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Abstract—In many modern networks, such as datacenters, 0
optical networks, and MPLS, the delivery of a traffic flow with

a certain bandwidth demand over a single network path is /—\~
either not possible or not cost effective. In these cases, it is wer e 0
often possible to improve the network’s bandwidth utilization by \/'
splitting the traffic flow over multiple efficient paths. While using c @ e
multiple paths for the same traffic flow increases the efficiency N

of the network, it consumes expensivéorwarding resources from
the network nodes, such as TCAM entries of Ethernet/MPLS
switches and wavelengths/lightpaths of optical switches. In this
paper we define several problems related to splitting a traffic
flow over multiple paths while minimizing the consumption of
forwarding resources, and present efficient algorithms for solvig  operators usually seek to minimize the number of estaldishe

these problems. lightpaths. In addition, every lightpath requires a wawnglh
on each optical link it traverses. Since wavelengths are als
scarce resource, it is often desirable to minimize not omdy t

number of lightpaths, but also the number of nodes traversed
In computer networks, a traffic flow is a flow of datapy each one.

packets sharing the same source and destination netwodsnod 2. Ethernet switches in datacenters:Ethernet is the de-

(switches or routers). A traffic flow can often be split intgault technology for connecting hardware in datacenters- N
multiple traffic subflows, usually using information in thework operators can establish multiple paths between seurce
packet header, such as the IP/MAC addresses, the Port fieldstination pairs in their datacenters. However, each path
in the UDP/TCP header, or the VLAN number. Because theggquires an entry in the expensive (TCAM) forwarding table
traffic subflows are generated by different applicationgv@n of each switch it traverses. According to [8], a large networ
by different hosts, it is possible to route each of them overraay require hundreds of thousands of path flow table entries
different network path. Using multiple paths for a trafficvilo at each switch, while commodity switches have much smaller
is useful when routing over a single path is impossible or tafpw tables. In [24] it is also indicated that datacenter iscal
expensive. is made difficult by the forwarding table size, which incress

A simple example of the advantages of multipath routing ifhearly with the size of the system. In addition to the
illustrated in Figure 1. Suppose that we would like to route farwarding cost associated with every traversed node ether
2Gby/s traffic flow froma to f. Suppose that the default (shortis an extra forwarding cost associated with every path. The
est) patha — b — f has only 1 Gb/s available bandwidthsource of this extra cost can be found in the high speed NIC
and the other (longer, and therefore less cost effectiii)ip@s  (Network Interface Card) used to connect the servers betwee
only 1.5 Gb/s available bandwidth. In this case, the trafwfl which most datacenter traffic is transmitted. The NICs have a
can be split such that 1 Gb/s will be routed over the upper pagry limited forwarding table, much smaller than a typical
and 1 Gb/s over the lower path. But splitting a traffic flow oveswitch. The NIC divides a traffic flow into multiple paths
multiple paths consumes extra “forwarding resources” froging a classification logic, which consumes one entry in the
the network nodes. These resources are proportional to {bgvarding table for every path over which packets of this
number of paths (2 in Figure 1), and the number of nodes/linkaffic flow are forwarded.
traversed by these paths (6 links in Figure 1), as we now3, MPLS networks: MPLS Traffic Engineering (MPLS-
describe for several network technologies: TE) is used today by most network operators for building

1. Optical Networks: In optical networks, each path isan IP infrastructure based on traffic engineering and QoS
an optical, \-switched, lightpath. Such lightpaths can be sgQuality of Service) considerations [3]. An ingress MPLS
up and taken down in real time. The dominating cost in theuter establishes an MPLS LSP (Label Switched Path) over a
setup of a lightpath is of the transponders at the two endsgflected route and uses it to deliver the traffic flow throumgh t
it, which convert optical to electronic signals and viceszer network. The challenge of minimizing the number of LSPs and
(see [5], [11], [28] and references therein). Thereforéwnek the number of nodes they traverse is similar to that desgribe

, _ , above for Ethernet. Each LSP requires one entry in the costly
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Fig. 1. A simple example of a multi-path flow

I. INTRODUCTION
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Fig. 2. An example for the two optimization problems considdrethis paper, for accommodating an 8Mb/s traffic flow from ned&® nodec

We study the problem of reducing the forwarding cost in twilows are admitted one by one. While there are scenarios
different cases. In the first case, callBMO (Decomposition where the operator can admit many traffic flows at the same
with Minimum Overhead), we are given a traffic demantime, we believe that the “one traffic flow at a time” scenario
(source, destination and bandwidth demand) and a netwdskvery important for the following three reasons. First, in
flow! that satisfies the bandwidth demand between the sournany relevant applications, traffic flows are admitted for a
and destination nodes. This network flow is predetermingue-specified duration. The starting times and due datéeseof t
according to some bandwidth efficiency criterion, such d®ws are usually independent. Thus, when a new traffic flow
bandwidth cost, and the problem is to break it into a sbas to be admitted, previous traffic flows already use their ow
of simple paths between the source and destination nodeaths. Second, an operator may decide to set up a new set of
while minimizing the number of paths or the number opaths between two nodes in order to respond better to periodi
nodes they traverse. In the second case, c&M® (Routing congestion. This is an on-line decision, which is capturgd b
with Minimum Overhead), only a traffic demand (sourcethe “one traffic flow at a time” approach. Third, when a link
destination and bandwidth demand) is given, and the problema node fails, each path that crosses this link or node has to
is to find a set of simple paths between the source abd re-routed, which is again an on-line problem. Our goal in
destination nodes over which the bandwidth demand can thés work is thus to minimize the forwarding cost associated
delivered, while minimizing the number of paths or the numbaevith the delivery of each traffic flow, and not to set an upper
of nodes they traverse. At first glance it seems that RM@bund (in each switch) on the total forwarding cost assediat
should be solved using a solution for DMO as a sub-routineith all traffic flows.

