
1

Optimizing Data Plane Resources for Multi-Path
Flows

Gabi Nakibly Reuven Cohen Liran Katzir

Abstract—In many modern networks, such as datacenters,
optical networks, and MPLS, the delivery of a traffic flow with
a certain bandwidth demand over a single network path is
either not possible or not cost effective. In these cases, it is very
often possible to improve the network’s bandwidth utilization by
splitting the traffic flow over multiple efficient paths. While using
multiple paths for the same traffic flow increases the efficiency
of the network, it consumes expensiveforwarding resources from
the network nodes, such as TCAM entries of Ethernet/MPLS
switches and wavelengths/lightpaths of optical switches. In this
paper we define several problems related to splitting a traffic
flow over multiple paths while minimizing the consumption of
forwarding resources, and present efficient algorithms for solving
these problems.

I. I NTRODUCTION

In computer networks, a traffic flow is a flow of data
packets sharing the same source and destination network nodes
(switches or routers). A traffic flow can often be split into
multiple traffic subflows, usually using information in the
packet header, such as the IP/MAC addresses, the Port fields
in the UDP/TCP header, or the VLAN number. Because these
traffic subflows are generated by different applications, oreven
by different hosts, it is possible to route each of them over a
different network path. Using multiple paths for a traffic flow
is useful when routing over a single path is impossible or too
expensive.

A simple example of the advantages of multipath routing is
illustrated in Figure 1. Suppose that we would like to route a
2Gb/s traffic flow froma to f . Suppose that the default (short-
est) path,a → b → f has only 1 Gb/s available bandwidth,
and the other (longer, and therefore less cost effective) path has
only 1.5 Gb/s available bandwidth. In this case, the traffic flow
can be split such that 1 Gb/s will be routed over the upper path
and 1 Gb/s over the lower path. But splitting a traffic flow over
multiple paths consumes extra “forwarding resources” from
the network nodes. These resources are proportional to the
number of paths (2 in Figure 1), and the number of nodes/links
traversed by these paths (6 links in Figure 1), as we now
describe for several network technologies:

1. Optical Networks: In optical networks, each path is
an optical,λ-switched, lightpath. Such lightpaths can be set
up and taken down in real time. The dominating cost in the
setup of a lightpath is of the transponders at the two ends of
it, which convert optical to electronic signals and vice versa
(see [5], [11], [28] and references therein). Therefore, network

The authors are with the Department of Computer Science, Technion, Haifa,
Israel. G. Nakibly is also with the National Research & Simulation Center at
Rafael Advanced Defense Systems.

a

b

c d e

f

Fig. 1. A simple example of a multi-path flow

operators usually seek to minimize the number of established
lightpaths. In addition, every lightpath requires a wavelength
on each optical link it traverses. Since wavelengths are also a
scarce resource, it is often desirable to minimize not only the
number of lightpaths, but also the number of nodes traversed
by each one.

2. Ethernet switches in datacenters:Ethernet is the de-
fault technology for connecting hardware in datacenters. Net-
work operators can establish multiple paths between source-
destination pairs in their datacenters. However, each path
requires an entry in the expensive (TCAM) forwarding table
of each switch it traverses. According to [8], a large network
may require hundreds of thousands of path flow table entries
at each switch, while commodity switches have much smaller
flow tables. In [24] it is also indicated that datacenter scaling
is made difficult by the forwarding table size, which increases
linearly with the size of the system. In addition to the
forwarding cost associated with every traversed node, there
is an extra forwarding cost associated with every path. The
source of this extra cost can be found in the high speed NIC
(Network Interface Card) used to connect the servers between
which most datacenter traffic is transmitted. The NICs have a
very limited forwarding table, much smaller than a typical
switch. The NIC divides a traffic flow into multiple paths
using a classification logic, which consumes one entry in the
forwarding table for every path over which packets of this
traffic flow are forwarded.

3. MPLS networks: MPLS Traffic Engineering (MPLS-
TE) is used today by most network operators for building
an IP infrastructure based on traffic engineering and QoS
(Quality of Service) considerations [3]. An ingress MPLS
router establishes an MPLS LSP (Label Switched Path) over a
selected route and uses it to deliver the traffic flow through the
network. The challenge of minimizing the number of LSPs and
the number of nodes they traverse is similar to that described
above for Ethernet. Each LSP requires one entry in the costly
forwarding table of the ingress router and every intermediate
router.

2

a b c

d e f g

h ji k l m

2

2

2

2

(c) A minimum cost network flow (cost is 36)

a b c

d e f g

h ji k l m

2

2

2

2
4

(b) A minimum set of path (flow cost is 48)

a b c

d e f g

h ji k l m

4

4

a b c

d e f g

2 8

4

2

4 4

4

4

4

4

44 4 4 4
h ji k l m

(a) A network with available bandwidth on each link

RMO

DMO

a minimum number of paths

(d) Decomposing the minimum cost flow into

Fig. 2. An example for the two optimization problems consideredin this paper, for accommodating an 8Mb/s traffic flow from nodea to nodec

We study the problem of reducing the forwarding cost in two
different cases. In the first case, calledDMO (Decomposition
with Minimum Overhead), we are given a traffic demand
(source, destination and bandwidth demand) and a network
flow1 that satisfies the bandwidth demand between the source
and destination nodes. This network flow is predetermined
according to some bandwidth efficiency criterion, such as
bandwidth cost, and the problem is to break it into a set
of simple paths between the source and destination nodes,
while minimizing the number of paths or the number of
nodes they traverse. In the second case, calledRMO (Routing
with Minimum Overhead), only a traffic demand (source,
destination and bandwidth demand) is given, and the problem
is to find a set of simple paths between the source and
destination nodes over which the bandwidth demand can be
delivered, while minimizing the number of paths or the number
of nodes they traverse. At first glance it seems that RMO
should be solved using a solution for DMO as a sub-routine.
We indeed find this approach to perform very well, but in the
general case it may be better to build a solution for RMO as a
collection of paths, rather than starting with an initial network
flow.

For both problems we aim atminimizing the forwarding
cost,measured as the number of paths or the number of nodes
traversed by the paths. Thus, we actually solve two pairs
of problems: (a) DMO(p) and RMO(p) for minimizing the
number of paths; (b) DMO(n) and RMO(n) for minimizing
the number of nodes.

Throughout the paper we focus on the case where traffic

1Given a network graphG(V, E), a network flow is a real valued function
f : V xV → R that satisfies the capacity constraint, the skew symmetry, and
the conservation of flow [1]. Figure 2(c) shows an example of a network flow
for the graph in Figure 2(a).

flows are admitted one by one. While there are scenarios
where the operator can admit many traffic flows at the same
time, we believe that the “one traffic flow at a time” scenario
is very important for the following three reasons. First, in
many relevant applications, traffic flows are admitted for a
pre-specified duration. The starting times and due dates of the
flows are usually independent. Thus, when a new traffic flow
has to be admitted, previous traffic flows already use their own
paths. Second, an operator may decide to set up a new set of
paths between two nodes in order to respond better to periodic
congestion. This is an on-line decision, which is captured by
the “one traffic flow at a time” approach. Third, when a link
or a node fails, each path that crosses this link or node has to
be re-routed, which is again an on-line problem. Our goal in
this work is thus to minimize the forwarding cost associated
with the delivery of each traffic flow, and not to set an upper
bound (in each switch) on the total forwarding cost associated
with all traffic flows.

