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Abstract—In this paper we define and address a new problem
that arises when a base station in a broadband wireless network
wishes to multicast information to a large group of nodes and
to guarantee some level of reliability using Application layer
FEC codes. Every data block to be multicast is translated into
a sequence of K + n packets, from which every receiver must
receive at least K in order to correctly decode the block. The
new problem is to determine which PHY layer MCS (Modulation
and Coding Scheme) the base station should use for each packet.
We present several variants of this problem, which differ in
the number of ARQ (Automatic Repeat reQuest) rounds during
which the delivery of a data block must be completed. Most of
these variants are shown to be NP-hard. However, we present
optimal solutions for practical instances, where the number of
MCSs is small, and efficient approximations and heuristics for
the general case of each variant.

I. INTRODUCTION

A prominent feature of advanced wireless technologies
such as WiMax/802.16 [10] and 3GPP/LTE [1] is the base
station’s ability to transmit a single copy of a packet to a
group of receivers, a concept known as multicast. Indeed,
streaming multicast is considered as one of the most important
applications in such networks.

To ensure some level of reliability, streaming multicast often
uses Application layer FEC (Forward Error Correction) codes,
with or without ARQ (Automatic Repeat reQuest). In a typical
FEC-based multicast, the sender creates from each data block
K + n packets, and every receiver must receive any K of
these packets in order to correctly decode the data block [17].
In rateless erasure codes, the value of n can be different for
different data blocks.

Application layer FEC codes can be classified into two main
groups: near-optimal codes and optimal codes. In near-optimal
codes, (1 + ε) · K packets are required in order to correctly
decode the data block, while in optimal codes, K packets
are required. Throughout this paper we assume that an MDS
(Maximum Distance Separable) code is used in the application
layer FEC [7], [18]. MDS is a family of optimal codes that
includes the well known Reed-Solomon code.

In a hybrid FEC/ARQ-based scheme [3], [8], [16], [19],
receivers that have not received enough packets notify the
sender by sending a NACK message [2], and the sender may
send additional repair packets. The number of such repair

rounds is, in practice, limited by real-time, buffer space, and
similar considerations.

Adaptive modulation and coding (AMC) is crucial for
increasing the performance of broadband wireless networks.
With AMC, the base station usually uses higher order mod-
ulation (such as 16- or 64-QAM) and higher code rate (such
as R=3/4 turbo code) when transmitting unicast packets to
nearby receivers, and lower order modulation (such as QPSK)
and code rate when transmitting unicast packets to distant
receivers. Multicast packets, however, are usually transmitted
using low order modulation and coding, because of the very
high probability that at least one of the receivers is not close
enough to the base station.

In this paper, we show that the base station can improve
the performance of multicast by optimizing the selection of
an MCS for each individual packet. We are not aware of any
previous work that has addressed this cross-layer combination
of Application layer hybrid FEC/ARQ with physical layer
Adaptive Modulation and Coding (AMC). Therefore, to the
best of our knowledge, not only are the theoretical results and
algorithms presented in this paper new, but so is the problem
itself.

The new problem we define is referred to as RM-AMC
(Reliable Multicast using Adaptive Modulation and Coding).
RM-AMC has two main variants: for a pure FEC scheme,
where only one round is used for the delivery of every data
block, and for a hybrid FEC/ARQ scheme, where multiple
rounds can be used. With one round, the base station sends
K + n packets for every data block and must decide:

• what the value of n should be;
• what MCS should be used for each of these K + n

packets.
With multiple rounds, the sender needs to address these issues
not only for the first round, but for every additional one.

It is important to note that in the considered model FEC
is used at the application layer and MCS at the PHY layer.
Therefore, the Application layer of the receiver can correctly
decode the data block if it receives any K packets, regardless
of the MCSs used to transmit these packets in the PHY layer.

The RM-AMC problem defined in this paper and the algo-
rithms for solving it rely heavily on the concept of cross-layer
optimization. That is, information retrieved by a lower layer



(PHY) is used by an upper layer (Application/Transport) in
order to improve the performance of the upper layer’s protocol.

The rest of this paper is organized as follows. In Section
II, we discuss related work. In Section III, we describe
the considered multicast service model, define the RM-AMC
problem, and prove that it is NP-hard. In Section IV, we
present several algorithms for RM-AMC. In Section V, we
extend RM-AMC to multiple rounds and present a simulation
study of the various algorithms in Section VI. In section VII,
we extend our results to more optimization criteria. Finally,
Section VIII concludes the paper.

II. RELATED WORK

In recent years, the number of important applications for
multicast in broadband access wireless networks has been
growing steadily. One such application is Internet Protocol
Television (IPTV) over Wimax [21], [25], which is supposed
to enable mobile users to receive streaming video content.