We indeed find this approach to perform very well, but in the Some operational issues have to be addressed before the
general case it may be better to build a solution for RMO asatgorithms proposed in this paper can be applied: how the
collection of paths, rather than starting with an initiatmerk network knows the volume of traffic for each flow and how
flow. sophisticated routing decisions can be made in a distidbute

For both problems we aim ahinimizing the forwarding environment. These issues are relatively easy when a cen-
cost,measured as the number of paths or the number of nodesized controller is employed, as is usually the case for
traversed by the paths. Thus, we actually solve two paial the application scenarios considered above. A centdli
of problems: (a) DMO(p) and RMO(p) for minimizing thecontroller can make centralized routing decisions and can
number of paths; (b) DMO(n) and RMO(n) for minimizinginform each switch how to forward each flow. Other issues,
the number of nodes. such as how to divide a traffic flow into several paths and how

Throughout the paper we focus on the case where traff@ avoid congestion — e.g., by limiting the volume of traffic

forwarded on each path — are orthogonal to the algorithms we

1Given a network grapli:(V, E), a network flow is a real valued function Eresem and are therefore beyond the scope of this paper.
f: VXV — R that satisfies th_e capacity constraint, the skew symmetry, a The rest of this paper is oraanized as follows. In Section I
the conservation of flow [1]. Figure 2(c) shows an example oétavork flow pap g

for the graph in Figure 2(a). we illustrate in greater detail the DMO and RMO problems. In



Section Il we discuss related work. In Section IV we formall
define the DMO(p) problem, discuss its computational com-
plexity, and present approximation algorithms. In Sectibn

we do the same for the RMO(p) problem. In Section VI we a traffic demand —
address DMO and RMO while minimizing the number of between two nodes

a network flow that
nodes rather than the number of paths. The actual perfoenanc satisfies some
of the proposed algorithms is evaluated through simulation optimization criterion

Section VII. Finally, Section VIII concludes the paper. ,
paper’s scope

RMO DMO y
Il. DMO vs. RMO generation of a set of.simple decomposition of flow

DMO and RMO are illustrated in Figure 2. The bandwidth flow f;;h;;:ztn?t'sw into simple flow paths
cost of a flow on a link is the link cost times the volume
of flow it carries. For the sake of simplicity, let the cost of overhead measured by: overhead measured by:
each link in this example be 1. Figure 2(a) shows a network | RMO(p) RMO(n) DMO(p) DMO(n)
with the capacity (available bandwidth) of each link. First number number number number
suppose that the operator needs to accommodate a 1Gbts traffi| | of paths ofnodes| | ofpaths | | of nodes
demand from node to c. The most efficient routing solution Sec. V Sec. VLB Sec. IV Sec. VLA

is to use the shortest path— b — ¢. The bandwidth cost of

thls solution is 2. It |s_cheap and can be delivered USINGLR 3 The scope of this paper

single path. However, if the operator needs to accommodate

an 8Gb/s traffic demand between the same nodes, the shortest

path cannot carry it. When the main optimization criteriotois [ Problem [ Description |

minimize the forwarding cost, the operator can use thiditraf MO(p) Decompose a given network flow into a minimum number

demand as an input to RMO. Figure 2(b) shows a routing OP gf paths. , P e
- . ecompose a given network Tiow Into a set of paths travers-

the traffic dgmgnd over two paths of 4Gm57d—€—.f—g—.c DMO(n) ing a minimum number of nodes.

anda—h—i—j—k—I1—m—c. In this example, this solution For a given traffic demand (source, destination and band-

minimizes both the number of paths (2) and the number oRMO(p) width demand), find a minimum set of paths, which satisfjes

_ it.
no.des that cgrry thent + 8 = 14 (We count nOde&_ and ¢ For a given traffic demand (source, destination and band-
twice), but this is not always the case. The bandwidth cost|okmom) | width demand), find a set of paths, which satisfies this flow

this solution is4 « 5 + 4 x 7 = 48. while traversing a minimum number of nodes.
Now, suppose that the operator’s main optimization coteri TABLE |
is to minimize the bandwidth cost of carrying 8Gb/s fram DESCRIPTIONS OF THE PROBLEMS WE TACKLE IN THIS PAPER

to ¢. The operator can use a standard algorithm for finding a
minimum-cost network flow [1] whose output is illustrated in
Figure 2(c). The bandwidth cost of this network flow is 36.

The operator can use this network flow as an input to DMO 50 || symmarizes our main results from a computational

in order to Qecomposg it into a set of paths which .minimiz%%mplexity perspective. In this tabl& denotes the bandwidth
the forwarding cost. Figure 2(d) shows a decomposition ef tl?iemand b denotes the quantum of the edge capacitimst
network flow in Figure 2(c), which minimizes both the numbeﬂ‘é§ ’ ’

f paths (4 4 th b t nodes that th enotes the value of the optimal solution amds a tuning
of paths (4) an € number of nodes that carry theSe Pafigameter. For each problem the table indicates a lower

(22).' _ . _ bound on its approximation ratio and the approximatiororati
Figure 3 gives an overview of the scope of this paper, andlyieyeqd by the algorithms we present for it. Throughout the

Tablg | summarizes the four addrgssed problem_s. V_V'th reSpﬁﬁper we consider the minimization of the bandwidth cost as
to this table, we make the following three contributions:  he pandwidth efficiency criterion. However, our results ar
1) We are the first to define and solve the RMO(n) arabplicable to any other bandwidth utilization criteriomich
DMO(n) problems. We present for these problems aps throughput maximization or maximal load minimization.
proximation algorithms with performance guarantees.
2) We show that simple greedy decomposition algorithms
for DMO have an approximation ratio that is indepen-
dent of the size of the network.

[ problem | minimum bound[ approximation ratio]

DMO - O(log(B/b
3) We compare the performance of the RMO and DMO DMOEE; - OglgggB%;
algorithms. The purpose of this comparisc_)n is to b_etter RMO(p) 3/2 O(:22)
understand the trade-off between bandwidth efficiency RMO(M) 32—« o(B)
and forwarding cost. This comparison allows us to ABLE =

identify an algorithm that has the best performance for

. . OUR MAIN COMPUTATIONAL COMPLEXITY RESULTS
both objectives.