Some operational issues have to be addressed before the
algorithms proposed in this paper can be applied: how the
network knows the volume of traffic for each flow and how
sophisticated routing decisions can be made in a distributed
environment. These issues are relatively easy when a cen-
tralized controller is employed, as is usually the case for
all the application scenarios considered above. A centralized
controller can make centralized routing decisions and can
inform each switch how to forward each flow. Other issues,
such as how to divide a traffic flow into several paths and how
to avoid congestion – e.g., by limiting the volume of traffic
forwarded on each path – are orthogonal to the algorithms we
present, and are therefore beyond the scope of this paper.

The rest of this paper is organized as follows. In Section II
we illustrate in greater detail the DMO and RMO problems. In

3

Section III we discuss related work. In Section IV we formally
define the DMO(p) problem, discuss its computational com-
plexity, and present approximation algorithms. In SectionV
we do the same for the RMO(p) problem. In Section VI we
address DMO and RMO while minimizing the number of
nodes rather than the number of paths. The actual performance
of the proposed algorithms is evaluated through simulations in
Section VII. Finally, Section VIII concludes the paper.

II. DMO VS. RMO

DMO and RMO are illustrated in Figure 2. The bandwidth
cost of a flow on a link is the link cost times the volume
of flow it carries. For the sake of simplicity, let the cost of
each link in this example be 1. Figure 2(a) shows a network
with the capacity (available bandwidth) of each link. First,
suppose that the operator needs to accommodate a 1Gb/s traffic
demand from nodea to c. The most efficient routing solution
is to use the shortest patha − b − c. The bandwidth cost of
this solution is 2. It is cheap and can be delivered using a
single path. However, if the operator needs to accommodate
an 8Gb/s traffic demand between the same nodes, the shortest
path cannot carry it. When the main optimization criterion isto
minimize the forwarding cost, the operator can use this traffic
demand as an input to RMO. Figure 2(b) shows a routing of
the traffic demand over two paths of 4Gb/s:a−d−e−f−g−c
anda−h− i−j−k− l−m−c. In this example, this solution
minimizes both the number of paths (2) and the number of
nodes that carry them:6 + 8 = 14 (we count nodesa and c
twice), but this is not always the case. The bandwidth cost of
this solution is4 ∗ 5 + 4 ∗ 7 = 48.

Now, suppose that the operator’s main optimization criterion
is to minimize the bandwidth cost of carrying 8Gb/s froma
to c. The operator can use a standard algorithm for finding a
minimum-cost network flow [1] whose output is illustrated in
Figure 2(c). The bandwidth cost of this network flow is 36.
The operator can use this network flow as an input to DMO
in order to decompose it into a set of paths which minimizes
the forwarding cost. Figure 2(d) shows a decomposition of the
network flow in Figure 2(c), which minimizes both the number
of paths (4) and the number of nodes that carry these paths
(22).

Figure 3 gives an overview of the scope of this paper, and
Table I summarizes the four addressed problems. With respect
to this table, we make the following three contributions:

1) We are the first to define and solve the RMO(n) and
DMO(n) problems. We present for these problems ap-
proximation algorithms with performance guarantees.

2) We show that simple greedy decomposition algorithms
for DMO have an approximation ratio that is indepen-
dent of the size of the network.

3) We compare the performance of the RMO and DMO
algorithms. The purpose of this comparison is to better
understand the trade-off between bandwidth efficiency
and forwarding cost. This comparison allows us to
identify an algorithm that has the best performance for
both objectives.

between two nodes
a network !ow that

satis"es some
optimization criterion

DMORMO

RMO(p) RMO(n) DMO(p) DMO(n)

a tra#c demand

number

of paths

number

of nodes

number

of nodes

number

of paths

overhead measured by: overhead measured by:

Sec. VI.BSec. V

paper’s scope

 generation of a set of simple

!ow paths that satisfy

the demand

Sec. VI.ASec. IV

decomposition of !ow
into simple !ow paths

Fig. 3. The scope of this paper

Problem Description

DMO(p)
Decompose a given network flow into a minimum number
of paths.

DMO(n)
Decompose a given network flow into a set of paths travers-
ing a minimum number of nodes.

RMO(p)
For a given traffic demand (source, destination and band-
width demand), find a minimum set of paths, which satisfies
it.

RMO(n)
For a given traffic demand (source, destination and band-
width demand), find a set of paths, which satisfies this flow
while traversing a minimum number of nodes.

TABLE I
DESCRIPTIONS OF THE PROBLEMS WE TACKLE IN THIS PAPER

Table II summarizes our main results from a computational
complexity perspective. In this table,B denotes the bandwidth
demand,b denotes the quantum of the edge capacities,opt
denotes the value of the optimal solution andα is a tuning
parameter. For each problem the table indicates a lower
bound on its approximation ratio and the approximation ratio
achieved by the algorithms we present for it. Throughout the
paper we consider the minimization of the bandwidth cost as
the bandwidth efficiency criterion. However, our results are
applicable to any other bandwidth utilization criterion, such
as throughput maximization or maximal load minimization.

problem minimum bound approximation ratio

DMO(p) - O(log(B/b))
DMO(n) - O(log(B/b))

RMO(p) 3/2 O(B

opt·α)

RMO(n) 3/2 − ǫ O(B

α
)

TABLE II
OUR MAIN COMPUTATIONAL COMPLEXITY RESULTS

4

III. R ELATED WORK

To the best of our knowledge, no prior work deals with
minimizing the number of nodes traversed by paths that
satisfy a given traffic demand (RMO(n)). Moreover, no prior
work deals with the decomposition of a given network flow
while minimizing the number of nodes traversed by the paths
(DMO(n)). There are, however, a few works that address the
DMO(p) and RMO(p) problems. We note that if minimizing
the number of paths is not important, it is easy to decompose
a given network flow with at mostO(|E|) paths [1].

In [6], the RMO(p) problem is addressed. In this work,
the number of paths that satisfy a given bandwidth demand
is minimized while guaranteeing an upper bound on the load
imposed on the network links. This work presents an algorithm
that may violate the maximum load bound. The extent of
the violation decreases as the number of paths increases. The
actual performance of the proposed algorithm is not studied.

The objective of [26] is to decompose a given (maximum)
flow into a minimum number of paths. The authors prove that
the problem is NP-hard, present several heuristics, and evaluate
their performance using simulations. A greedy algorithm that
iteratively decomposes the maximum flow path is shown to
achieve the best performance. The problem of decomposing a
given flow into a minimum number of paths is also studied in
[25]. That paper is mainly concerned with decompositions that
produce independent paths. Such paths are iteratively produced
by reducing to 0 the flow on at least one edge during each step.
Such decompositions are shown to have an approximation ratio
of n − 1 − n2−3n+1

m , wheren is the number of vertices and
m is the number of edges in the graph. Two decomposition
algorithms are evaluated: one is the greedy algorithm, and the
other chooses the shortest path during each step. As in [26],
the greedy algorithm is shown to have the best performance.
The flow decomposition problem has also been studied in
[14]. Its main contribution is an approximation algorithm that
decomposes all but anǫ-fraction of a flow into at most O(1/ǫ2)
times the smallest possible number of decomposed paths.

Another relevant branch of work deals with thek-splittable
flow problem. This problem can be viewed as the reverse
version of our RMO(p) problem. An upper boundk on the
number of paths is given and the objective is to maximize
the satisfied bandwidth demand [4], [16], [17]. In [4], the
directed graph version of this problem is proven to be NP-hard.
Moreover, it is proven that it cannot be approximated withina
factor of 3/2. A 2-approximation algorithm is also presented.
In [16], an optimal polynomial solution is given for the cases
where k is constant and the graph has a special property
called bounded treewidth [22]. In addition, a polynomial time
approximation is presented for the case wherek is part of the
input. In [17], a comprehensive study of the k-splittable flow
problem is presented and proven to be NP-hard for undirected
graphs. Moreover, it is proven that for a constantk the problem
cannot be approximated within a factor of 5/6. Finally, it is
also proven that the problem is NP-hard for2 ≤ k ≤ m−n+1,
and that it is polynomially solvable for any otherk.

