit inB1

k(f,m, i) is set to be not
larger than the benefit they obtain from their assignment to
ik. The third component,c3, consists of all the remaining
entries, which are set to 0. Algorithm ALG guaranteesα-
approximation for deviceik with respect toc1. Therefore,

the best solution with respect toc1 would obtain at most
α ·

∑
m∈Nk

∑
f∈F B1

k(f,m, i). Any solution with respect to
c2 will gain at most

∑
m∈Nk

∑
f∈F B1

k(f,m, i), since the
benefit of every entry in this component is set to be not larger
than the benefit ofB1

k(f,m, ik). Note also that the benefit a
flow obtains is at most the greatest between these benefits, no
matter how many devices cover this flow. Finally, component
c3 has no contribution to the benefit. Thus,Nk is a (1 + α)-
approximation with respect toB1

k(f,m, i). SinceTk contains
all the assignments inNk, it is a (1 + α)-approximation with
respect toB1

k(f,m, i), which concludes the proof.
Corollary 1: Algorithm 1 is a (1 + α)-approximation for

g-MBMAP.
Observe that when the messages are of equal size, we can

replace algorithm ALG by an algorithm that finds an optimal
assignment for each IDD. In this caseα = 1, and we obtain
a 2-approximation for g-MBMAP.

Recall that ALG is an algorithm for solving the Knapsack
problem. To analyze the running time complexity of Algo-
rithm 1, assume that the running time of ALG isg(|M |).
In step 1 we build a knapsack instance. The running time
of this construction is bounded by|M | · |F |. In step 3 we
construct the benefit functions. The number of relevant entries,
namely nonzero values inB1

k(f,m, i) and updated values in
B2

k(f,m, i), is upper bounded by2 · size(ik) · (|I|−k). Thus,
the running time of this step for all of the|I| iterations is

|I|∑

k=1

2 · size(ik) · (|I| − k) · |F | ≤ 2 ·cmax ·

|I|∑

k=1

(|I| − k) · |F |

= O(cmax · |F | · |I|
2),

where cmax = maxi∈I size(i). Consequently, the total run-
ning time of Algorithm 1 is:

O
(
(g(|M |) + |M | · |F |) · |I|+ cmax · |F | · |I|

2
)
.

We can improve the algorithm’s running time by making a
minor change in step 3. Instead of calculating the whole benefit
function B(f,m, i), it is sufficient to calculate the value of
the function forik. However, in this calculation one should
consider the effect of all previous assignments. To this end,
we define a new matrixQ, such thatQ[f,m] indicates the
benefit already obtained by flowf from messagem.

V. THE EXTENDED MBMAP

Our definition of MBMAP assumed no dependency between
the benefit of different messages in the same or different IDDs.
However, when such a dependency exists, it will certainly
affect the optimal assignment. For example, consider the ap-
plication scenario where the IDDs are electronic signs and the
mobile nodes are vehicles. Letm1 andm2 be two messages
posted in two consecutive IDDs,i1 and i2. Suppose thatm1

informs motorists that “the next exit to Hwy. 200 is closed.”
Suppose thatm2 informs that “the next 3 exits are closed due
to construction.” In this example, the message ofm1 is not
fully covered bym2 because this message emphasizes that it
is not possible to take Hwy 200. Still, it is clear that if the
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same flow is exposed to both messages, the benefit is less than
the sum of benefits.

We extend MBMAP to capture possible dependency be-
tween different messages and define two new problems: g-E-
MBMAP (global extended MBMAP) and l-E-MBMAP (local
extended MBMAP). In both new problems, we consider a
given setE of events and assume that each message from
M covers a subset of events fromE. Each flow has a benefit
from being notified about every event in every message. For
example, if a flow is notified about the same event by two
different IDDs, it obtains only the maximum benefit associated
with this event and the two IDDs.

Let
−→
B (f,m, i) be abenefit vectorrepresenting all possible

events in the considered system. Entrye in this vector indicates
the benefit obtained by flowf when it is notified aboute
through messagem in IDD i. If messagem does not give any
information regardinge, this entry is 0. Given a setU of such
vectors, let−→v = max{U} be a vector such that for every
event e, −→v [e] = max

−→u ∈U
{−→u [e]}. In addition, given any vector

−→v , let |−→v | =
∑

e
−→v [e].