I1l. RELATED WORK the splittable version of this problem is optimally solvdthe
) _nhumber of paths is kept below + d, wherem is the number
To the best of our knowledge, no prior work deals withy; edges and is the number of demands.

miqimizing_ the number of nodes traversed by paths t_hatECMP (Equal Cost Multi-Path) is the standard approach
satisfy a given traffic demand (RMO(n)). Moreover, no priofo; ysing multi-paths in today’s IP networks. This concept
work deals with the decomposition of a given network floWas peen recently adopted for Ethernet networks, mainly for
while minimizing the number of nodes traversed by the patiS;iacenters (e.g., see [13]), and for MPLS. The idea is that
(DMO(n)). There are, however, a few works that address thg,en multiple best paths exist between a [source,desiifati
DMO(p) and RMO(p)_ probl_ems. We n_ot_e that if MINIMIZINGn 4 each switch/router can split the traffic between itstne
the_number of paths is _not important, it is easy to decompOﬁSpS, e.g., using random hashing, without creating loops.
a given network flow with at mosD(|£|) paths [1]. In [21], a concept known as MTCP (Multipath TCP) is
In [6], the RMO(p) problem is addressed. In this workpresented in the context of large datacenters. The idea is
the number of paths that satisfy a given bandwidth demafitht py exploring multiple paths simultaneously, MTCP will
is minimized while guaranteeing an upper bound on the l0gghd to both higher network utilization and fairer allooatiof
imposed on the network links. This work presents an algmithcapacity to flows. The main advantage of ECMP compared to
that may violate the maximum load bound. The extent @he algorithms proposed in this paper is that it does notirequ
the violation decreases as the number of paths increases. Fhcentralized controller. On the other hand, the algorithms
actual performance of the proposed algorithm is not StUdieﬁroposed in this paper can take advantage of multiple paths
The objective of [26] is to decompose a given (maximunthat are not necessarily of equal cost. In the simulatioticrec
flow into a minimum number of paths. The authors prove th@fe show that due to this advantage, our algorithms perform
the problem is NP-hard, present several heuristics, arlda&ea much better than ECMP.
their performance using simulations. A greedy algorith@tth  Another relevant branch of work deals with the embedding
iteratively decomposes the maximum flow path is shown & virtual networks into physical networks. In this line obvk,
achieve the best performance. The problem of decomposingha nodes and links of the virtual network have to be embedded
given flow into a minimum number of paths is also studied ignto those of the physical network. Thus, one can view a
[25]. That paper is mainly concerned with decompositios thyijrtual link as a traffic flow that has to be accommodated
produce independent paths. Such paths are iterativelyipeat! jnto the physical network. In most of the works that consider
by reducing to 0 the flow on at least one edge during each stgandwidth constraints on the physical links, such as [18],[
Such decompositions are shown to have an approximatian rafisingle physical network path is chosen for each virtua. lin
of n — 1 — 2=2n+1 wheren is the number of vertices and|n [27], a virtual link may be split over several physical st

m is the number of edges in the graph. Two decompositigiut no effort is made to minimize the number of such paths.
algorithms are evaluated: one is the greedy algorithm, hed t

other chooses the sh(_)rtest path during each step. As in [26], IV. DMO WITH PATH MINIMIZATION (DMO(P))

the greedy algorithm is shown to have the best performance. ) ] ] ] )

The flow decomposition problem has also been studied in!n this section we define the DMO(p) problem, discuss its

[14]. Its main contribution is an approximation algorithhmt Computational complexity, and propose approximation -algo

decomposes all but anfraction of a flow into at most Q(/¢2)  fithms. Throughout the paper, a network flow that does not

times the smallest possible number of decomposed paths_wolate the capacny_constramts is referred to_ ageasible
Another relevant branch of work deals with thesplittable N€twork flow In addition, we refer to a flow carried by a path

flow problem. This problem can be viewed as the rever@§ asingle-path flow

version of our RMO(p) problem. An upper bouridon the ~ Problem 1 [DMO(p)]:

number of paths is given and the objective is to maximize Instance: Let G = (V, E) be a directed graph. Lett €

the satisfied bandwidth demand [4], [16], [17]. In [4], the V be the source and target nodes. lfebe a feasible

directed graph version of this problem is proven to be NRthar ~ network flow froms to ¢ and f(e) be the bandwidth of

Moreover, it is proven that it cannot be approximated within [ carried on edge € F.

factor of 3/2. A 2-approximation algorithm is also presented. Objective: Find a minimum path decomposition of.

In [16], an optimal polynomial solution is given for the case A decomposition off is a setpy, ps,...,px of simple

where k is constant and the graph has a special property directed paths froms to ¢, where patlp; carries a single-

called bounded treewidth [22]. In addition, a polynomiahéi path flow of bandwidthu;, and on each edgethe sum

approximation is presented for the case whieiie part of the of bandwidths carried by the paths traversing the edge

input. In [17], a comprehensive study of the k-splittablevflo  equalsf(e).

problem is presented and proven to be NP-hard for undirectedUsing a reduction from the partition problem, the authors of

graphs. Moreover, it is proven that for a constatiie problem [26] prove that DMO(p) is NP-hard in the strong sense. Thus,

cannot be approximated within a factor of 5/6. Finally, it i& pseudo-polynomial algorithm that finds an optimal sohutio

also proven that the problem is NP-hard 2o £ < m—n+1, for it is unlikely to exist.

and that it is polynomially solvable for any othir Consider a greedy algorithm for DMO(p), which iteratively
Several papers address the problem of minimizing tliecomposes the remaining network flow at each step into the

maximum load while bounding the number of paths. In [20videst feasible single-path flow. This intuitive algorithmas



previously studied in [25] and [26], and proven to have aany network flowf® of value B?. This leads to
approximation ratio ofV’| —1— WR_# Our contribution 1 OPT

here is to prove that it also yields an approximation ratet th W < B‘i/b

does not depend on the size of the network. !