Several papers address the problem of minimizing the
maximum load while bounding the number of paths. In [20],

the splittable version of this problem is optimally solved.The
number of paths is kept belowm+d, wherem is the number
of edges andd is the number of demands.

ECMP (Equal Cost Multi-Path) is the standard approach
for using multi-paths in today’s IP networks. This concept
has been recently adopted for Ethernet networks, mainly for
datacenters (e.g., see [13]), and for MPLS. The idea is that
when multiple best paths exist between a [source,destination]
pair, each switch/router can split the traffic between its next
hops, e.g., using random hashing, without creating loops.
In [21], a concept known as MTCP (Multipath TCP) is
presented in the context of large datacenters. The idea is
that by exploring multiple paths simultaneously, MTCP will
lead to both higher network utilization and fairer allocation of
capacity to flows. The main advantage of ECMP compared to
the algorithms proposed in this paper is that it does not require
a centralized controller. On the other hand, the algorithms
proposed in this paper can take advantage of multiple paths
that are not necessarily of equal cost. In the simulation section
we show that due to this advantage, our algorithms perform
much better than ECMP.

Another relevant branch of work deals with the embedding
of virtual networks into physical networks. In this line of work,
the nodes and links of the virtual network have to be embedded
onto those of the physical network. Thus, one can view a
virtual link as a traffic flow that has to be accommodated
into the physical network. In most of the works that consider
bandwidth constraints on the physical links, such as [10], [18],
a single physical network path is chosen for each virtual link.
In [27], a virtual link may be split over several physical paths,
but no effort is made to minimize the number of such paths.

IV. DMO WITH PATH M INIMIZATION (DMO(P))

In this section we define the DMO(p) problem, discuss its
computational complexity, and propose approximation algo-
rithms. Throughout the paper, a network flow that does not
violate the capacity constraints is referred to as afeasible
network flow. In addition, we refer to a flow carried by a path
as asingle-path flow.

Problem 1 [DMO(p)]:
Instance: Let G = (V,E) be a directed graph. Lets, t ∈
V be the source and target nodes. Letf be a feasible
network flow froms to t and f(e) be the bandwidth of
f carried on edgee ∈ E.

Objective: Find a minimum path decomposition off .
A decomposition off is a setp1, p2, . . . , pk of simple
directed paths froms to t, where pathpi carries a single-
path flow of bandwidthwi, and on each edgee the sum
of bandwidths carried by the paths traversing the edge
equalsf(e).

Using a reduction from the partition problem, the authors of
[26] prove that DMO(p) is NP-hard in the strong sense. Thus,
a pseudo-polynomial algorithm that finds an optimal solution
for it is unlikely to exist.

Consider a greedy algorithm for DMO(p), which iteratively
decomposes the remaining network flow at each step into the
widest feasible single-path flow. This intuitive algorithmwas

5

previously studied in [25] and [26], and proven to have an
approximation ratio of|V |−1− |V |2−3|V |+2

|E| . Our contribution
here is to prove that it also yields an approximation ratio that
does not depend on the size of the network.

In the following discussion we assume that the edge ca-
pacities areb-integral, whereb is an integer greater than0.
For instance,b might be 1Kb/s or 1Mb/s. We show that the
approximation ratio for the greedy algorithm islog(B/b),
where B is the total bandwidth of the network flow. For
dense networks, this approximation ratio is tighter than the
one proposed in [25], since|V |−1− |V |2−3|V |+2

|E| might be in
the order of several hundreds whilelog(B/b) is in the order
of 10.

As indicated above, the input network flow for DMO(p) is
f , while f(e) is the value off carried over edgee. Let f(p)
denote the value of a single-path flow carried over pathp, i.e.,
f(p) = mine∈p{f(e)}. Let f\p be the network flow whose
value∀e ∈ p is f(e) − f(p) and its value∀e /∈ p is f(e).

The greedy algorithm iteratively finds a single path whose
bandwidth is maximal until it reaches a total bandwidth ofB
or more.

Algorithm 1: (A greedy algorithm for DMO(p))
1) B0 ← B, f0 ← f , P ← φ, i ← 0.
2) Repeat untilBi = 0:

a) Choose the pathp that can provide the largest
portion of f i from the source to the destination.
This can be found using the extended Dijkstra
algorithm [1] in timeO (|E| log(|V |)).

b) Bi+1 ← Bi − f i(p), f i+1 ← f i\p, P ← P ∪ p,
i ← i + 1.

3) ReturnP . 2

It is easy to see that the algorithm returns a feasible solution
that carries a total bandwidth ofB, because on each path
p ∈ P we can route a bandwidth off i(p), wherei is the step
during whichp is selected.

During each step of the algorithm, the flow carried on at
least one edge inf i is reduced to 0. Thus, the number of
steps is bounded by|E|. Since each step can be performed
in time O(|E|), the total running time of Algorithm 1 is
O(|E|2 log(|V |)).

Theorem 1:The approximation ratio of Algorithm 1 is
O(log(B/b)).

Proof: The proof is similar in spirit to the one used in [15]
for the Minimum Set Cover problem. LetG′ be the same asG,
but with edge capacities scaled down by a factor ofb. Denote
the number of paths in the optimal solution byOPT and each
path in the optimal solution byp∗j , where1 ≤ j ≤ OPT . Let
pi be the path chosen by the algorithm in thei-th iteration.
Since at each step the chosen path is the widest one, then for
every j,

f i(pi) ≥ f i(p∗j).

Hence,

OPT · f i(pi) ≥

OPT
∑

j=1

f i(p∗j) ≥ Bi/b.

The right inequality is due to the fact that the entire set of
optimal paths can decompose the network flowf and hence

any network flowf i of valueBi. This leads to

1

f i(pi)
≤

OPT

Bi/b
.

Each iteration reducesBi by at leastb units of bandwidth.
Thus,

OPT

Bi/b
≤

OPT

B/b − (i + 1)
.

The left side of this inequality can be viewed as the “cost”
of eachb bandwidth units routed bypi. Summing up the cost
for all the sets ofb bandwidth units inB results in the number
of paths chosen by the algorithm, denoted asALG. We now
order the sets ofb bandwidth units according to the order
of the algorithm steps during which they are routed. Multiple
sets that are routed at the same step are arbitrarily ordered. For
each setk of b bandwidth units routed at stepi, OPT

B/b−(i+1) ≤
OPT

B/b−(k+1) holds. Hence, we get

ALG =
∑B/b

k=1
OPT

B/b−(k+1) = OPT · (1 + 1
2 + · · · + 1

B/b)

≤ OPT · log B/b,

which concludes the proof.

V. RMO WITH PATH M INIMIZATION (RMO(P))

In this section we formally define the RMO(p) problem.
Unlike DMO, here the network flow is not given in advance
but only the traffic demand. We discuss the computational
complexity of RMO and propose approximation algorithms
with bounded performance guarantees.

Problem 2 [RMO(p)]:
Instance: Let G = (V,E) be a directed graph. Letc(e) be
the bandwidth capacity of edgee ∈ E. Let s, t ∈ V be the
source and target nodes andB ∈ R+ be the bandwidth
demand froms to t.

Objective: Find a minimum set of simple directed paths
that carry together a feasible network flow ofB from s
to t.

To solve RMO, we first construct a feasible network flow
that satisfies the bandwidth demand. After the flow is con-
structed, it is decomposed into paths.