The concept of reliable multicast for streaming and other
applications has been addressed by the IETF RMT (Reliable
Multicast Transport) working group. This working group has
published several RFCs on large-scale multicast. The main
protocol developed by the RMT WG for large-scale reliable
streaming multicast is called NORM (NACK oriented reli-
able multicast) [2], which employs the concept of hybrid
FEC/ARQ [8], [16], [19], [23], [22]. For a good overview
of the RMT WG, see [1].

In [9], problems related to MAC layer multicast are studied.
This paper does not study Application layer hybrid FEC/ARQ
for reliable multicast, but is more concerned with Physical
layer transmission codes. When the sender wants to send
a message, it splits it into several hierarchical layers and
transmits each layer using its own MCS (modulation and
coding scheme). The MCS depends on the importance of the
encoded layer. Similar ideas are also presented in [14].

In [13], three schemes to adaptively change the MCS of
multicast packets are discussed. In each scheme, the sender
uses the channel conditions of the receivers to determine, for
every packet, which MCS to use. The three schemes have
different reliability and throughput. However, unlike our work,
[13] does not use FEC or ARQ.

In [8], Application layer FEC/ARQ is used, but without
AMC. The sender encodes every data block into multiple
packets. It is then supposed to get feedback messages from the
receivers in order to decide how many more packets to send
for the same data block. This is the standard Application layer
hybrid FEC/ARQ proposed by NORM. In [20], convolutional
coding and nonuniform PSK modulation are combined to
provide greater efficiency. Nonuniform PSK is used to transmit
additional information to the more capable receivers.

In [24] and [26], the authors introduce and analyze a cross-
layer framework for video multicast. Several video layers are
generated and bi data blocks, each of Ki bytes, are used for
every layer i. Each data block is encoded and expanded into
N bytes using an (N, Ki) Reed-Solomon code. Then, a packet
composed of one byte from every data block is generated
using a modified multiple description coding scheme (MDC)

in which superposition coding is used to encode each layer
using a different MCS. In [26], an analysis is performed for
the worst receiver in a Rayleigh channel. Neither [24] and
[26] consider ARQ. In addition, in both frameworks, every
data block is encoded into N bytes, where N is the same for
all data blocks.

In [5], a layered coding approach that uses error correction
coding within each packet and erasure correction coding across
the packets is proposed. The authors consider a Nakagami
wireless channel and optimize the transmission assuming the
transmission rate is continuous. They show that the perfor-
mance is close to optimal when the transmission is performed
using a set of known MCSs. ARQ and multicast transmission
are not considered in this paper.

In [27], optimal partitioning of receivers into groups for
multirate multicast is studied. A dynamic programming al-
gorithm that finds an optimal partition is presented. In [11],
algorithms for the problem of maximizing the aggregate re-
ceiver utility for the case of multirate multicast sessions are
presented. As in our work, several MCSs are used in order to
increase performance. However, Application layer FEC/ARQ
is not applied.

III. PRELIMINARIES

A. Reliable multicast streaming service model
In this paper we consider a streaming multicast service for

which full reliability is neither possible nor essential. It is not
possible due to: (a) occasionally bad wireless channel condi-
tions and intermittent disconnection introduced by mobility of
the hosts; (b) the streaming nature of the broadcast data, which
puts hard limits on the time the delivery of every data block
must be completed. Full reliability of streaming multicast is
not essential because streaming applications (audio and video)
can tolerate data loss. If the loss is temporary, it might not
even be noticed by the user due to the robustness of the
audio/video codecs. If the loss is long in duration, e.g., due
to a physical obstacle between a mobile node and the base
station, the user will probably want to continue receiving the
audio/video multicast despite the blackout period.

For the RM-AMC problem defined in this paper, one may
consider several optimization criteria, all of which are related
to the “designated group.” This group does not include all
the nodes that join the multicast group, but only those whose
wireless channel is “not too bad” because satisfying nodes
whose wireless channel is too bad would consume too much
bandwidth. The designated group contains only nodes whose
SNR is above some threshold. Those are the nodes to which
some level of QoS has to be guaranteed. The optimization
criterion considered throughout most of this paper is:

OC-1 Let pi be the probability that the ith receiver of the
designated group will correctly decode the data block.
Maximize mini(pi), while guaranteeing that the total
bandwidth is not larger than Bmax.