In the following discussion we assume that the edge cBach iteration reduce®’ by at leastb units of bandwidth.
pacities areb-integral, whereb is an integer greater tham Thus,
For instancep might be 1Kb/s or 1Mb/s. We show that the
approximation ratio for the greedy algorithm Isg(B/b), OPT < orT )
where B is the total bandwidth of the network flow. For B'/b = B/b—(i+1)
dense networks, this approximation ratio is tighter tham th The left side of this inequality can be viewed as the “cost”
one proposed in [25], sind&| — 1 — w might be in  of eachb bandwidth units routed by;. Summing up the cost
the order of several hundreds whileg(B/b) is in the order for all the sets ob bandwidth units inB results in the number
of 10. of paths chosen by the algorithm, denotedAsG. We now

As indicated above, the input network flow for DMO(p) isorder the sets ob bandwidth units according to the order
f, while f(e) is the value off carried over edge. Let f(p) of the algorithm steps during which they are routed. Mudtipl
denote the value of a single-path flow carried over pathe., sets that are routed at the same step are arbitrarily ordeoed

f(p) = min.c,{f(e)}. Let f\p be the network flow whose each sek of b bandwidth units routed at ste‘p% <
valueVe € p is f(e) — f(p) and its valueve ¢ p is f(e). Bkt holds. Hence, we get

The greedy algorithm iteratively finds a single path whose

. . . . . . B/b

bandwidth is maximal until it reaches a total bandwidthBbf  ArLG = Sl % = OPT-(1+ % T B%Q
or more. < OPT -log B/b,

Algorithm 1: (A greedy algorithm for DMO(p)) _

1) B B, fO« f, P ¢, i« 0. which concludes the proof. |

2) Repeat untilB? = 0:
a) Choose the patfp that can provide the largest V. RMO WITH PATH MINIMIZATION (RMO(P))
portion of f* from the source to the destination. In this section we formally define the RMO(p) problem.
This can be found using the extended Dijkstr@nlike DMO, here the network flow is not given in advance

algorithm [1] in timeO (|E|log(|V])). but only the traffic demand. We discuss the computational
b) B! — B — fi(p), f*t — f\p, P — PUp, complexity of RMO and propose approximation algorithms
1 — 1+ 1. with bounded performance guarantees.
3) ReturnP. O Problem 2 [RMO(p)]:

It is easy to see that the algorithm returns a feasible swluti  Instance: Let G = (V, E) be a directed graph. Lete) be
that carries a total bandwidth aB, because on each path the bandwidth capacity of edgec FE. Lets,t € V be the
p € P we can route a bandwidth gf (p), wherei is the step source and target nodes afdlc R be the bandwidth
during whichp is selected. demand froms to ¢.

During each step of the algorithm, the flow carried on at Objective: Find a minimum set of simple directed paths
least one edge irf* is reduced to 0. Thus, the number of  that carry together a feasible network flow Bffrom s
steps is bounded byE|. Since each step can be performed to ¢.

in time O(|E]), the total running time of Algorithm 1 is 15 golve RMO, we first construct a feasible network flow

O(|E[* log(|V1))- o . . _ that satisfies the bandwidth demand. After the flow is con-
Theorem 1:The approximation ratio of Algorithm 1 is gt cted. it is decomposed into paths.
O(log(B/b)). Theorem 2:RMO(p) is NP-complete.

Proof: The proof is similar in spirit to the one used in [15] Proof: We prove this by a reduction from DMO(p).
for the Minimum Set Cover problem. L€’ be the same &,  cgnsider an instance of DMO(p) that consists of a directed
but with edge capamyes scale_d down by a factob.ddenote graph G and a network flowf from s to ¢. We transform
the ngmber of paths in the op'u:nal solution QPT and each this instance into an instance of RMO(p) in the following
path in the optimal solution by}, wherel < j < OPT. Let .y e take the same graphi and set its edge capacities
p; be the path chosen by the algorithm in theh iteration. ¢ ,ch thatve e E, ¢(¢) = f(¢). We take the bandwidth
Since at each step the chosen path is the widest one, thenfgt.- 4B of RMO(p) to be equal to the value of flow

everyJ, ; P of DMO(p) and consider the same source and destination
Fipi) = f'(pj)- nodes. By construction, in the resulting graph there is only
Hence, one possible network flow of valuB from s to ¢. This flow
, orr , is exactly f of DMO(p). Hence, an optimal solution for the
OPT - f'(p;) = Y f'(p}) = B'/b. constructed RMO(p) instance is also an optimal solution for
j=1 the original DMO(p) instance. ]

The right inequality is due to the fact that the entire set of Theorem 3:RMO(p) cannot be approximated within a fac-
optimal paths can decompose the network fldvand hence tor of 3/2.



Proof: In [4], a reduction from SAT to the 2-splittable Proof: The scaled network has integral capacities. From
flow problem is shown. In the 2-splittable flow problem, th®bservation 1 it follows that the decomposition step preguc
objective is to find a maximum flow that can be decomposenh more thar{%] paths, which is the value of the flow found
into at most 2 paths. The reduction constructs a graph with Step 2. We now prove the lower bound on the bandwidth.
source and destination nodes such that a satisfiable SAT liet p1, ps,...,pr- be the set of paths in an optimal solution.
stance, for which there is a truth assignment that satidfigés a Each of them is a simple path frosto ¢. Each pathp; carries
clauses, yields a feasible flow wihpaths that carry togeth8r a single-path flow ofv;, where} . w; = B. Consider the same
flow units. In contrast, an unsatisfiable SAT instance, foicivh set of paths in the scaled network, and let each pattarry
there is no truth assignment that satisfies all its clauselsisya a single-path flow ofw] = {%J This scaled solution is a
feasible flow with2 paths that carry together onyflow units. feasible solution in the scaled network due to the following
In the latter case, the flow can be augmented by a third pétiequalities, which hold for every:
that carriesl flow unit. Consequently, an unsatisfiable SAT

instance yields a feasible flow &f paths that carry together c(e) = Z Wi

only 3 flow units. In both cases we have flows ®funits eepi

delivered by either or 3 paths, which implies that even for cle) =A+ Z w;, A >0

B = 3 it is NP-hard to determine whethéror 3 paths are e€p;

needed to accommodate the demand. Therefore, it is NP-hard cle) A Zeepl i

to approximate RMO(p) with a ratio df/2. [ ] 0 a o v A=>0
We now present an approximation algorithm for RMO(p), c(e) A Zeep ;

which uses the following observation: {aJ > LIJ + { a’ J yAZ>0
Observation 1:A network flow of value B in a network

with integral capacities can be decomposed in8j paths.O r(e)J > {Zeem wiJ

At first glance, this observation does not seem to be very a | @

helpful, becauseB may be larger than the numbeéF| of

edges in the network, which is a straightforward upper bound = | , ) )
pe first inequality holds because the optimal solution rbest

on an optimal solution. However, we can scale down the ed% o 7 L
capacities by a significant factor such that each unit of flo asible in the original graph. The second and third inetjesl

will be larger in relation to the total network flow. This sicej follow from the first one. The fourth equation holds because

process reduces the original demagthus making a solution L2 %l = 2= [l an.d the last one follows from the fourth.
of unit-flow paths more attractive. We also note that:

Algorithm 2 below uses a parameter for the scaling k*
process. The algorithm finds a network flow whose value is Zwi =B
slightly less thanB using no more thai £ paths. Choosing i=0
a largera would yield fewer paths whose total bandwidth is k w; B
smaller. o o
Algorithm 2: (A basic scaling algorithm for RMO(p)) i=0
1) Scale the capacities by, i.e.,Ve € E ¢/(e) — {% . i {ﬂJ - {B-‘
2) Find a network flowf whose value is not larger than —ltald |a
[£2] in the scaled network. K
o . . . Ww; B
3) Find any decomposition gf into paths. Let the resulting Z « {—J <a {l ,
. . « «
set of paths be” = p4, ..., px, Where pathp; carries a i=0
single-path flow off;. _ wherea [£1] is the value (bandwidth) of the flow returned
4) Use every patlp; € P to carry a single-path flow of by Algorithm 2. This can be lower bounded as follows:
af; in the original graph. O . .

can be arbitrary. Furthermore, we denote the computational| « ! !
complexity of this step byD(Flow-Alg). The total computa- &

tional complexity of Algorithm 2 isO(Flow-Alg + |E| - £),  _ Zwi —k-a=B—-k* a.
because the time complexity of the scaling process in Step 1 ;=

is linear in the size of the network and the time complexity of

the decomposition process in Step 30$|E| - £). Note that
the above time complexity is only pseudo-polynomial beeaus

k* k k
The network flow in Step 2 and its decomposition in Step 3 [Bw S Z Wil . Z Wi 4\ = Z (w; — a)
a =1 \; J B =1 ( ) =1

[ |
Corollary 1: Let k* be the number of paths in an optimal

- _ i . . .
it depends onB. Later on, we present Algorithm 3 Whosesomt'on' Fora = 775, Algorithm 2.produces a SOIUt'Onl with
running time Comp|exity is po|ynomia|_ at mostk*-g+1 paths whose value is no less tth(l — E)

Theorem 4:Algorithm 2 returns a set of at mo#lg] paths The parametes can be considered as a tuning parameter.
whose total bandwidth is at leagt — £* - «, wherek* is the As 3 increases, the value of the output flow of Algorithm 2
number of paths in an optimal solution. approaches the original demar#] but the number of paths



increases. Sincé* is not known in advance, it is not easyprocedures produce maximumnetwork flow betweers and
to find the value ofa. One can try all values ok*, and ¢ although the algorithm only requires that the bandwidth of
find the minimum one that yields a network flow whose totdhe initial network flow will be greater than or equal & We
bandwidth is larger tha3 - (1 — % . This requires running found that starting with a maximum flow gives the algorithm

Algorithm 2 on all possible values d*, which is O(|E]). greater flexibility in minimizing the number of paths. When

To improve the total time complexity, Algorithm 3 below use¥/€ evaluated similar procedures that limit the bandwidth of
the output returned by Algorithm 2 for a givénas the initial 1€ initial flow to B, the number of decomposed paths was

network flow when running Algorithm 2 wittk + 1. This larger. o -
is possible because the scaling parametedecreases ak The procedures for finding an initial network flow are as
follows.

increases. Thus, the capacities of the scaled networkasere
Algorithm 3: (A scaling approximation algorithm for
RMO(p) using a tuning parametes)

o The Maximum Widest Path Flow (WIDEprocedure:
Here, to find an initial feasible network flow, the proce-
dure iteratively augments theidest pathavailable from

D k1. s to t until the maximum flow is reached. If there are

2) Let f be an initial network flow such that(e) « 0 for multiple paths, one is selected arbitrarily. The rationale
everye € . behind this procedure is to greedily use the available

3) While k < |E| and the total value of is smaller than paths in the network. The running time of this procedure
B- (1 - %) do is O(|E[2log(|V]) 10g(Crnaz)) [1], Where Cpay is the

maximal capacity of an edge in the network.
o The Maximum Shortest Path Flow (SHORpjocedure:

&

a) Run Algorithm 2 with a scaling factar = -

N&

and u.sef as the initial network flow for Step 2 in Here, to find an initial feasible network flow, the pro-
Algorithm 2. . . .
, cedure iteratively augments thehortest pathavailable
b) Setf as the flow returned by Algorithm 2. from s to ¢ until the maximum flow is reached. If there
C) k—k+1 are multiple paths, one is selected arbitrarily. This is the
4) Return the set paths output by the last execution of well-known Edmonds-Karp algorithm [9] for finding a
Algorithm 2. O maximum flow. The rationale behind this procedure is to

use short paths, which traverse fewer nodes. The running
time of this procedure i®(|V||E]?).

The Maximum Shortest Widest Path Flow (S-WIDE)
procedure: This procedure is similar to WIDE, except that
when there is more than one path of maximum width in
any iteration, the shortest is chosen. The rationale behind
this procedure is to consume less bandwidth than WIDE
in each iteration, in the hope that the next iterations
will be able to choose wider paths. This procedure can
be implemented using a simple dynamic programming
algorithm with a running time o®(|V || E|? log(Cinaz))-

The Maximum Widest Shortest Path Flow (W-SHORT)
procedure: This procedure is similar to SHORT, except
that when there is more than one path of minimum length
in any iteration, the widest is chosen. This procedure
is expected to require fewer iterations than SHORT to
achieve the maximum flow. Hence, the decomposition
algorithm is likely to use fewer paths. This procedure can
be implemented using a simple dynamic programming
algorithm with a running time oO(|V||E|?).

The Maximum Width/Length Path Flow (WID/LEIgjo-
cedure: This procedure iteratively chooses the path with

Assuming that the capacities are integral, if Algorithm 3 is
invoked with 3 = B, the resulting value of the network flow
is guaranteed to be at leaBt However, there is no guarantee °
on the number of paths it uses.

The running time complexity of each iteration of Step 3 is
the time complexity of Algorithm 2. Since Algorithm 2 does
not need to construct a flow from scratch, its running time is
O(|E|-£). Since the number of iterations does not excigld
the running time complexity of Algorithm 3 i©(|E|? - £),

i.e., O(|E)? - k* - j3).