Theorem 2:RMO(p) is NP-complete.
Proof: We prove this by a reduction from DMO(p).

Consider an instance of DMO(p) that consists of a directed
graph G and a network flowf from s to t. We transform
this instance into an instance of RMO(p) in the following
way. We take the same graphG and set its edge capacities
such that∀e ∈ E, c(e) = f(e). We take the bandwidth
demandB of RMO(p) to be equal to the value of flowf
of DMO(p) and consider the same source and destination
nodes. By construction, in the resulting graph there is only
one possible network flow of valueB from s to t. This flow
is exactlyf of DMO(p). Hence, an optimal solution for the
constructed RMO(p) instance is also an optimal solution for
the original DMO(p) instance.

Theorem 3:RMO(p) cannot be approximated within a fac-
tor of 3/2.

6

Proof: In [4], a reduction from SAT to the 2-splittable
flow problem is shown. In the 2-splittable flow problem, the
objective is to find a maximum flow that can be decomposed
into at most 2 paths. The reduction constructs a graph with
source and destination nodes such that a satisfiable SAT in-
stance, for which there is a truth assignment that satisfies all its
clauses, yields a feasible flow with2 paths that carry together3
flow units. In contrast, an unsatisfiable SAT instance, for which
there is no truth assignment that satisfies all its clauses, yields a
feasible flow with2 paths that carry together only2 flow units.
In the latter case, the flow can be augmented by a third path
that carries1 flow unit. Consequently, an unsatisfiable SAT
instance yields a feasible flow of3 paths that carry together
only 3 flow units. In both cases we have flows of3 units
delivered by either2 or 3 paths, which implies that even for
B = 3 it is NP-hard to determine whether2 or 3 paths are
needed to accommodate the demand. Therefore, it is NP-hard
to approximate RMO(p) with a ratio of3/2.

We now present an approximation algorithm for RMO(p),
which uses the following observation:

Observation 1:A network flow of valueB in a network
with integral capacities can be decomposed into⌈B⌉ paths.2
At first glance, this observation does not seem to be very
helpful, becauseB may be larger than the number|E| of
edges in the network, which is a straightforward upper bound
on an optimal solution. However, we can scale down the edge
capacities by a significant factor such that each unit of flow
will be larger in relation to the total network flow. This scaling
process reduces the original demandB, thus making a solution
of unit-flow paths more attractive.

Algorithm 2 below uses a parameterα for the scaling
process. The algorithm finds a network flow whose value is
slightly less thanB using no more than

⌈

B
α

⌉

paths. Choosing
a largerα would yield fewer paths whose total bandwidth is
smaller.

Algorithm 2: (A basic scaling algorithm for RMO(p))

1) Scale the capacities byα, i.e., ∀e ∈ E c′(e) ←
⌊

c(e)
α

⌋

.
2) Find a network flowf whose value is not larger than

⌈

B
α

⌉

in the scaled network.
3) Find any decomposition off into paths. Let the resulting

set of paths beP = p1, ..., pk, where pathpi carries a
single-path flow offi.

4) Use every pathpi ∈ P to carry a single-path flow of
αfi in the original graph. 2

The network flow in Step 2 and its decomposition in Step 3
can be arbitrary. Furthermore, we denote the computational
complexity of this step byO(Flow-Alg). The total computa-
tional complexity of Algorithm 2 isO(Flow-Alg + |E| · B

α),
because the time complexity of the scaling process in Step 1
is linear in the size of the network and the time complexity of
the decomposition process in Step 3 isO(|E| · B

α). Note that
the above time complexity is only pseudo-polynomial because
it depends onB. Later on, we present Algorithm 3 whose
running time complexity is polynomial.

Theorem 4:Algorithm 2 returns a set of at most
⌈

B
α

⌉

paths
whose total bandwidth is at leastB − k∗ · α, wherek∗ is the
number of paths in an optimal solution.

Proof: The scaled network has integral capacities. From
Observation 1 it follows that the decomposition step produces
no more than

⌈

B
α

⌉

paths, which is the value of the flow found
in Step 2. We now prove the lower bound on the bandwidth.
Let p1, p2, . . . , pk∗ be the set of paths in an optimal solution.
Each of them is a simple path froms to t. Each pathpi carries
a single-path flow ofwi, where

∑

i wi = B. Consider the same
set of paths in the scaled network, and let each pathpi carry
a single-path flow ofw′

i =
⌊

wi

α

⌋

. This scaled solution is a
feasible solution in the scaled network due to the following
inequalities, which hold for everye:

c(e) ≥
∑

e∈pi

wi

c(e) =∆ +
∑

e∈pi

wi, ∆ ≥ 0

c(e)

α
=

∆

α
+

∑

e∈pi
wi

α
, ∆ ≥ 0

⌊

c(e)

α

⌋

≥

⌊

∆

α

⌋

+

⌊

∑

e∈pi
wi

α

⌋

, ∆ ≥ 0

⌊

c(e)

α

⌋

≥

⌊

∑

e∈pi
wi

α

⌋

.

The first inequality holds because the optimal solution mustbe
feasible in the original graph. The second and third inequalities
follow from the first one. The fourth equation holds because
⌊
∑

xi⌋ ≥
∑

⌊xi⌋, and the last one follows from the fourth.
We also note that:

k∗

∑

i=0

wi =B

k∗

∑

i=0

wi

α
=

B

α

k∗

∑

i=0

⌊wi

α

⌋

≤

⌈

B

α

⌉

k∗

∑

i=0

α
⌊wi

α

⌋

≤α

⌈

B

α

⌉

,

whereα
⌈

B
α

⌉

is the value (bandwidth) of the flow returned
by Algorithm 2. This can be lower bounded as follows:

α

⌈

B

α

⌉

≥ α ·
k∗

∑

i=1

⌊wi

α

⌋

≥ α ·
k∗

∑

i=1

(wi

α
− 1

)

=
k∗

∑

i=1

(wi − α)

=

k∗

∑

i=1

wi − k∗ · α = B − k∗ · α.

Corollary 1: Let k∗ be the number of paths in an optimal
solution. Forα = B

k∗·β , Algorithm 2 produces a solution with

at mostk∗·β+1 paths whose value is no less thanB·
(

1 − 1
β

)

.
The parameterβ can be considered as a tuning parameter.

As β increases, the value of the output flow of Algorithm 2
approaches the original demandB, but the number of paths

7

increases. Sincek∗ is not known in advance, it is not easy
to find the value ofα. One can try all values ofk∗, and
find the minimum one that yields a network flow whose total
bandwidth is larger thanB ·

(

1 − 1
β

)

. This requires running

Algorithm 2 on all possible values ofk∗, which is O(|E|).
To improve the total time complexity, Algorithm 3 below uses
the output returned by Algorithm 2 for a givenk as the initial
network flow when running Algorithm 2 withk + 1. This
is possible because the scaling parameterα decreases ask
increases. Thus, the capacities of the scaled network increase.

Algorithm 3: (A scaling approximation algorithm for
RMO(p) using a tuning parameterβ)

1) k ← 1.
2) Let f be an initial network flow such thatf(e) ← 0 for

everye ∈ E.
3) While k ≤ |E| and the total value off is smaller than

B ·
(

1 − 1
β

)

do

a) Run Algorithm 2 with a scaling factorα = B
k·β

and usef as the initial network flow for Step 2 in
Algorithm 2.

b) Setf as the flow returned by Algorithm 2.
c) k ← k + 1.

4) Return the set paths output by the last execution of
Algorithm 2. 2

Assuming that the capacities are integral, if Algorithm 3 is
invoked withβ = B, the resulting value of the network flow
is guaranteed to be at leastB. However, there is no guarantee
on the number of paths it uses.