In Section VII, we address other optimization criteria as well.
Consider a multicast packet sent by the base station. The

probability that a certain receiver will correctly receive this
packet is determined by the receiver’s SNR (signal-to-noise
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ratio). Throughout the paper we assume that for two receivers
a and b, if the SNR of a is higher than the SNR of b, then
the probability that a will correctly receive a multicast packet
is not smaller than the probability that b will correctly receive
the same packet. This is true regardless of the MCS used by
the base station for the PHY layer encoding of this packet.
This implies that in OC-1, the minimum probability should
only be guaranteed to the receiver with the worst SNR from
the designated group. For the rest of the paper, such a receiver
will be referred to as the designated receiver.

B. Using one or more rounds
An optimal solution for RM-AMC(OC-1) depends on the

number of rounds the sender can use for sending the packets
of a certain data block. If only one round is possible, the
sender needs to decide how many packets should be sent in
this round and what MCS should be used for each of them.
These packets are then transmitted, and no more packets can
be used for this data block.

If R > 1 rounds are possible, we assume that after every
round of transmission the sender receives a feedback message
about the outcome of the previous round. The sender will use
this information to decide how many new packets should be
broadcast in the next round for the same data block, and what
MCS should be used for each.

The exact feedback the base station should receive in every
round depends on the optimization criteria we want to address.
Receiving a feedback message from every individual receiver
is impractical because it leads to the well-known feedback
implosion problem. For OC-1 it is sufficient to receive a
feedback message from only one receiver, as discussed in
Section V-A.

C. The effect of AMC on schedule efficiency
In what follows, we give some examples of the relationship

between the PHY layer AMC and the schedule efficiency.
Consider two MCSs, MCS-1 and MCS-2. Suppose that when
a packet is encoded using MCS-1, it requires twice the
bandwidth required by MCS-2. On the other hand, suppose
that the probability that the designated receiver will correctly
receive an MCS-1 packet is 1 − ε, where ε is very close
to 0, and the probability that it will correctly receive an
MCS-2 packet is only 1

2 . Suppose also that K = 2 and
that the bandwidth B is sufficient for (a) 2 MCS-1 packets,
or (b) 4 MCS-2 packets, or (c) 1 MCS-1 packet and 2
MCS-2 packets. With only one round, the best choice is (a).
Using this option, the probability that the designated receiver
will correctly decode the data block is (1 − ε)2, compared
to

(

4
2

)(

1
2

)4
+

(

4
3

)(

1
2

)4
+

(

4
4

)(

1
2

)4
= 11

16 for option (b), or
2(1 − ε) · 1

2 · 1
2 + ε · 1

2 · 1
2 + (1 − ε) · 1

2 · 1
2 ≈ 3

4 − ε for
option (c).

If K = 2 and the available bandwidth B is sufficient
for transmitting only 1 MCS-1 packet or 2 MCS-2 packets,
the best choice is of course the latter, because the success
probability is 1

4 compared to 0.
Finally, suppose that the available bandwidth B is sufficient

for transmitting 3 MCS-2 packets or 1 MCS-1 packet and 1

MCS-2 packet. In this case, the best choice is to transmit 3
MCS-2 packets. The probability that the designated receiver
will correctly decode the data block is

(

3
2

)

· 12
3
+

(

3
3

)

· 12
3

= 1
2 ,

compared to (1− ε) · 1
2 = 1

2 − ε
2 using only 1 MCS-1 packet

and 1 MCS-2 packet.

D. Combining multiple rounds and multiple MCSs
To see how we can increase the performance by increasing

the number of rounds, suppose that K = 2 and that the
available bandwidth B is sufficient for transmitting 3 MCS-
2 packets or 1.5 MCS-1 packets. Suppose also that the
probability that the designated receiver will correctly receive
an MCS-1 packet is 1 − ε, and the probability that it will
correctly receive an MCS-2 packet is 1

2 .
Definition 1: A transmission configuration is a vector τ =

(τ1, . . . , τN ) of N integers that describes the packets trans-
mitted by the sender for a given data block. Element τj in
this vector indicates the number of packets transmitted using
MCS-j.

The optimal 1-round transmission configuration is to trans-
mit 3 MCS-2 packets, in which case the probability of the
designated receiver to correctly decode the data block is
(

3
2

)

· 1
2

3
+

(

3
3

)

· 1
2

3
= 1

2 . The optimal 2-round protocol starts
with a single MCS-2 packet. If the packet is correctly received
by the designated receiver, the base station transmits a single
MCS-1 packet in the next round. If the first transmission
fails, the base station transmits two MCS-2 packets in the
next round. The probability that the designated receiver will
correctly decode the data block is 1

2 ·(1−ε)+ 1
2 · 12 · 12 = 5

8− ε
2 ,

which is higher than for the 1-round optimal transmission
configuration ( 1

2 ).
For the rest of this subsection, we generalize the above

example and show that when one uses MCS-1 and MCS-2
as defined above, the probability that the designated receiver
will correctly decode the data block converges to 1 when
the number of rounds increases. This is not a straightforward
example when the bandwidth allocated for the transmission of
each data block is limited.