Algorithms 2 and 3 have theoretical value because they
have worst case performance guarantees. However, sionlati ®
results indicate that their actual average performanceois n
good. Specifically, when the bandwidth provided by the flow
is close toB, the number of paths increases very rapidly. We
therefore present another algorithm for RMO(p). While this
algorithm has no worst case performance guarantee, italactu
performance is shown later to be very good.

The main idea behind the new algorithm is to break the
RMO(p) solution into two stages. First, a network flow that
provides a bandwidth of at lea&t is found. Then, this flow
is decomposed using Algorithm 1.

Algorithm 4: (A 2-phase algorithm for RMO(p))

1) Find an initial feasible network flow of bandwidB or
more froms to ¢.

the largest width-length ratio. The rationale behind this
procedure is to have a better trade-off between the width
and length of the chosen paths than in the previous

procedures. This procedure can be implemented using a
dynamic programming algorithm with a running time of
O(IVIP[EP log*(IV]))-

2) Use Algorithm 1 for decomposing the flow into a
minimum number of paths that provide bandwidsh
3) Return the set of paths produced by Algorithm 1.0
We now present several procedures for finding an initial V!. DMO AND RMO WITH NODE MINIMIZATION
network flow. In Section VII we compare the performance A network operator often seeks to minimize the number of
of Algorithm 4 using each of these procedures. All of thaodes that carry the paths rather than the number of paths.



This is because each node traversal requires one entry in Wwith the greatest ratia.. Thus, for every;j u) > u; and
forwarding table of that node. In such a case, it may be bett;%r_ “nye > ub. - n,- hold. Therefore, i
to set up many short paths rather than fewer long ones. To this ~* Pi

end, we now change our optimization problem and view the _ OPT _
forwarding cost as the number of nodes that carry the paths. OPT -u,, > Z Ups Tz > BY/b. 1)
More formally, given a sefl of simple directed paths from J=1

s to t, the forwarding cost byl is measured by [p
where|p| is the number of nodes along the path

' The second inequality holds becausg My = fi(p;) and
because the entire set of optimal paths is a decomposition of
the network flowf and, therefore, of any network floy’.

A. DMO with Node Minimization (DMO(n)) This leads to
We now show that DMO(n) cannot be solved in polynomial

time. Then, we propose an approximation algorithm for it.

Theorem 5:DMO(n) is NP-complete.
Proof: We show this using a reduction from DMO(p)The rest of the proof is identical to the proof of Theorem 1.

to DMO(n). Given an instance of the former problem, we n

construct an instance of the latter. We set the source of

DMO(n) to be a new nodey’, which is connected te using B RMO with Node Minimization (RMO(n))

a chain of |[V||E| links whose capacity i$3. The network

flow of DMO(n) is carried over the new chain fromi to s,

and then tot as the network flow in the DMO(p) instance. Theorem 7:RMO(n) is NP-complete.

We now show that the minimum-node decomposition of the Th g A imat lqorithm for RMO
DMO(n) flow, P, has the same number of paths as the number eorem c.An a-approximation aigorithm  for ()

of paths in the minimum-path decomposition of the DMO(p\f'e'ds.an (yfre)-_approximation algorithm for RMO(p), where
flow, P. First, | P;| > |P;| must hold, because otherwigts © ~ OP'S a\]cr.let;arllydsmgll. din th ¢ of Th .

is not a minimum-path decomposition in DMO(p). Second, g rc()jo - 1he ri L:Cttll]o.n ;J.se tlﬂt le prf)ho ? th eo;((ajmd Cr?r!
|Py| > |P;| thenP; induces a decomposition for the DMO(n). € use_ again, but this m;e ?1 ength of the added chain
flow with a smaller number of nodes than that imposeddyy 'S M = VIIE| - o - (1/¢). If we have ana-approximation
(because each additional path in the DMO(n) decompositigwor'thm for RMO(n), we can apply it to the new flow
increases the number of nodes Hy||E|, which is greater constructed by the reduction. LetLG), and ALG,, be the

than the number of nodes of any decomposition in DMO(p), umber of paths and the number of nodes in the solutions

Therefore, an optimal solution for the DMO(p) instamcgog;j tl))y thhe two a;)pprm:matrl]on alé:jo[:thms. t@tpj;l’ ar:jd .
can be derived from an optimal solution for the construct n D€ the humoer o pat s an the number o nodes in
DMO(n) instance. the corresponding optimal solutions. From the reductios it

Algorithm 1 can be modified to approximate DMO(n) withObVIous that

the same approximation rati®(log(B/b)). The idea is to ALGn 2 ALG), - M.

choose in each iteration the path with the greatest rafigh the other hand, we have:

between the bandwidth it carries and the number of nodes

it traverses: ALG, <a-OPT, <a-(OPT,- M+ X),
Algorithm 5: (A greedy algorithm for DMO(n))

—_

_OPT ___ OPT
u, = Bijb T Bfb—(i+1)

Using a proof similar to that of Theorem 5 for DMO(n), it
can be shown that

1) BY B {0 P _ where X is the number of nodes in the minimum-node de-
2) = —B.f I; f Bl ¢ i 0. composition on the original graph, which is obviously small
) Repeat untilB* = 0: ~ than|V]||E|. The right inequality holds because in the proof
a) Choose the paitb from the source to the d?St'”a'of Theorem 5 we showed that the number of paths of the
tion for which f*(p)/n,, is maximum, wheref*(p)  minimum-node decomposition must be equal to the number
is the bandwidth op in f* andn,, is the number f paths in the minimum-path decomposition. Hence we have
of nodesp traverses.

b) B — B’ — fi(p), f* — f\p. P — PUp, (OPT, + %) > ALGY

71— 1+ 1.
3) ReturnP. . OPT,(a+¢€) > ALG,,.
Algorithm 5 has the same computational complexity as [ ]
Algorithm 1. From Theorems 3 and 8 we derive the following corollary:
Theorem 6:The approximation ratio of Algorithm 5 is Corollary 2: RMO(n) cannot be approximated within a
O(log(B/b)). factor of3/2 —e.

Proof: The proof is similar to that of Theorem 1. Denote We now present an approximation algorithm for RMO(n).
the number of paths in the optimal solution ®y°7" and each The algorithm is based on Algorithm 2 for RMO(p), while
path in the optimal solution by;, wherel < j < OPT. Let finding a minimum cost network flow before it is decomposed.
p; be the path chosen by the algorithm in ste@ndu,, be Clearly, Corollary 1 still holds for this minimum cost flow
the ratio f*(p)/n,. The path chosen in each step is the oneersion of the algorithm.