The running time complexity of each iteration of Step 3 is
the time complexity of Algorithm 2. Since Algorithm 2 does
not need to construct a flow from scratch, its running time is
O(|E|·B

α). Since the number of iterations does not exceed|E|,
the running time complexity of Algorithm 3 isO(|E|2 · B

α),
i.e., O(|E|2 · k∗ · β).

Algorithms 2 and 3 have theoretical value because they
have worst case performance guarantees. However, simulation
results indicate that their actual average performance is not
good. Specifically, when the bandwidth provided by the flow
is close toB, the number of paths increases very rapidly. We
therefore present another algorithm for RMO(p). While this
algorithm has no worst case performance guarantee, its actual
performance is shown later to be very good.

The main idea behind the new algorithm is to break the
RMO(p) solution into two stages. First, a network flow that
provides a bandwidth of at leastB is found. Then, this flow
is decomposed using Algorithm 1.

Algorithm 4: (A 2-phase algorithm for RMO(p))

1) Find an initial feasible network flow of bandwidthB or
more froms to t.

2) Use Algorithm 1 for decomposing the flow into a
minimum number of paths that provide bandwidthB.

3) Return the set of paths produced by Algorithm 1.2
We now present several procedures for finding an initial
network flow. In Section VII we compare the performance
of Algorithm 4 using each of these procedures. All of the

procedures produce amaximumnetwork flow betweens and
t although the algorithm only requires that the bandwidth of
the initial network flow will be greater than or equal toB. We
found that starting with a maximum flow gives the algorithm
greater flexibility in minimizing the number of paths. When
we evaluated similar procedures that limit the bandwidth of
the initial flow to B, the number of decomposed paths was
larger.

The procedures for finding an initial network flow are as
follows.

• The Maximum Widest Path Flow (WIDE)procedure:
Here, to find an initial feasible network flow, the proce-
dure iteratively augments thewidest pathavailable from
s to t until the maximum flow is reached. If there are
multiple paths, one is selected arbitrarily. The rationale
behind this procedure is to greedily use the available
paths in the network. The running time of this procedure
is O(|E|2 log(|V |) log(Cmax)) [1], where Cmax is the
maximal capacity of an edge in the network.

• The Maximum Shortest Path Flow (SHORT)procedure:
Here, to find an initial feasible network flow, the pro-
cedure iteratively augments theshortest pathavailable
from s to t until the maximum flow is reached. If there
are multiple paths, one is selected arbitrarily. This is the
well-known Edmonds-Karp algorithm [9] for finding a
maximum flow. The rationale behind this procedure is to
use short paths, which traverse fewer nodes. The running
time of this procedure isO(|V ||E|2).

• The Maximum Shortest Widest Path Flow (S-WIDE)
procedure: This procedure is similar to WIDE, except that
when there is more than one path of maximum width in
any iteration, the shortest is chosen. The rationale behind
this procedure is to consume less bandwidth than WIDE
in each iteration, in the hope that the next iterations
will be able to choose wider paths. This procedure can
be implemented using a simple dynamic programming
algorithm with a running time ofO(|V ||E|2 log(Cmax)).

• The Maximum Widest Shortest Path Flow (W-SHORT)
procedure: This procedure is similar to SHORT, except
that when there is more than one path of minimum length
in any iteration, the widest is chosen. This procedure
is expected to require fewer iterations than SHORT to
achieve the maximum flow. Hence, the decomposition
algorithm is likely to use fewer paths. This procedure can
be implemented using a simple dynamic programming
algorithm with a running time ofO(|V ||E|2).

• The Maximum Width/Length Path Flow (WID/LEN)pro-
cedure: This procedure iteratively chooses the path with
the largest width-length ratio. The rationale behind this
procedure is to have a better trade-off between the width
and length of the chosen paths than in the previous
procedures. This procedure can be implemented using a
dynamic programming algorithm with a running time of
O(|V |2|E|3 log2(|V |)).

VI. DMO AND RMO WITH NODE M INIMIZATION

A network operator often seeks to minimize the number of
nodes that carry the paths rather than the number of paths.

8

This is because each node traversal requires one entry in the
forwarding table of that node. In such a case, it may be better
to set up many short paths rather than fewer long ones. To this
end, we now change our optimization problem and view the
forwarding cost as the number of nodes that carry the paths.
More formally, given a setΠ of simple directed paths from
s to t, the forwarding cost byΠ is measured by

∑

p∈Π |p|,
where|p| is the number of nodes along the pathp.

A. DMO with Node Minimization (DMO(n))

We now show that DMO(n) cannot be solved in polynomial
time. Then, we propose an approximation algorithm for it.

Theorem 5:DMO(n) is NP-complete.
Proof: We show this using a reduction from DMO(p)

to DMO(n). Given an instance of the former problem, we
construct an instance of the latter. We set the source of
DMO(n) to be a new node,s′, which is connected tos using
a chain of |V ||E| links whose capacity isB. The network
flow of DMO(n) is carried over the new chain froms′ to s,
and then tot as the network flow in the DMO(p) instance.
We now show that the minimum-node decomposition of the
DMO(n) flow,P ∗

n , has the same number of paths as the number
of paths in the minimum-path decomposition of the DMO(p)
flow, P ∗

p . First, |P ∗
n | ≥ |P ∗

p | must hold, because otherwiseP ∗
p

is not a minimum-path decomposition in DMO(p). Second, if
|P ∗

n | > |P ∗
p | thenP ∗

p induces a decomposition for the DMO(n)
flow with a smaller number of nodes than that imposed byP ∗

n

(because each additional path in the DMO(n) decomposition
increases the number of nodes by|V ||E|, which is greater
than the number of nodes of any decomposition in DMO(p)).

Therefore, an optimal solution for the DMO(p) instance
can be derived from an optimal solution for the constructed
DMO(n) instance.

Algorithm 1 can be modified to approximate DMO(n) with
the same approximation ratioO(log(B/b)). The idea is to
choose in each iteration the path with the greatest ratio
between the bandwidth it carries and the number of nodes
it traverses:

Algorithm 5: (A greedy algorithm for DMO(n))
1) B0 ← B, f0 ← f , P ← φ, i ← 0.
2) Repeat untilBi = 0:

a) Choose the pathp from the source to the destina-
tion for whichf i(p)/np is maximum, wheref i(p)
is the bandwidth ofp in f i andnp is the number
of nodesp traverses.

b) Bi+1 ← Bi − f i(p), f i+1 ← f i\p, P ← P ∪ p,
i ← i + 1.

3) ReturnP . 2

Algorithm 5 has the same computational complexity as
Algorithm 1.

Theorem 6:The approximation ratio of Algorithm 5 is
O(log(B/b)).

Proof: The proof is similar to that of Theorem 1. Denote
the number of paths in the optimal solution byOPT and each
path in the optimal solution byp∗j , where1 ≤ j ≤ OPT . Let
pi be the path chosen by the algorithm in stepi, andui

p be
the ratiof i(p)/np. The path chosen in each step is the one

with the greatest ratiou. Thus, for everyj ui
pi

≥ ui
p∗

j
and

ui
pi

· np∗

j
≥ ui

p∗

j
· np∗

j
hold. Therefore,

OPT · ui
pi

≥
OPT
∑

j=1

ui
p∗

j
· np∗

j
≥ Bi/b. (1)

The second inequality holds becauseui
p∗

j
· np∗

j
= f i(p∗j) and

because the entire set of optimal paths is a decomposition of
the network flowf and, therefore, of any network flowf i.
This leads to

1

ui
pi

≤
OPT

Bi/b
≤

OPT

B/b − (i + 1)
.