Let K = n + 1, and suppose that the available bandwidth
B is sufficient for transmitting 2n + 1 MCS-2 packets or
n + 0.5 MCS-1 packets. The optimal 1-round transmission
configuration is 2n + 1 MCS-2 packets, in which case the
probability that the designated receiver will correctly decode
the data block is 1

2 .
The optimal 2n + 1-round schedule is to transmit a single

MCS-2 packet in every round until the number of packets
correctly received by the designated receiver is strictly larger
than the number of incorrectly received packets. Then, in the
next (and last) round, the sender should transmit as many
MCS-1 packets as possible. Let r be the last transmission
round of an MCS-2 packet. Since r must be odd, let r = 2k+1.
At the end of round r, there are k + 1 correctly received
packets, and K − k − 1 = n + 1 − k − 1 = n − k more
packets are required to correctly decode the data block. The
remaining bandwidth is sufficient for transmitting n−k MCS-
1 packets, which guarantees (with probability 1− ε) that the
receiver will be able to correctly decode the data block.
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Denote the transmission results as a binary vector, where
the ith bit indicates whether the designated receiver correctly
received the packet transmitted in the ith round. The probabil-
ity that the designated receiver will not be able to decode the
data block is equal, up to an ε, to the probability that every
prefix of this vector will not contain more 1s than 0s. Note
that in this case the vector is of size 2n+1 and all the packets
are transmitted using MCS-2.

We now show that the number of binary vectors of size
2n+1 for which no prefix contains more 1s than 0s is

(

2n+1
n+1

)

.
Let A be the set of binary vectors of size 2n + 1 that have
n + 1 0s and n 1s. Let B be the set of binary vectors of size
2n + 1 for which every prefix contains no more 1s than 0s.
Clearly, |A| =

(

2n+1
n+1

)

. We now present a bijection f : A→ B.
Given a ∈ A, if a ∈ B then f(a) = a. Otherwise, there is a
prefix in a that has more 1s than 0s. Consider the following
transformation g on a: find the shortest prefix that has more
0s than 1s and flip every bit in this prefix. Clearly, the number
of 1s decreases by exactly 1. Note that g is reversible (simply
find the first prefix that holds more 0s than 1s and flip its bits).
If g(a) ∈ B then f(a) = g(a); otherwise continue to apply g
on a until receiving a vector that belongs to B. The function
f is bijective since g is reversible and one can tell how many
times g has been applied by the total number of 1s. Thus, the
number of vectors in B is equal to the number of vectors in
A.

Now, note that the probability to receive each of the
(

2n+1
n+1

)

vectors is 1
22n+1 . Thus, the probability that the des-

ignated receiver will correctly decode the data block is
1−

[

(
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)

/22n+1
]

. Since
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=
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√
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1 +
1
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n
,

we get that 1− (2n+1

n+1 )
22n+1 ≥ 1−O

(

1√
n

)

, which converges to 1
as n grows.

E. 1-round RM-AMC(OC-1) is NP-hard
We start by formally defining the 1-round RM-AMC(OC-1)

problems:
Problem 1 (1-round RM-AMC(OC-1)):

Instance: The number K of packets required to correctly
decode a data block, an SNR for the designated receiver
(the worst receiver in the designated group), an upper

bound Bmax on the bandwidth the sender can use for
every data block, and a collection of N MCSs: MCS-1,
. . ., MCS-N . Each MCS-j is a pair (bj , fj), where bj is
the bandwidth cost for transmitting a packet using MCS-j
and fj is the function that translates from an SNR value
to the probability that a receiver with such an SNR will
receive an MCS-j packet with no error. Without loss of
generality, we assume that bj ≤ bk holds for every j < k
and that b1 = 1.

Objective: Find a transmission configuration such that the
total bandwidth used for all the packets is not larger than
Bmax and the probability that the designated receiver will
correctly decode the data block is maximized.

Theorem 1: The decision version of RM-AMC(OC-1) for
1-round is NP-hard.
The proof is presented in the Appendix.

IV. ALGORITHMS FOR 1-ROUND RM-AMC(OC-1)

A. Verifying the correctness of a solution

We now show how the sender can efficiently check whether
OC-1 holds for a given transmission configuration to the 1-
round RM-AMC(OC-1) problem. Let t be the number of
packets in the transmission configuration and K be the number
of packets a receiver needs to correctly decode a data block.
Let MCS(h) be the index of the MCS used for the hth packet
in the transmission configuration. Let V (h) be a vector with
two elements: V (h) = (pMCS(h), 1− pMCS(h)), where pMCS(h)

is the probability that the designated receiver will correctly
receive an MCS(h) packet. Denote by Ũ = (ũ0, . . . , ũt) the
convolution of V (1), . . . , V (t). Ũ is a vector of length t + 1,
where ũl, 0 ≤ l ≤ t is the probability that the designated
receiver will correctly receive exactly l packets. Hence, the
probability that this receiver will correctly decode the data
block is

∑t
l=K ũl.