We start with the definition of l-E-MBMAP. The benefit
vector obtained by a flowf from a legal assignmentT is

−→
BL(T, f) =

∑

(m,i)∈T

−→
B (f,m, i).

The total benefit from assignmentT is: B̂L(T ) =∑
f∈F |

−→
BL(T, f)|, and we seek to:

maximize B̂L(T ),

subject to:
∑

m∈T (i)

size(m) ≤ size(i) for every i.

For g-E-MBMAP, the benefit vector obtained by a flowf
from a legal assignmentT is

−→
BG(T, f) = max

(m,i)∈T
{
−→
B (f,m, i)}.

The total benefit from assignmentT is: B̂G(T ) =∑
f∈F |

−→
BG(T, f)|, and we seek to:

maximize B̂G(T ),

subject to:
∑

m∈T (i)

size(m) ≤ size(i) for every i.

For example, consider two messages,m1, m2, two IDDs, i1
and i2, and one flowf that passes through bothi1 and i2.
Suppose that there are 5 events and that:

−→
B (f,m1, i1) =

(3, 0, 8, 0, 0),
−→
B (f,m2, i1) = (3, 4, 0, 0, 1),

−→
B (f,m1, i2) =

(1, 2, 5, 0, 3) and
−→
B (f,m2, i2) = (1, 0, 0, 0, 3). Each entry in

−→
B represents the benefit obtained from a specific event. By as-
signing bothm1 andm2 to i1 and onlym1 to i2, g-E-MBMAP
gets the benefit

−→
BG(T, f) = max(m,i)∈T {

−→
B (f,m, i)} =

(3, 4, 8, 0, 3). Since f is the only flow in this example, the
total benefit isB̂(T ) = |

−→
BG(T, f)| = 18.

We solve l-E-MBMAP using an algorithm for a generaliza-
tion of the Budgeted Maximum Coverage Problem (BMCP)

[18]. BMCP is defined as follows. LetS be a collection of
sets with associated costs defined over a domain of weighted
elements. LetL be a budget. Find a subsetS′ ⊆ S such that
the total cost of sets inS′ does not exceedL, and the total
weight of elements covered byS′ is maximized.

We define the Generalized Budgeted Maximum Coverage
Problem (GBMCP) as follows. LetS be a collection of
sets with associated costs, where every set includes weighted
elements. Find a subset ofS′ ⊆ S such that the total
cost of sets inS′ does not exceed the budgetL, and the
total weight of elements covered byS′ is maximized. In the
generalized problem an element may have different weights
in different sets. The algorithm for BMCP described in [18]
can be easily extended for GBMCP while guaranteeing the
same approximation ratio(1− 1

e
). In [6] the authors introduce

a more generalized variation for BMCP, referred to as “The
Generalized Maximum Coverage Problem,” and present an
( e

e−1 +ǫ) approximation for everyǫ > 0. In this variation, not
only does the benefit of the element differ from one subset to
another but also its weight.

The reduction of l-E-MBMAP to GBMCP is sim-
ple: the budget issize(ik); for every m ∈ M , let
{fj | such that

−→
B (f,m, ik)[j] > 0} is a subset with a cost of

size(m), where the weight of elementfj is
−→
B (f,m, ik)[j].

To solve g-E-MBMAP, we use the Budgeted Maximum
Coverage Problem (BMCP) [18] as a subroutine. Let ALG’
be aβ-approximation algorithm for GBMCP. We now build a
(1 + β)-approximation for g-E-MBMAP. This algorithm is a
generalization of Algorithm 1 to vectors.

Algorithm 2: (an approximation algorithm for g-E-
MBMAP)

Denote by
−→
B k(f,m, i) the benefit vector obtained by flow

f from assigning messagem to devicei at thekth iteration
of the algorithm. Initially, for every messagem, devicei and
flow f , set

−→
B 1(f,m, i)←

−→
B (f,m, i). Then, Fork = 1 to |I|

do:
1) Run algorithm ALG’ for GBMCP on the following

instance: the budget issize(ik); for every m ∈ M ,
let {fj | such that

−→
B (f,m, ik)[j] > 0} be a subset with

a cost ofsize(m), where the weight of elementfj is
−→
B (f,m, ik)[j] . Let Nk be the set of messages selected
by ALG’.