The rest of the proof is identical to the proof of Theorem 1.

B. RMO with Node Minimization (RMO(n))

Using a proof similar to that of Theorem 5 for DMO(n), it
can be shown that

Theorem 7:RMO(n) is NP-complete.
Theorem 8:An α-approximation algorithm for RMO(n)

yields an (α+ǫ)-approximation algorithm for RMO(p), where
ǫ > 0 is arbitrarily small.

Proof: The reduction used in the proof of Theorem 5 can
be used again, but this time the length of the added chain
is M = |V ||E| · α · (1/ǫ). If we have anα-approximation
algorithm for RMO(n), we can apply it to the new flow
constructed by the reduction. LetALGp and ALGn be the
number of paths and the number of nodes in the solutions
found by the two approximation algorithms. LetOPTp and
OPTn be the number of paths and the number of nodes in
the corresponding optimal solutions. From the reduction itis
obvious that

ALGn ≥ ALGp · M.

On the other hand, we have:

ALGn ≤ α · OPTn ≤ α · (OPTp · M + X),

whereX is the number of nodes in the minimum-node de-
composition on the original graph, which is obviously smaller
than |V ||E|. The right inequality holds because in the proof
of Theorem 5 we showed that the number of paths of the
minimum-node decomposition must be equal to the number
of paths in the minimum-path decomposition. Hence we have

α(OPTp +
X

M
) ≥ ALGp

OPTp(α + ǫ) ≥ ALGp.

From Theorems 3 and 8 we derive the following corollary:
Corollary 2: RMO(n) cannot be approximated within a

factor of 3/2 − ǫ.
We now present an approximation algorithm for RMO(n).

The algorithm is based on Algorithm 2 for RMO(p), while
finding a minimum cost network flow before it is decomposed.
Clearly, Corollary 1 still holds for this minimum cost flow
version of the algorithm.

9

Since an algorithm for finding a minimum cost network
flow addresses the case where the edges, rather than the nodes,
have a cost, we will consider the following simple reduction.
Consider a network where every unit of flow on a nodev
incurs a cost of1. Every nodev is transformed into two nodes,
vi andvo, connected by an edgevi → vo with infinite capacity
and a cost of1. All the other edges have zero cost. All edges
going intov will go into vi and all edges fromv will go out
from vo.

Algorithm 6: (A scaling algorithm for RMO(n))

1) Assign to each node in the network a cost of1.
2) Transform the network to one with costs on the edges

(as described above).
3) Add a source nodes′ and an edges → s′ with capacity

B.
4) For k = 1 . . . |E|.

a) Run a minimum cost network flow version of
Algorithm 2 with a scaling factorα = B

k·β .
b) Store the result asfk.

5) Returnfi with minimum cost whose value is at least
B

(

1 − 1
β

)

. 2

Theorem 9:The solution returned by Algorithm 6 has a
value greater thanB

(

1 − 1
β

)

and a cost smaller thanβk∗N∗,
wherek∗ andN∗ are the number of paths and the number of
nodes in the optimal solution.
Proof
Corollary 1 holds during the iteration wherek = k∗. Hence,
the value offk∗ is ≥ B

(

1 − 1
β

)

. Let p1, p2, . . . , pk∗ be the
set of paths in an optimal solution. The optimal scaled solution
is feasible. The value of this solution is the number of nodesin
p1, p2, . . . , pk∗ . Since every pathpi carries a single-path flow
of wi, where

∑

i wi = B, this value is
∑k∗

i=1 |pi| > maxi |pi|.
In addition, the cost of the scaled optimal solution is

k∗

∑

i=1

⌊wi

α

⌋

|pi| <

⌊

B

α

⌋

max
i

|pi|.

Clearly, the cost offk∗ is less than that of the scaled optimal
solution. Hence,

fk∗

N∗
<

k∗ · β · maxi |pi|

maxi |pi|
= k∗ · β.

2

As in RMO(p), the above algorithm for RMO(n) has theo-
retical value. However, our simulation results indicate that its
actual average performance is not good enough. Therefore,
we present an additional algorithm that has no worst case
performance guarantee, but a very good actual performance.

The algorithm is similar to Algorithm 4 presented for
RMO(p). Its main idea is to break the RMO(n) solution into
two stages. First, a network flow that provides a bandwidth
of at leastB is found. Then, this flow is decomposed using
Algorithm 5.

Algorithm 7: (A 2-phase algorithm for RMO(n))

1) Find an initial feasible network flow of bandwidthB or
more froms to t.

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 D

ec
om

po
se

d
P

at
hs

Normalized Bandwidth Demand

ECMP

SHORT

W-SHORT

WIDE

WID/LEN

S-WIDE

(a) 100 nodes with average degree = 5

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 D

ec
om

po
se

d
P

at
hs

Normalized Bandwidth Demand

ECMP

SHORT

W-SHORT

WIDE

WID/LEN

S-WIDE

(b) 100 nodes with average degree = 10

Fig. 4. The number of paths found by Algorithm 4 with the various
procedures as a function of the normalized bandwidth demand for various
sizes of network domains

2) Use Algorithm 5 for decomposing the network flow into
a set of paths that traverse a minimum number of nodes
and deliver together a bandwidth ofB.

3) Return the set of paths produced by Algorithm 5.2
The initial network flow can be found by one of the

five procedures (WIDE, SHORT, S-WIDE, W-SHORT, and
WID/LEN) described in Section V.

VII. S IMULATION STUDY

In this section we evaluate the performance of the algo-
rithms for RMO and DMO. We first examine the performance
of the two variants of the RMO algorithms. Then we evaluate
the trade-off between the bandwidth cost and the forwarding
cost of a network flow by comparing the performance of the
RMO algorithms to that of the DMO algorithms as they apply
to a network flow of minimum bandwidth cost.

We use the BRITE simulator [19] to simulate network
domain topologies according to the “preferential attachment
model” of [7]. This model captures two important characteris-
tics of network topologies: incremental growth and preferential
connectivity of a new node to well-connected existing nodes.
These characteristics yield a power-law degree distribution
of the nodes. In addition, we also run our algorithms on
actual ISP topologies, as inferred from the RocketFuel project
[23]. These topologies reflect better the model presented in

10

[2]. For each topology, we generate a bandwidth demand
between a source and a destination. The characteristics of
the simulated topologies and the methods for choosing the
bandwidth demands are described for each setting. A network
topology together with a bandwidth demand are considered as
one simulation instance. We apply the various algorithms for
each such instance.

A. Minimizing the Number of Paths

Figure 4 depicts the number of paths over which the
required bandwidth can be delivered as a function of the
bandwidth demand for networks with 100 nodes whose av-
erage degree is 5 links (Figure 4(a)), and networks with 100
nodes whose average degree is 10 links (Figure 4(b)). For each
such network, the edge capacities are uniformly distributed in
[0.5C, 1.5C]. C is a normalizing factor for the edge capacities
and the volume of bandwidth demands. They-axis of all the
graphs in Figure 4 represents the number of decomposed paths
produced by the various algorithms. Thex-axis represents the
normalized bandwidth demand froms to t, i.e., the bandwidth
demand divided by the value of the largest maximum network
flow between any pair of nodes in the network. For each
network instance and for each average bandwidth valueB,
we generate 100 instances of bandwidth demands uniformly
distributed on the interval[0.9B, 1.1B]. For each demand,
the source and destination nodes are uniformly selected from
among the network nodes, and the five variants of Algorithm 4
are executed. As a benchmark, we also simulate the well-
known equal cost multi-path (ECMP) algorithm. For ECMP,
the bandwidth of a traffic flow is equally divided between the
paths whose length/cost are minimum. If the total bandwidth
of the least-cost paths is insufficient, the set of second least-
cost paths is used for the remaining bandwidth, and so on.