To efficiently compute the convolution of V (1), . . . , V (t),
we divide this set of vectors into 2 equal sets. We recursively
compute the convolution of the vectors in each of the 2 sets
and get two new vectors. Then, we compute the convolution of
the returned new vectors. We use the fact that the convolution
of 2 vectors with size n can be computed in O(n·log(n)) using
Fast Fourier Transform [6]. Hence, each recursive step takes
O(t·log(t)) time and the total computation takes O(t·log2(t)).

The O(t · log2(t)) computational complexity can be im-
proved using the following observation. When the convolution
of two vectors creates a vector with more than K elements, the
resulting vector can be replaced by a short vector with exactly
K elements. The first K − 1 elements of the short vector are
identical to those of the long one. The Kth element is set
to

∑

i≥K yi, where yi is the ith element of the long vector.
Consequently, the Kth element indicates the probability that
the designated receiver will be able to correctly decode the data
block. The information we lose in this process, namely, how
many packets the designated receiver will be able to decode
in addition to the required K packets, is not relevant.

If T (x) is the time required for computing the convolution
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of x short vectors, then the following recursive equation holds:

T (x) ≤
{

2 · T (x/2) + x log x if x < K
2 · T (x/2) + K log K Otherwise. (1)

Thus, for t ≥ K we get T (t) = O(t · log(K) + K · log2(K)).

B. An optimal algorithm for 1-round RM-AMC(OC-1) with a
small number of MCSs

Definition 2: An MCS is said to be unacceptable for a
given SNR if the probability that a packet will be correctly
received by a receiver with such an SNR is almost 0.

Definition 3: MCS-1 is said to dominate MCS-2 for a given
SNR if the probabilities that a receiver with such an SNR will
correctly receive an MCS-1 packet and an MCS-2 packet are
almost identical, but the bandwidth used for transmitting an
MCS-1 packet is smaller than that used for transmitting an
MCS-2 packet.

A transmission configuration that uses an unacceptable
MCS is not optimal because the contribution of the packets
transmitted using this MCS does not justify their bandwidth
cost. A transmission configuration that uses a dominated MCS
is not optimal because it can be replaced with the dominating
MCS that uses less bandwidth without affecting the probability
that a receiver will correctly decode the data block.

In many practical applications, there are at most 3 MCSs
that are acceptable and are not dominated by other MCSs. For
such applications a brute-force search is sufficient. Therefore,
Algorithm 1 can be used to find an optimal solution for 1-
round RM-AMC(OC-1).

Algorithm 1: (an optimal algorithm for 1-round RM-
AMC(OC-1) with a small number of MCSs)

1) Set the list Lp to contain all possible transmission
configurations whose bandwidth ≤ Bmax.

2) Find in Lp the transmission configuration m that max-
imizes the probability that the designated receiver will
correctly decode the data block, and store it in solval.

3) Return solval.
The running time of Algorithm 1 is O(β · (Bmax)N ) where

β is the time complexity for verifying that OC-1 holds and N
is the number of MCSs.

C. A heuristic for 1-round RM-AMC(OC-1) based on the
Unbounded Knapsack Problem

We now present a heuristic for 1-round RM-AMC(OC-1),
based on a reduction to the Unbounded Knapsack Problem
(UKP) [12]. UKP is an extension of USSP [12]. The instance
is a set S of item types s1, s2, . . . , sm and a capacity C. Each
type si has a weight w(si) and a profit p(si). The objective is
to find a vector S

′

= (s′1, . . . , s
′
m) of items whose aggregated

profit
∑m

i=1 s′i · p(si) is maximum and whose aggregated
weight

∑m
i=1 s′i · w(si) is not larger than C.

To reduce an instance of this problem to an instance of UKP,
each MCS is represented by an item type, and the bandwidth
limitation Bmax is translated into the capacity C. The weight
of a type is the bandwidth cost of the corresponding MCS,
and the profit of each type is the probability that a packet

of the corresponding MCS will be correctly received by the
designated receiver. To transform a solution S

′

= (s′1, . . . , s
′
m)

for the reduced UKP problem to a solution for RM-AMC(OC-
1), we construct a transmission configuration with s′i packets
transmitted using MCS-i for every i.

Observation 1: The expected number of correctly received
packets for a given transmission configuration in the 1-round
RM-AMC(OC-1) problem is equal to the aggregated profit in
the corresponding UKP problem.