Since an algorithm for finding a minimum cost network

flow addresses the case where the edges, rather than the nodes
have a cost, we will consider the following simple reduction
Consider a network where every unit of flow on a nade
incurs a cost of.. Every nodev is transformed into two nodes,
v; andwv,, connected by an edge — v, with infinite capacity
and a cost ofl. All the other edges have zero cost. All edges
going intov will go into v; and all edges fromv will go out
from v,.

Algorithm 6: (A scaling algorithm for RMO(n))

1) Assign to each node in the network a costlof 0 02 0.4 0.6 08 1
2) Transform the network to one with costs on the edges Normalized Bandwidth Demand
(as described above).
3) Add a source node and an edge — s’ with capacity
B.
4) Fork=1...|E|.
a) Run a minimum cost network flow version of
Algorithm 2 with a scaling factorn = %.
b) Store the result ag;.

5) Return f; with minimum cost whose value is at least

Number of Decomposed Paths

(a) 100 nodes with average degree = 5

Number of Decomposed Paths

B (1 — %) |
Theorem 9:The solution returned by Algorithm 6 has a o
value greater tha® (1 — % and a cost smaller thask* N*, 0 02 0.4 0.6 0.8 1
wherek* and N* are the number of paths and the number of Normalized Bandwidth Demand
nodes in the optimal solution. (b) 100 nodes with average degree = 10
Proof

. . . N Fig. 4.  The number of paths found by Algorithm 4 with the vasou
Corollary 1 holds during the iteration whete= k*. Hence, procedures as a function of the normalized bandwidth demandaidous

the value offy- is > B gl — % . Let p1,pa,...,pr- be the sizes of network domains
set of paths in an optimal solution. The optimal scaled smut
is feasible. The value of this solution is the number of nades
P1, P2, - .., pre. Since every path; carrie§ a single-path flow 2) Use Algorithm 5 for decomposing the network flow into

of w;, wherey", w; = B, this value iszle Ipi| > max; |p;|. a set of paths that traverse a minimum number of nodes
In addition, the cost of the scaled optimal solution is and deliver together a bandwidth &
o 3) Return the set of paths produced by Algorithm 5.0
Z {%J Ipe| < {BJ max [p;|. The initial network flow can be found by one of the
o1 @ aj ¢ five procedures (WIDE, SHORT, S-WIDE, W-SHORT, and

Clearly, the cost offy- is less than that of the scaled optimalV/D/LEN) described in Section V.
solution. Hence,
VIl. SIMULATION STUDY
=k"-B. In this section we evaluate the performance of the algo-
rithms for RMO and DMO. We first examine the performance
i , of the two variants of the RMO algorithms. Then we evaluate
As in RMO(p), the above algorithm for RMO(n) has theofhe trade-off between the bandwidth cost and the forwarding

retical value. However, our simulation results indicatat tits cost of a network flow by comparing the performance of the

actual average performance is not good enough. Therefqi, o aigorithms to that of the DMO algorithms as they apply
we present an additional algorithm that has no worst Ca%€ 4 network flow of minimum bandwidth cost

performance.guargnte'e, .but a very gt_)od actual performance.We use the BRITE simulator [19] to simulate network
The algorithm is similar to Algorithm 4 presented f0ry,qin topologies according to the “preferential attachime

RMO(p). Its main idea is to break the RMO(n) solution int@, e of [7]. This model captures two important characteri

two stages. First, a network flow that provides a bandwidijys ot network topologies: incremental growth and preriéiee

of at least5 is found. Then, this flow is decomposed usingqnectivity of a new node to well-connected existing nodes

Alg?rith_rr;] 5. _ h lorithm These characteristics yield a power-law degree distobuti
Algorithm 7: (A 2-phase algorithm for RMO(n)) of the nodes. In addition, we also run our algorithms on

1) Find an initial feasible network flow of bandwidiB or actual ISP topologies, as inferred from the RocketFuelgatoj
more froms to t. [23]. These topologies reflect better the model presented in

frer _ k* - B max; [p;]
< —_—
N* max; |p;|
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[2]. For each topology, we generate a bandwidth demand
between a source and a destination. The characteristics of
the simulated topologies and the methods for choosing the
bandwidth demands are described for each setting. A networkg
topology together with a bandwidth demand are considered as;
one simulation instance. We apply the various algorithnms fo
each such instance.

10

A. Minimizing the Number of Paths

Number of Decompos
o

Figure 4 depicts the number of paths over which the 4r
required bandwidth can be delivered as a function of the 3 ‘ ‘ ‘
bandwidth demand for networks with 100 nodes whose av- 0 No?r:alized Distan‘i:Between Sogﬁeand Destinoa-lfison !
erage degree is 5 links (Figure 4(a)), and networks with 100
nodes whose average degree is 10 links (Figure 4(b)). Fbr ea. 5. The number of paths found by Algorithm 4 with the vasou
such network, the edge capacities are uniformly distrithiie procedures as a function of the distance between sourdiexatésn pairs
[0.5C, 1.5C]. C'is a normalizing factor for the edge capacities
and the volume of bandwidth demands. Tjexis of all the

graphs in Figure 4 represents the number of decomposed paths .
produced by the various algorithms. Theaxis represents the € number of paths using S-WIDE and the number of paths

normalized bandwidth demand frosrto ¢, i.e., the bandwidth USing SHORT increases: it is now roughly 50% compared to
demand divided by the value of the largest maximum netwofie 7 for a network with an average degree of 5 (Figure 4(a)).
flow between any pair of nodes in the network. For eachiS IS because the number of possible paths between any two
network instance and for each average bandwidth valye network nodes significantly increases. This allows S-WIDE