2) If |I| = k, returnT =
⋃|I|

j=1{Nj × {ij}}.

3) For every flow f , let
−→
B k(f) =

max{
−→
B k(f,m, ik)|m ∈ Nk}, which is the benefit

vector for flow f from assigning the messages inNk

to ik.
4) For every messagem, devicei, and flowf :

• Decompose the benefit vector
−→
B k(f,m, i) into two

vectors,
−→
B 1

k(f,m, i) and
−→
B 2

k(f,m, i), such that the
following holds:

a)
−→
B 1

k(f,m, i) ={ −→
B k(f,m, ik) for i = ik

min{
−→
B k(f,m, i),

−→
B k(f)} for i 6= ik,

where the minimum of two benefit vectors is a
vector, such that the value of every element is the
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minimum between its values in the two vectors.
b)
−→
B 2

k(f,m, i) =
−→
B k(f,m, i)−

−→
B 1

k(f,m, i).

• Set
−→
B k+1(f,m, i)←

−→
B 2

k(f,m, i).
We analyze the worst-case performance of Algorithm 2

using the same method used for Algorithm 1. In order to use
the Local Ratio theorem, we first prove that̂BGk(T ) satisfies
the required conditions.

Lemma 2:For every iteration of the algorithm,k = 1 to

|I|, and forTk =
⋃|I|

j=k{Nj ×{ij}}, B̂Gk(Tk) = B̂G

1

k(Tk) +

B̂G

2

k(Tk).
The proof is presented in the Appendix.

Theorem 3:For every1 ≤ k ≤ |I|, Tk =
⋃|I|

j=k{Nj×{ij}}

is a (1 + β)-approximation with respect to
−→
B k(f,m, i).

The proof is presented in the Appendix.
Corollary 2: Algorithm 2 is a (1 + β)-approximation for

g-E-MBMAP.
In order to analyze the running time of Algorithm 2, assume

that the running time of any operation we make on two vectors
is O(k), wherek is the number of possible events. Assume
also that the running time of algorithm ALG’ isg(|M |, k·|F |).
In step1 we build a GBMCP instance. The running time of
this construction is bounded byO(|M | · |F | · k). In step3
we calculate the benefit obtained by each flow, which takes
O(|F | · |Nk| · k) = O(|F | · |M | · k). The running time of step
4 is O(|M | · |F | · |I| · k). Hence, the total running time of
Algorithm 2 is:

O(|M | · |F | · |I|2 · k + |I| · g(|M |, k · |F |)).

VI. SIMULATION STUDY

In this section we introduce Monte Carlo simulation results
for the various models and algorithms presented in the earlier
sections. The simulation is built from scratch on a Linux
machine using C++. We consider the following four models:
(a) the l-MBMAP model; (b) the g-MBMAP model; (c) the
l-E-MBMAP model; (d) the g-E-MBMAP model. While it
is clear that in general the global algorithms perform better
than the local algorithms, our main purpose in this section
is two-fold: first, to study the effect of the extended model
on the performance; second, to better understand the effectof
some network parameters on each of the various models and
algorithms.

We simulate the various models in the context of IDDs
broadcasting messages to cars in a vehicular network. The
network of roads is simulated as a weighted graph, with 200
vertices spread out on a grid. Each vertex has a potential edge
with each of 4 potential neighbors. However, we randomly
determine for each potential edge whether it appears in the
graph. Every vertex represents an intersection of roads, and
every edge represents a directional road between two inter-
sections. A vertex can be connected to at most four edges.
The weight associated with each edge represents the delay
encountered by a vehicle upon traversing the corresponding
road. This delay is a function of the distance and the volume
of traffic on the road.

We then uniformly place IDDs along the busiest roads and
consider a list of events that are likely to be of interest to the

passing vehicles (see further details below on how events are
chosen). The average size of each IDD is 40. From the chosen
events we derive a set of messages. The average length of a
message is 10. The benefit of a message depends on the events
it announces, the location of the IDD and the volume of the
flow to which it is relevant. For example, if a messagem
is assigned to an IDDi to which the vehicles of a flowf
are exposed only after they are affected by the event, then
B(f,m, i) = 0.