UKP has a simple 2-approximation greedy algorithm whose
running time is O(m · log(m)) using sorting and O(m) using
linear selection [12]. It also has a pseudopolynomial time-
optimal dynamic programming algorithm whose running time
is O(m · C) [12] and an FPTAS [12].

When the number of MCSs is small, the number of UKP
types is also small. Small instances can be optimally solved in
polynomial time [15]. This gives rise to the following heuristic
for the 1-round RM-AMC(OC-1) problem.

Algorithm 2: (A heuristic for 1-round RM-AMC(OC-1)
with a large number of MCSs)

1) Reduce the 1-round RM-AMC(OC-1) instance to an
UKP instance as described above.

2) Run an algorithm for finding a solution S
′

=

(s′1, . . . , s
′
m) for the UKP instance.

3) Translate S
′ to a solution for 1-round RM-AMC(OC-1),

where the number of packets transmitted using MCS-i
is s′i.

The running time of Algorithm 2 is equal to the running
time of the algorithm used to solve the UKP problem in step 2.
Note, however, that Algorithm 2 has no performance guarantee
even if UKP is solved optimally. To see this, consider two
MCSs: MCS-1 and MCS-2. Suppose that a packet encoded
using MCS-1 requires twice the bandwidth required by MCS-
2. On the other hand, suppose that the probability that the
designated receiver will correctly receive an MCS-1 packet
is 1 − ε, and the probability that it will correctly receive an
MCS-2 packet is 1

4 . Suppose that the available bandwidth B is
sufficient for transmitting 1 MCS-1 packet or 2 MCS-2 packets
and that K = 2. In this case the transmission configuration
returned by Algorithm 2 is composed of a single MCS-
1 packet. Consequently, the probability that the designated
receiver will correctly decode the data block is 0. In contrast,
the optimal transmission configuration for this instance is to
send 2 MCS-2 packets, which results in probability 1

16 .
The table in Figure 1 summarizes the algorithms proposed

in this section.

V. EXTENDING RM-AMC(OC-1) TO MULTIPLE ROUNDS

We now describe how to extend 1-round RM-AMC(OC-1)
to multiple rounds.

A. The R-rounds RM-AMC(OC-1) problem
The R-rounds RM-AMC(OC-1) problem is similar to the

1-round RM-AMC(OC-1), except that there are up to R
transmission rounds for the same data block. The number of
rounds R is chosen in advance to meet the delay constraint.
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Problem Algorithm Performance Time complexity

1-round RM-AMC(OC-1) Alg. 1 Optimal O(β · (Bmax)N )
Alg. 2 Heuristic The time for solving the reduced UKP problem

R-round RM-AMC(OC-1) Alg. 3 Optimal O
(

(Bmax)(N+3) ·K · R
)

Alg. 4 Heuristic O
(

(Bmax)3 ·N ·K · R
)

RM-AMC(OC-1) Alg. 5 Optimal O(N ·K · Bmax)with an unbounded number of rounds
Fig. 1. The various algorithms proposed for RM-AMC(OC-1)

If the application can tolerate a higher delay, the sender will
use a larger value of R. This will increase the probability
for successfully decoding the data block for a given value of
Bmax. After every round of transmission, the sender receives
a feedback message about the number of packets correctly
received by the designated receiver during this round. Since
the base station does not know which node is the designated
receiver, it should run an algorithm similar to that proposed by
NORM [2], where a receiver reports the number of missing
packets only if this report is not superseded by the reports
already sent by other receivers.

We now formally define the R-round RM-AMC(OC-1)
problem:

Problem 2 (R-round RM-AMC(OC-1)):
Instance: The same as for 1-round RM-AMC(OC-1).
Objective: Find a transmission configuration to be used
in each round, based on the outcome of previous rounds,
such that the total bandwidth used is not larger than
Bmax and the probability that the designated receiver will
correctly decode the data block is maximized.

Implementation Note: In practice, no node is “nominated“
as the designated receiver. A practical way for the base station
to know which node is the designated receiver is to ask those
receivers whose SNR is above the desired threshold (i.e., the
designated group) to report how many packets they are missing
and their SNR. (This is done after the first round of packets
is broadcast.) Each such receiver draws a random backoff
time from a truncated exponential distribution. The random
backoff time depends also on the SNR, such that a receiver
with a larger SNR will be likely to wait longer. A receiver
whose timer expires checks whether its SNR is smaller than
the smallest SNR reported so far. (Thus, each feedback sent by
a receiver on the uplink should be reflected by the base station
on the downlink.) If it is not smaller, the receiver suppresses
its feedback. If it is smaller, the receiver sends a feedback
message that contains its SNR and the number of missing
packets. The last reporting receiver is considered to be the
designated receiver. If more than 2 rounds are necessary, this
receiver will be explicitly queried by the base station in the
next feedback rounds.