As clearly indicated by all the graphs in Figure 4, ECMP
always produces more paths than Algorithm 4 under any flow
construction scheme. In addition, it is evident that Algorithm 4
minimizes the number of paths needed for delivering the
requested bandwidth when it uses S-WIDE in Step 1. W-
SHORT performs better than SHORT because it produces
network flows with larger average bandwidth on each edge.
This allows Algorithm 1, when it is invoked in Step 2 of
Algorithm 4, to choose wider, and consequently fewer, paths.
S-WIDE and WID/LEN perform better than WIDE because
they take into account the length of the paths. In general,
it is better to choose wider paths than shorter ones when
generating a network flow, regardless of the network size and
node average degree.

It is evident from Figure 4 that he number of decomposed
paths increases linearly with the bandwidth demand. For a
network with 100 nodes and an average degree of 10 (Fig-
ure 4(b)), the number of decomposed paths as well as the slope
of the curves are almost doubled compared to that of networks
with an average degree of 5 (Figure 4(a)). This is because
we use larger bandwidth demands (recall that the bandwidth
demand shown in the graphs is normalized to the largest
maximum network flow in the network, which increases with
the node degree). In addition, the relative difference between

 3

 4

 5

 6

 7

 8

 9

 10

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 D

ec
om

po
se

d
P

at
hs

Normalized Distance Between Source and Destination

SHORT
W-SHORT

WIDE
WID/LEN

S-WIDE

Fig. 5. The number of paths found by Algorithm 4 with the various
procedures as a function of the distance between source-destination pairs

the number of paths using S-WIDE and the number of paths
using SHORT increases: it is now roughly 50% compared to
25% for a network with an average degree of 5 (Figure 4(a)).
This is because the number of possible paths between any two
network nodes significantly increases. This allows S-WIDE
to find wider augmenting paths. Hence, the network flow is
constructed with fewer iterations, which is translated into a
smaller number of decomposed paths.

In Figure 5 we examine how the distance between the
source and destination influences the number of decomposed
paths. As in Figure 4, they-axis represents the number of
decomposed paths for each procedure. Thex-axis represents
the distance between the source and destination divided by the
diameter of the network. The network has 100 nodes and an
average degree of 5. We generate 100 network instances of this
size. For each instance we generate 100 bandwidth demands.
For each demand, the distance between the source and the
destination is assigned a given distance value with±10% vari-
ation. The average normalized bandwidth for each demand is
0.6. For all of the procedures, the number of decomposed paths
increases with the distance. Consequently, the capacitiesof the
paths between the source and destination decrease. Thus, each
decomposed path can carry less bandwidth on the average. The
number of decomposed paths increases more moderately for
WIDE, S-WIDE, and WID/LEN. This is because the source-
destination distance has a smaller effect on the length of the
widest path between them than on the length of the shortest
path between them.

Furthermore, the minimum link capacity in the generated
networks is 40. This is the reason for the steep change
in bucket 40-50. Since the bandwidth carried by a path is
dominated by the minimum of link capacities on the paths the
curve for the SHORT procedure between 40 and 140 indeed
resembles the probability function of the minimum of the
uniform random variables. The S-WIDE curve has a different
shape since it seeks to maximize the path bandwidth. The
S-WIDE curve peaks around the mean of the link capacity.
Below 40 are the paths whose bandwidth is the residual
capacity of links on which other paths selected in earlier

11

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0.2 0.3 0.4 0.5 0.6

N
um

be
r

of
 D

ec
om

po
se

d
P

at
hs

Bandwidth Demand

SHORT
W-SHORT

WIDE
WID/LEN

S-WIDE

(a) Exodus ISP, 80 routers with average degree of 1.8

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0.2 0.3 0.4 0.5 0.6

N
um

be
r

of
 D

ec
om

po
se

d
P

at
hs

Bandwidth Demand

SHORT
W-SHORT

WIDE
WID/LEN

S-WIDE

(b) Telstra ISP, 115 routers with average degree of 1.3

Fig. 6. The number of paths found by Algorithm 4 with the various procedures for real ISP topologies

iteration pass.
To validate the results from the synthetic graphs, we present

in Figure 6 results for real AS topologies, as inferred from the
RocketFuel project [23]. These topologies reflect the model
presented in [2], which may better represent a router-levelISP
topology. We used the following network topologies:

1) Exodus ISP, which consists of 80 routers with average
degree of 1.8

2) Telstra ISP, which consists of 115 routers with average
degree of 1.3

The bandwidth demands are generated as described for Fig. 4.
Figure 6 shows the performance of Algorithm 4 with the
various procedures. We can see that the relative performance
rank is the same as for the synthetic graphs (Figure 4) that re-
flect the preferential attachment model. In the Telstra topology
(Figure 6(b)), the performance differences are smaller because
of its lower link degree, which substantially reduces the path
diversity in the network.

B. Minimizing the Number of Nodes

We now examine the performance of Algorithm 7, the goal
of which is to minimize the number of nodes. Figure 7 depicts
the number of nodes traversed by all of the paths that deliver
the required bandwidth as a function of the bandwidth demand
for the network domains considered in Figure 4. The network
instances and bandwidth demands are generated as described
for Fig. 4.

It is clear that Algorithm 7 gives the best performance
when it uses WID/LEN for finding an initial network flow.
S-WIDE, which was shown to yield the smallest number
of paths, produces solutions with roughly 20% more nodes
than WID/LEN. This result is consistent for all three routing
domain sizes.

The advantage of WID/LEN over S-WIDE indicates that the
number of nodes can be better minimized by preferring shorter
paths over wider ones, even though this usually increases the
total number of paths. This insight is supported by the results
of WIDE, which yields the worst performance. A comparison
of the ECMP performance curves in Figures 4 and 7 gives
further evidence that shortest paths better minimize the number

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 N

od
es

Normalized Bandwidth Demand

WIDE
SHORT
S-WIDE

ECMP
W-SHORT

WID/LEN

(a) Num. nodes = 100, average degree = 5

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 N

od
es

Normalized Bandwidth Demand

WIDE
SHORT
S-WIDE

ECMP
W-SHORT

WID/LEN

(b) Num. nodes = 100, average degree = 10

Fig. 7. The number of nodes found by Algorithm 7 with the various
procedures as a function of the normalized bandwidth demand for various
sizes of network domains

of nodes: while in Figure 4 ECMP has the worst performance
curve, in Figure 7 it performs quite well.

C. The Trade-Off Between Bandwidth Cost and Forwarding
Cost

We now study the trade-off between the bandwidth cost and
the forwarding cost of a network flow. To this end, we focus
on the following three questions:

12

• What is the extra forwarding cost when the main target
is minimizing the bandwidth cost?

• What is the extra bandwidth cost when the main target
is minimizing the forwarding cost?

• How do the various procedures perform with respect to
this trade-off?

Finding the minimum-cost network flow in general networks
is a well-studied problem [1], [9], [12]. In what follows we use
the well-known Edmonds-Karp algorithm [9]. This algorithm
iteratively adds to the constructed network flow the least cost
path until the bandwidth demand is satisfied. We refer to this
procedure as COST. We decompose the network flow using
Algorithms 1 and 5 to find a solution with a minimum number
of paths and nodes, respectively. Note that the difference
between COST and SHORT is that SHORT constructs a
maximal network flow while COST returns a network flow
of bandwidthB. Consequently, the decomposition algorithm
has less flexibility in the latter case.