we generate 100 instances of bandwidth demands unifornif, find wider augmenting paths. Hence, the network flow is
distributed on the interval0.9B,1.1B]. For each demand, constructed with fewer iterations, which is translated iat
the source and destination nodes are uniformly selected frMaller number of decomposed paths.
among the network nodes, and the five variants of Algorithm 4In Figure 5 we examine how the distance between the
are executed. As a benchmark, we also simulate the welpurce and destination influences the number of decomposed
known equal cost multi-path (ECMP) algorithm. For ECMRpaths. As in Figure 4, thg-axis represents the number of
the bandwidth of a traffic flow is equally divided between theecomposed paths for each procedure. Traxis represents
paths whose length/cost are minimum. If the total bandwidtAe distance between the source and destination divideleby t
of the least-cost paths is insufficient, the set of seconstdeadiameter of the network. The network has 100 nodes and an
cost paths is used for the remaining bandwidth, and so onaverage degree of 5. We generate 100 network instancesof thi
As clearly indicated by all the graphs in Figure 4, ECMBize. For each instance we generate 100 bandwidth demands.
always produces more paths than Algorithm 4 under any fidv@r each demand, the distance between the source and the
construction scheme. In addition, it is evident that Algor 4  destination is assigned a given distance value with% vari-
minimizes the number of paths needed for delivering trdion. The average normalized bandwidth for each demand is
requested bandwidth when it uses S-WIDE in Step 1. \Q-6. For all of the procedures, the number of decomposed path
SHORT performs better than SHORT because it produc@sreases with the distance. Consequently, the capaoitibe
network flows with larger average bandwidth on each edgeaths between the source and destination decrease. Tkbs, ea
This allows Algorithm 1, when it is invoked in Step 2 ofdecomposed path can carry less bandwidth on the average. The
Algorithm 4, to choose wider, and consequently fewer, patHumber of decomposed paths increases more moderately for
S-WIDE and WID/LEN perform better than WIDE becaus&VIDE, S-WIDE, and WID/LEN. This is because the source-
they take into account the length of the paths. In generglestination distance has a smaller effect on the length ef th
it is better to choose wider paths than shorter ones whafflest path between them than on the length of the shortest
generating a network flow, regardless of the network size aRath between them.
node average degree. Furthermore, the minimum link capacity in the generated
It is evident from Figure 4 that he number of decomposeatetworks is 40. This is the reason for the steep change
paths increases linearly with the bandwidth demand. Forira bucket 40-50. Since the bandwidth carried by a path is
network with 100 nodes and an average degree of 10 (Fa@pminated by the minimum of link capacities on the paths the
ure 4(b)), the number of decomposed paths as well as the slopeve for the SHORT procedure between 40 and 140 indeed
of the curves are almost doubled compared to that of networkesembles the probability function of the minimum of the
with an average degree of 5 (Figure 4(a)). This is becaugeiform random variables. The S-WIDE curve has a different
we use larger bandwidth demands (recall that the bandwidthape since it seeks to maximize the path bandwidth. The
demand shown in the graphs is normalized to the large3tWIDE curve peaks around the mean of the link capacity.
maximum network flow in the network, which increases witlBelow 40 are the paths whose bandwidth is the residual
the node degree). In addition, the relative difference betw capacity of links on which other paths selected in earlier
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Number of Decomposed Paths
Number of Decomposed Paths
S

4 e 1 25

35

. . . . . . . . .
0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6
Bandwidth Demand Bandwidth Demand

(a) Exodus ISP, 80 routers with average degree of 1.8 (b) Telstra ISP, 115 routers with average degree of 1.3

Fig. 6. The number of paths found by Algorithm 4 with the vasqarocedures for real ISP topologies

iteration pass.

To validate the results from the synthetic graphs, we ptesen 80 —wipE ——
in Figure 6 results for real AS topologies, as inferred frdva t 70 [ SHORT
RocketFuel project [23]. These topologies reflect the model 60 , GEMP

presented in [2], which may better represent a router-lksfel
topology. We used the following network topologies:

1) Exodus ISP, which consists of 80 routers with average
degree of 1.8 20|
2) Telstra ISP, which consists of 115 routers with average wl
degree of 1.3

The bandwidth demands are generated as described for Fig. 4.
Figure 6 shows the performance of Algorithm 4 with the
various procedures. We can see that the relative perfonanc
rank is the same as for the synthetic graphs (Figure 4) that re
flect the preferential attachment model. In the Telstra lmpo

50
40
30

Number of Nodes

0 0.2 0.4 0.6 0.8 1
Normalized Bandwidth Demand

(&) Num. nodes = 100, average degree = 5

140

(Figure 6(b)), the performance differences are smalleabse SHaDE —
of its lower link degree, which substantially reduces théhpa . 1201 swibe
diversity in the network. £ 100 W-SHORT
o WID/LEN
“Zs 80 I
B. Minimizing the Number of Nodes T 60t
We now examine the performance of Algorithm 7, the goal § 40 t
of which is to minimize the number of nodes. Figure 7 depicts 20| .
the number of nodes traversed by all of the paths that deliver ' ‘ ‘ ‘
the required bandwidth as a function of the bandwidth demand %0 0.2 04 06 038 1
for the network domains considered in Figure 4. The network Normalized Bandwidth Demand
instances and bandwidth demands are generated as described (b) Num. nodes = 100, average degree = 10
for Fig. 4.

. . . Fig. 7. The number of nodes found by Algorithm 7 with the vasiou
It is clear that Algorithm 7 gives the best performanCSrocedures as a function of the normalized bandwidth demandaidous

when it uses WID/LEN for finding an initial network flow. sizes of network domains
S-WIDE, which was shown to yield the smallest number
of paths, produces solutions with roughly 20% more nodes

domain sizes. curve, in Figure 7 it performs quite well.
The advantage of WID/LEN over S-WIDE indicates that the

number of nodes can be better minimized by preferring shorte . ,
paths over wider ones, even though this usually increases fy The Trade-Off Between Bandwidth Cost and Forwarding
total number of paths. This insight is supported by the tesuf-ost

of WIDE, which yields the worst performance. A comparison We now study the trade-off between the bandwidth cost and
of the ECMP performance curves in Figures 4 and 7 givéise forwarding cost of a network flow. To this end, we focus
further evidence that shortest paths better minimize timet@r  on the following three questions:
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o What is the extra forwarding cost when the main targen the performance of the algorithm. WID/LEN gave the best
trade-off between bandwidth cost and forwarding overhead.
o What is the extra bandwidth cost when the main target

is minimizing the bandwidth cost?

is minimizing the forwarding cost?
o How do the various procedures perform with respect
this trade-off?

to
(1]

Finding the minimum-cost network flow in general networks

is a well-studied problem [1], [9], [12]. In what follows wesel
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