Theorem 2: The decision version of R-round RM-
AMC(OC-1) is NP-hard1.
The proof is presented in the Appendix.

1Following Theorem 1, this theorem is trivial for an arbitrary R. However,
here we consider a constant R > 1 that is known in advance and is not a
part of the input.

Observation 2: From the proof of Theorem 2 it follows that
for every solution for the R-round RM-AMC(OC-1) problem
with K = 1, there is a solution with the same performance
guarantee and the same bandwidth limitation that uses only
a single round. The only benefit in using more than a single
round in this case (K = 1) is the possible reduction in total
bandwidth cost.

B. An optimal algorithm for R-round RM-AMC(OC-1) with a
small number of MCSs

Let Gτ [≥ k] be the probability that at least k packets
will be correctly received by the designated receiver for a
transmission configuration τ in 1-round RM-AMC(OC-1), and
let Gτ [k] be the probability that exactly k packets will be
correctly received. In Section IV-A we showed how to find
Gτ [≥ k] and Gτ [k]. We now assume their values are given
in an O

(

(Bmax)N ·K
)

size array, where Bmax is the total
bandwidth allowed for the transmission of the data block, N
is the number of available MCSs, and K is the number of
packets required for decoding the data block. Let H(k, b, r)
be the maximum probability that the receiver will correctly
receive at least k packets using a protocol of r rounds whose
total bandwidth consumption is b, and let Tb be the set of
all transmission configurations whose bandwidth consumption
is b. We now define the following equation for computing
H(K, Bmax, R) using dynamic programming:

H(k, b, 1) = max
τ∈Tb

Gτ [≥ k], (2)

H(k, b, r) is the maximum of
c

∑

i=0

Gτ [i] ·H(max(k − i, 0), b− c, r − 1)

obtained for every transmission configuration τ ∈ Tc

where 0 ≤ c ≤ b.

Theorem 3: Eq. 2 calculates H(k, b, r) as defined earlier.
The proof is presented in the Appendix.

There are K ·Bmax ·R entries to compute. Each entry takes
O

(

∑Bmax

i=0 |Ti| · Bmax

)

= O
(

(Bmax)(N+2)
)

time. There-
fore, the total time complexity is O

(

(Bmax)(N+3) ·K ·R
)

.
To return the transmission configuration that corresponds to
the value of H(k, b, r), we create an array T . During the
computation of H(k, b, r) we update entry T [k, b, r] to contain
the transmission configuration used to obtain the value of
H(k, b, r). This idea is summarized in the following algorithm.
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Algorithm 3: (An optimal algorithm for R-round RM-
AMC(OC-1) with a small number of MCSs)

1) Using Eq. 2 and dynamic programming, compute
H(k, b, r) for 0 ≤ k ≤ K, 0 ≤ b ≤ Bmax, 1 ≤ r ≤ R.

2) curk ← K, curb← Bmax.
3) For i = 1 to R:

a) Use T [curk, curb, R − i + 1] as the transmission
configuration in the ith round and subtract its
bandwidth cost from curb.

b) After getting a feedback message about the out-
come of the previous round, subtract from curk

the number of packets correctly received by the
designated receiver in the ith round.

C. A heuristic for R-round RM-AMC(OC-1) with a large
number of MCSs

When the value of N is larger than 2-3 or the value of
Bmax is in the order of several hundreds, the running time
complexity of Algorithm 3 renders it impractical. We now
describe a heuristic whose running time is much better.

In the beginning of every round, the algorithm is given the
remaining bandwidth and the number of packets the designated
receiver has already correctly received. The algorithm returns
the transmission configuration for this round.

During every step of its execution the algorithm determines:
(a) the amount of bandwidth to be used in the next round, and
(b) whether to use this bandwidth as an input to Algorithm
2 or to use it for a transmission configuration that contains a
single MCS. If Algorithm 2 is used in every round and the
UKP problem in Algorithm 2 is solved optimally, the solution
produced by the heuristic has the same probability as a solution
for a single round with the same Bmax. We will see, in Section
VI, that combining Algorithm 2 with an algorithm that uses a
single MCS is a good heuristic for 1-round, and therefore it
makes sense to use a similar rationale for multiple rounds.

Let τb be the transmission configuration returned by Algo-
rithm 2 when running with Bmax = b. Let τ j

b be the trans-
mission configuration containing only MCS-j packets that uses
the maximum possible bandwidth under bandwidth limitation
b. Recall that Gτ [≥ k] is defined as the probability that at least
k packets will be correctly received by the designated receiver
for a transmission configuration τ in 1-round RM-AMC(OC-
1), and Gτ [k] is defined as the probability that exactly k
packets will be correctly received.