We use the same simulation setting as described earlier,
and assign an equal cost to each flow unit on every link. We
then determine the bandwidth cost by summing up the cost
for all links. Figures 8(a) and 8(b) show the trade-off between
the bandwidth cost and the number of decomposed paths for
each of the six procedures for Step 1 of Algorithm 4. The
results are shown for networks with 100 nodes whose average
node degree is 5 or 10. Thex-axis represents the bandwidth
cost normalized by the value of the actual bandwidth demand,
while they-axis shows the number of decomposed paths. The
results are shown for a normalized bandwidth demand of 0.6.

As expected, for both network sizes, COST minimizes the
bandwidth cost, but yields the largest number of paths. S-
WIDE minimizes the number of paths, but its bandwidth cost
is 50% more than COST. From Figures 8(a) and 8(b) we
conclude that WID/LEN yields a very good trade-off between
these two extremes. Its bandwidth cost is only 10% more than
that of COST while it has only 5% more paths than S-WIDE.

Figures 8(c) and 8(d) show the trade-off between the band-
width cost of a network flow and the aggregated number of
nodes that carry this flow. Again, we can see that WID/LEN
yields the best trade-off between bandwidth cost and forward-
ing cost.

Our conclusion from these simulations is that WID/LEN is
the procedure of choice for Step 1 of both Algorithm 4 and
Algorithm 7.

VIII. C ONCLUSIONS

In order to improve bandwidth utilization, it is often de-
sirable to split one traffic flow over multiple paths while
minimizing the associated forwarding cost. Two important
optimization problems result: Decomposition with Minimum
forwarding Overhead (DMO), and Routing with Minimum
forwarding Overhead (RMO). We showed that both prob-
lems are NP-hard and presented approximation algorithms.
We presented efficient practical heuristics for RMO. These
heuristics first find an initial network flow and then decompose
it using our DMO approximation. The procedure for selecting
the initial network flow was shown to have a critical impact

on the performance of the algorithm. WID/LEN gave the best
trade-off between bandwidth cost and forwarding overhead.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, February 1993.

[2] D. Alderson, L. Li, W. Willinger, and J. C. Doyle. Understanding internet
topology: principles, models, and validation.IEEE/ACM Transactions
on Networking, 13(6):1205–1218, 2005.

[3] D. Awduche et al. Requirements for traffic engineering over MPLS.
IETF RFC 2702, September 1999.

[4] G. Baier, E. K̈ohler, and M. Skutella. The k-splittable flow problem.
Algorithmica, 42(3-4):231–248, 2005.

[5] D. Banerjee and B. Mukherjee. Wavelength-routed optical networks:
linear formulation, resource budgeting tradeoffs, and a reconfiguration
study. IEEE/ACM Transactions on Networking, 8(5), October 2000.

[6] R. Banner and A. Orda. Efficient multipath-routing schemesfor
congestion minimization. Technical report, Technion – Israel Institute
of Technology, 2004.

[7] A. Barabasi, R. Albert, and H. Jeong. Scale-free characteristics of
random networks: the topology of the World Wide Web. InPhysica
A: Statistical Mechanics and Its Applications, volume 281, pages 69–
77, June 2006.

[8] A. Curtis, J. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee. Devoflow: scaling flow management for high-performance
networks. InSIGCOMM, 2011.

[9] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems.Journal of the ACM, 19(2):248–
264, 1972.

[10] J. Fan and M. Ammar. Dynamic topology configuration in service
overlay networks: A study of reconfiguration policies. InINFOCOM,
Proceedings IEEE, pages 1–12, 2006.

[11] O. Gerstel, R. Ramaswami, and G. H. Sasaki. Cost-effective traffic
grooming in WDM rings. IEEE/ACM Transactions on Networking,
8:618–630, 2000.

[12] A. Goldberg and R. Tarjan. Finding minimum-cost circulations by
canceling negative cycles.Journal of the ACM, 36(4):873–886, 1989.

[13] A. Greenberg et al. VL2: a scalable and flexible data center network.
In SIGCOMM’2009, Barcelona, Spain.

[14] T. Hartman, A. Hassidim, H. Kaplan, D. Raz, and M. Segalov.How to
split a flow? InINFOCOM, Proceedings IEEE, pages 828–836. IEEE,
2012.

[15] D. S. Hochbaum, editor. Approximation Algorithms for NP-Hard
Problems. PWS Publishing Co., Boston, MA, USA, 1997.

[16] R. Koch, M. Skutella, and I. Spenke. Maximum k-splittable s,t-flows.
Theory of Computing Systems, 43(1):56–66, 2008.

[17] R. Koch and I. Spenke. Complexity and approximability of k-splittable
flows. Theoretical Computer Science, 369(1):338–347, 2006.

[18] J. Lu and J. Turner. Efficient mapping of virtual networksonto a shared
substrate.Washington University in St. Louis, Tech. Rep, 2006.

[19] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An approach
to universal topology generation. InProceedings of MASCOTS, 2001.

[20] V. S. Mirrokni, M. Thottan, H. Uzunalioglu, and S. Paul.A simple
polynomial time framework to reduced path decomposition in multi-
path routing. InIEEE INFOCOM, 2004.

[21] C. Raiciu et al. Improving datacenter performance and robustness with
multipath tcp. InSIGCOMM’2011, Toronto, Canada.

[22] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects
of treewidth. Journal of Algorithms, 7:309–322, 1986.

[23] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies
with RocketFuel. InProceedings of the ACM SIGCOMM, August 2002.

[24] A. Tavakoli, A. Casado, M. Koponen, and S. Shenker. Applying ”nox”
to the datacenter”. InHotNets VIII, 2009.

[25] B. Vatinlen, F. Chauvet, P. Chrétienne, and P. Mahey. Simple bounds
and greedy algorithms for decomposing a flow into a minimal set of
paths. European Journal of Operational Research, 185(3):1390–1401,
2008.

[26] H. Wang, J. Lou, Y. Chen, Y. Sun, and X. Shen. Achieving maximum
throughput with a minimum number of label switched paths in MPLS
networks. InProceedings of ICCCN, pages 187–192, 2005.

[27] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual network em-
bedding: substrate support for path splitting and migration. SIGCOMM
Comput. Commun. Rev., 38(2):17–29, March 2008.

13

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 3.5 4 4.5 5 5.5 6 6.5 7 7.5

N
um

be
r

of
 P

at
hs

Normalized Bandwidth Cost

COST

SHORT

WIDE

W-SHORT

S-WIDE
WID/LEN

(a) 100 nodes, avg. degree = 5

 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

 3 4 5 6 7

N
um

be
r

of
 P

at
hs

Normalized Bandwidth Cost

COST

SHORT

WIDE

W-SHORT

S-WIDE
WID/LEN

(b) 100 nodes, avg. degree = 10

 26
 28
 30
 32
 34
 36
 38
 40

 3.5 4 4.5 5 5.5 6 6.5 7 7.5

T
ot

al
 N

od
es

Normalized Bandwidth Cost

COST

SHORT

WIDE

W-SHORT
S-WIDE

WID/LEN

(c) 100 nodes, avg. degree = 5

 35

 40

 45

 50

 55

 60

 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

T
ot

al
 N

od
es

Normalized Bandwidth Cost

COST

SHORT

W-SHORT
S-WIDE

WID/LEN

(d) 100 nodes, avg. degree = 10

Fig. 8. The trade-off between the bandwidth cost and the number of paths/nodes that carry this bandwidth

[28] K. Zhu and B. Mukherjee. Traffic grooming in an optical WDM mesh
network. Selected Areas in Communications, IEEE Journal on, 20(1),
2002.