Group mobility is simulated as follows. For every flow
we choose random source and destination points. Then, we
compute the shortest pathP between these points. This is the
path traversed by the flow’s nodes. We also choose a random
size for each flow, which indicates the number of mobile
devices in this flow per minute. In this section we consider
each of the flows independently. In the next section we show
how the number of flows can be minimized by merging some
of them, in a similar fashion to that proposed by the virtual
track (VT) group mobility model [26].

Events and messages are generated in the following way.
A random place is chosen on the graph. It can be either a
node (junction) or an edge (road). An event is defined for
each road and junction. Then, 15 or 50 events are randomly
chosen and the other are ignored. Each flow obtains a benefit
if it is informed about a relevant event. The sooner the flow
is exposed to a message on a relevant event, the higher the
corresponding benefit is. However, we received similar results
when we used different benefit assignment functions, such
as a uniform one. We then compute

−→
B (f,m, i), namely, the

vector of benefits from the assignment ofm to i for every
f , m and i. Recall that in l-MBMAP and g-MBMAP we
ignore the dependency between different messages broadcast
by the same IDD. Hence, for these models we setB(f,m, i) =

|
−→
B (f,m, i)|.

For each model we execute the corresponding algorithm
on the corresponding input. The output of each execution is
an assignmentT ⊆ {M × {I}}. To measure the quality of
each assignment, we divide its total benefit by the maximum
theoretical benefit that can be obtained when there is no limit
on the volume of information each IDD can broadcast, in
which case all messages are broadcast by all IDDs.

For l-MBMAP, we solve the Knapsack problem using the
dynamic programming algorithm described in [21]. This al-
gorithm finds an optimal solution. It has a pseudo-polynomial
running time ofO(|I| · |M |), which is reasonable for all the
models considered in this paper. Therefore, Algorithm 1 is
a 2-approximation for g-MBMAP. For l-E-MBMAP and g-E-
MBMAP, we solve the Budgeted Maximum Coverage Problem
using the e

e−1 -approximation proposed in [18]. This guar-
antees an e

e−1 -approximation for l-E-MBMAP and a2e−1
e−1 -

approximation for g-E-MBMAP.
The g-MBMAP model is better than the l-MBMAP because

it is aware of the dependency between messages assigned to
different IDDs. In particular, g-MBMAP knows that assigning
the same message to closely related IDDs, i.e., IDDs that are
traversed by a similar set of flows, allows the traversing flowto
benefit only from one message, while l-MBMAP does not take
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Fig. 2. The normalized benefit as a function of the number of IDDs

such considerations into account. Thus, we expect g-MBMAP
to perform better than l-MBMAP. For the same reason, g-
E-MBMAP is better than l-E-MBMAP. If we compare the
two global models, g-MBMAP and g-E-MBMAP, the latter is
obviously better than the former. While both models are aware
that it is pointless to assign the same message to two closely
related IDDs, g-E-MBMAP is also aware that two different
messages might give similar information. To summarize, we
expect g-E-MBMAP to exhibit the best performance and l-
MBMAP the worst.

Figure 2(a) depicts the normalized benefit as a function of
the number of IDDs for 30 messages, 30 flows, 20 IDDs, 10
relevant messages for every flow on the average, and 10 IDDs
traversed by every flow on the average. The number of possible
events is 15, and for every message there are 5 possible events
on the average. The ratio between the number of messages
and the number of event indicates the dependency between
the different messages. Obviously, for all the models, the
total benefit increases with the number of IDDs. However, the

growth rate declines because, when a flow traverses more and
more IDDs, it is less likely to receive a new message. When
comparing the curves for the different models, we see that
l-MBMAP indeed exhibits the worst performance, whereas g-
E-MBMAP exhibits the best. The graph also shows that when
the number of IDDs is small, l-E-MBMAP outperforms g-
MBMAP. However, with more IDDs, g-MBMAP is better than
l-E-MBMAP.

We now increase the number of possible events from 15
to 50 without changing the other parameters. This reduces
the dependency between the different messages because two
messages are less likely to announce similar events. The results
are presented in Figure 2(b). The performance for all the
models is lower than what we saw in Figure 2(a) because every
message covers relatively few events. Since the IDD capacity
is limited, fewer events are covered in this case. In addition,
we see that the advantage of g-E-MBMAP over g-MBMAP
is now smaller, because of the decreased dependency between
the different messages. For the same reason, we see that the
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advantage of l-E-MBMAP over l-MBMAP is much smaller.
Figure 2(c) shows the results for the same parameters

considered in Figure 2(a), except that the average number of
messages relevant to each flow is reduced from 10 to 5. As in
Figure 2(a), we see again that the performance of g-MBMAP
is closer to the performance of g-E-MBMAP. This is because
fewer messages can be broadcast by the same IDD for every
flow, so there is less dependency between messages for the
same flow. This reduces the advantage of g-E-MBMAP over
g-MBMAP and of l-E-MBMAP over l-MBMAP.

Finally, Figure 2(d) shows the results for the same parame-
ters considered in Figure 2(a), except that the average number
of IDDs traversed by each flow is reduced from 10 to 5. As
expected, the benefit for all the models is smaller than the
benefit shown in Figure 2(a). In addition, we can see that all
four curves are much closer to each other. This is because the
probability that the same message will be assigned to different
IDDs is smaller, which reduces the advantages of g-MBMAP
and g-E-MBMAP.

We conclude that the global models and algorithms are
significantly better than the local ones for large-scale settings.
Nonetheless, the actual setting is what determines whetherit
is advantageous to consider the dependency between events
in different messages. For the local model, we see that l-E-
MBMAP has no real advantage over l-MBMAP for almost
every setting. g-E-MBMAP has an advantage over g-MBMAP
for almost every setting, but the performance gain is more
significant when the number of dependencies is small and
when the number of messages affecting every flow is large.

VII. FLOW DEFINITIONS

In the previous sections we assumed that we are given a set
of flows as a parameter. However, defining such flows is not
a trivial task. We seek a scheme that defines flows in a way
that is not only accurate, but also scalable. We compare the
accuracy and scalability of the following four schemes:

• Scheme A: In this scheme we ignore flows whose volume,
in terms of mobile nodes per second, is small. The
rationale is that such flows are not likely to obtain a lot
of benefit and thus can be ignored.

• Scheme B: Here we ignore flows whose volume multi-
plied by the number of IDDs they pass is small. This is
because it is more difficult to obtain benefit for these
flows without affecting the benefit obtained for other
flows.

• Scheme C: Here we ignore flows whose volume multi-
plied by the number of messages they encounter is small.
This is for the same reason stated in Scheme B.

• Scheme D: Here the considered metric is the benefit every
flow could obtain if it was the only flow in the network,
normalized by the resources it requires to obtain this
benefit. Again, those flows for which this metric is small
are ignored.

We compare the proposed schemes by running each of the
four algorithms with each scheme. For lack of space, we report
here only the results obtained for g-E-MBMAP. However, the
results obtained for each of the other algorithms were similar.

Figure 3 shows the simulation results. In all the graphs, the
x-axis indicates the fraction of ignored flows while the y-
axis indicates the “normalized benefit.” The normalized benefit
for each scheme indicates the total benefit obtained for this
scheme divided by the total benefit obtained when all the flows
are considered. Hence, we see that for all the schemes in all the
graphs the normalized benefit is 1 when no flow is ignored, and
this benefit decreases with the number of dropped flows. The
decrease rate depends on the scheme and on the parameters
of each scenario.

Figure 3(a) depicts the normalized benefit as a function of
the fraction of dropped flows for 50 IDDs and 50 messages.
SchemesC andD exhibit the best performance in this case,
because with these parameters there are many available IDDs
but not many messages to disseminate. Schemes C and D keep
flows that can benefit from more messages and consequently
have higher potential benefit when there are enough IDDs.
Comparing the curves of schemesC and D, we see that
SchemeD achieves better performance for low drop rates,
while for high drop rates the performance decreases. This
is because, for low drop rates, the competition between the
flows on the available IDDs is fairly high, and SchemeD
keeps flows that obtain higher benefit from their messages.
For high drop rates, the competition is significantly lower,
and SchemeC, which keeps flows that need many messages,
achieves better performance. SchemesA and B do not take
into account the small number of messages, so they consider
many flows that obtain a low benefit.

Figure 3(b) shows the simulation results for 20 IDDs and
120 messages. In this case, schemesB andD achieve the best
performance. This is because most flows encounter a small
number of IDDs but need many messages. Thus, the IDDs are
a scarce resource. SchemeB keeps flows that pass through
many IDDs. Thus, this scheme decreases the competition on
the IDDs and increases the number of relevant IDDs for
every message. Comparing SchemeB with SchemeD, we
see that SchemeB exhibits a better performance for lower
drop rates whereas SchemeD is better for higher drop rates.
This is because SchemeD seeks to increase the local benefit,
whereas SchemeB seeks to decrease the competition among
different flows and to increase the global benefit. SchemesA
andC show poor performance in this case because they mostly
consider flows that pass through few IDDs, thereby increasing
the competition and decreasing the total benefit.

Figure 3(c) shows the results for 50 IDDs and 120 messages.
In this setting, the competition between the messages on the
IDDs is high, with only a small benefit for many of the
flows. Scheme A is the worst for this setting, whereas the
other three schemes perform similarly. When the number of
flows decreases, Scheme C shows the best results because it
is more likely to keep flows that can benefit even in a highly
competitive environment.

Figure 3(d) shows simulation results for 20 IDDs and 50
messages. Since we have few IDDs and messages, the number
of flows that encounter many IDDs or are interested in many
messages is small. Thus, all the schemes exceptD are likely
to keep flows with a low potential benefit that either pass
through few IDDs or are interested in few messages. Scheme
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Fig. 3. The normalized benefit as a function of rate of the dropped flows

D is more likely to keep flows with high potential benefit, and
it therefore has the best performance in this case.

To conclude this section, we believe that Scheme C and
Scheme D yield the best trade-off between scalability and
performance.

VIII. C ONCLUSIONS

The paper presented models and algorithms for efficient
location-based decision supporting content distributionto mo-
bile groups. The considered system consists of Information
Dissemination Devices (IDDs), which broadcast a limited
amount of location-based information to passing mobile nodes
that are moving along well-defined paths. We concentrated
on the optimization problem of assigning messages to the
IDDs. The IDDs disseminate these messages to groups of
passing mobile nodes whose mobility pattern is well defined.
We formulated several related models and studied both the
theoretical aspects of the resulting optimization problems and
the practical implications of deploying efficient algorithms for
these models in realistic networking scenarios.

Our results indicated that the cooperative solutions, in
which the assignment is made for all the IDDs together, are
significantly better than the non-cooperative ones. In contrast,
the contribution of the extended models, that also capture the
dependencies between messages broadcast by the same IDD,
is relatively minor.
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APPENDIX

The proof of Lemma 2: By definition

B̂Gk(T ) =
∑

f∈F

|
−→
B k(T, f)| =

∑

f∈F

| max
(m,i)∈T

{
−→
B k(f,m, i)}|

=
∑

f∈F

| max
(m,i)∈T

{
−→
B 1

k(f,m, i) +
−→
B 2

k(f,m, i)}|.

Given a flow f, a messagem and an indexj, we need to
prove that:

max
(m,i)∈T

{
−→
B 1

k(f,m, i) +
−→
B 2

k(f,m, i)}[j]

= max
(m,i)∈T

{
−→
B 1

k(f,m, i)}[j] + max
(m,i)∈T

{
−→
B 2

k(f,m, i)}[j].

Since
−→
B k(f,m, i) =

−→
B 1

k(f,m, i)+
−→
B 2

k(f,m, i), and all the
values in all the vectors are non-negative, the following holds
for every flowf and indexj

max
(m,i)∈T

{
−→
B 1

k(f,m, i)}[j] + max
(m,i)∈T

{
−→
B 2

k(f,m, i)}[j]

≥ max
(m,i)∈T

Bk(f,m, i)[j]

Thus, it remains to show that for every flowf and indexj

max
(m,i)∈T

Bk(f,m, i)[j] ≥

max
(m,i)∈T

{B1
k(f,m, i)}[j] + max

(m,i)∈T
{B2

k(f,m, i)}[j].

By definition,
−→
B k(f) is equal to maxm∈Nk

−→
B k(f,m, ik),

which is the benefit vector for flowf from assigning the
messages inNk to ik. If max

(m,i)∈T

−→
B 2

k(f,m, i)[j] = 0, the claim

is proven. Otherwise,max
(m,i)∈T

−→
B 2

k(f,m, i)[j] = l > 0. Suppose

that the maximum holds forij 6= ik, i.e.,
−→
B 2

k(f,m, ij)[j] =

l. Then, by construction,
−→
B 1

k(f,m, ij)[j] =
−→
B k(f)[j] =

max
m∈Nk

−→
B 1

k(f,m, ik)[j]. Thus,

max
(m,i)∈T

{
−→
B k(f,m, i)}[j] ≥

−→
B k(f,m, ij)[j] =

−→
B 1

k(f,m, ij) +
−→
B 2

k(f,m, ij)[j] =

max
(m,i)∈T

{
−→
B 1

k(f,m, i)}[j] + max
(m,i)∈T

{
−→
B 2

k(f,m, i)}[j].

Now we can conclude that
−→
B k(T ) =

∑

f∈F

| max
(m,i)∈T

{
−→
B 1

k(f,m, i) +
−→
B 2

k(f,m, i)}|

=
∑

f∈F

∑

i

max
(m,i)∈T

{
−→
B 1

k(f,m, i) +
−→
B 2

k(f,m, i)}[j]

=
∑

f∈F

∑

i

max
(m,i)∈T

{
−→
B 1

k(f,m, i)}[j]+

+
∑

f∈F

∑

i

max
(m,i)∈T

{
−→
B 2

k(f,m, i)}[j]

=
∑

f∈F

| max
(m,i)∈T

{
−→
B 1

k(f,m, i)}|+ | max
(m,i)∈T

−→
B 2

k(f,m, i)}|

= B̂G

1

k(T ) + B̂G

2

k(T ).

The proof of Theorem 3: We prove this by a reverse
induction on the value ofk, starting with k = |I|. The
induction basis(k = |I|) follows from the validity of ALG’,
which produces aβ-approximation for the GBMCP problem.

For the inductive step, assume thatTk+1 is a (1 + β)-
approximation with respect to

−→
B k+1(f,m, i). We now prove

in two steps thatTk is a (1 + β)-approximation with respect
to
−→
B k(f,m, i). If Tk is a (1 + β)-approximation with respect

to
−→
B 2

k(f,m, i), andTk is also a(1 + β)-approximation with

respect to
−→
B 1

k(f,m, i), then sinceB̂Gk(Tk) = B̂G

1

k(Tk) +

B̂G

2

k(Tk) (by Lemma2) we can use the Local Ratio Theorem
to complete the proof. Thus, it remains to prove thatTk is
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(1 + β)-approximation with respect to
−→
B 1

k(f,m, i) and with
respect to

−→
B 2

k(f,m, i).
By the construction of

−→
B k(f,m, i), for every messagem,

devicei and flowf ,
−→
B k+1(f,m, i) is identical to

−→
B 2

k(f,m, i).
By the induction assumption,Tk+1 is a (1+β)-approximation
with respect to

−→
B 2

k(f,m, i). Tk contains all of the assignments
in Tk+1. Thus,Tk is (1 + β)-approximation with respect to
−→
B 2

k(f,m, i).
Now, we prove thatTk is also a(1 + β)-approximation

with respect to
−→
B 1

k(f,m, i). The benefit function
−→
B 1

k(f,m, i)
has three components. The first componentc1 is the benefit
of assigning a messagem to ik, namely

∑
f∈F

−→
B k(f,m, ik).

The second componentc2 is the benefit of messages selected
to Nk, whose benefit in

−→
B 1

k(f,m, i) is set to be not larger than
the benefit from their assignment toik. The third component
c3 consists of all the remaining entries, which are set to
0. Algorithm ALG’ guaranteesβ-approximation forik with
respect toc1. Therefore, the best solution with respect to
c1 has benefit of at mostβ ·

∑
m∈Nk

∑
f∈F |

−→
B 1

k(f,m, i)|.
Any solution with respect toc2 will have benefit of at most∑

m∈Nk

∑
f∈F |

−→
B 1

k(f,m, i)|, since the benefit of every entry
in this component is set to be not larger than the benefit
of
−→
B 1

k(f,m, ik). Note also that the benefit a flow obtains
is at most the maximum between these benefits, no matter
by how many IDDs it is covered. Finally, componentc3

has no contribution to the benefit. Thus,Nk is a (1 + β)-
approximation with respect to

−→
B 1

k(f,m, i). SinceTk contains
all the assignments inNk, it is a (1 + β)-approximation with
respect to

−→
B 1

k(f,m, i), which concludes the proof.
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