We also define Ub[k] and Sj
b [k] as follows:

Ub[k] =

{

Gτb [k] if τb uses bandwidth b
0 Otherwise (3)

Sj
b [k] =

{

Gτj

b [k] if τ j
b uses bandwidth b

0 Otherwise.

Similarly, we define Ub[≥ k] and Sj
b [≥ k] as follows:

Ub[≥ k] =

{

Gτb [≥ k] if τb uses bandwidth b
0 Otherwise (4)

Sj
b [≥ k] =

{

Gτj

b [≥ k] if τ j
b uses bandwidth b

0 Otherwise.

When Ub[k] and Ub[≥ k] are computed using Eq. 3 and Eq.
4, τb is found using Algorithm 2.

Let M(k, b, r) be the maximum probability that the desig-
nated receiver will correctly receive at least k packets using
an r-round algorithm whose total bandwidth consumption
is b when we use in every round Algorithm 2 or a single
MCS. We now define the following equations for computing
M(K, Bmax, R) using dynamic programming:

M(k, b, 1) = max
{

Ub[≥ k], S1
b [≥ k], . . . , SN

b [≥ k]
}

, (5)

M(k, b, r) = max







∑c
i=0 Uc[i]·

M(max(k − i,
0), b− c, r − 1)

,

∑c
i=0 Sj

c [i]·
M(max(k − i,
0), b− c, r − 1)







for 1 ≤ j ≤ N and 0 ≤ c ≤ b.

Theorem 4: Eq. 5 calculates M(k, b, r) as defined earlier.
The proof is presented in the Appendix.

Note that in the computation of M(k, b, r) there are
N + 1 elements from which the maximum is taken. There
are K · Bmax · R entries to compute. Each entry takes
O

(

(Bmax)2 ·N
)

time. Assuming that Algorithm 2 is solved
using a 2-approximation polynomial time algorithm [12], the
total time complexity is O

(

(Bmax)3 ·N ·K ·R
)

. Using a
similar idea to that presented in Section V-B, we create
an array T whose [k, b, r] entry contains the transmission
configuration used to obtain the value of M(k, b, r). We now
summarize the whole algorithm.

Algorithm 4: (A heuristic for R-round RM-AMC(OC-1)
with a large number of MCSs)

1) Use dynamic programming to compute M(k, b, r) for
0 ≤ k ≤ K, 0 ≤ b ≤ Bmax, 1 ≤ r ≤ R, according to
Eq. 5.

2) curk ← K, curb← Bmax.
3) For i=1 to R:

a) Use T [curk, curb, R − i + 1] as the transmission
configuration in the ith round and subtract the
bandwidth cost of this transmission configuration
from curb.

b) After getting a feedback message about the out-
come of the previous round, subtract from curk

the number of packets correctly received by the
designated receiver in the ith round.

D. Unbounded number of rounds
The case where the number of rounds is unbounded is

interesting not only because of the theoretical analysis, but also
because it allows us to find the number of rounds for which
the performance is very close to the maximum possible with
an unbounded number of rounds. Since the bandwidth limit
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still holds, the number of rounds is, in practice, limited by
the maximum number of packets the sender can send. Thus,
the unbounded number of rounds is equivalent to R-rounds
RM-AMC(OC-1) with R = Bmax.

Observation 3: Every optimal transmission configuration
for the RM-AMC(OC-1) with an unbounded number of rounds
that uses more than one packet in any round can be replaced
by an optimal transmission configuration that uses exactly one
packet in every round.

Let F (k, b) be the maximum probability that at least k
packets will be correctly received by the designated receiver
using a bandwidth cost of b. The following equation is used
for computing F (K, Bmax) using dynamic programming.

F (k, 0) =

{

0 if k > 0
1 Otherwise. (6)

F (k, b) =















F (k, 0) if ∀j,bj > b

maxbj≤b((p
j · F (k − 1, b− bj)+

(1− pj) · F (k, b− bj))) Otherwise.

Theorem 5: Eq. 6 calculates F (k, b) as defined earlier.
The proof is presented in the Appendix.

The computation of each entry requires O(N) operations
and the total number of entries is O(K · Bmax). Thus, the
total running time is O(N ·K ·Bmax).

During the computation of F (k, b) we update entry A[k, b]
to contain the MCS used to obtain the value of F (k, b). From
Observation 3 we note that there exists an optimal solution
for the RM-AMC(OC-1) problem with an unbounded number
of rounds that uses a single packet whose MCS is A[i, b] in
every round. The value of i indicates the number of packets
the designated receiver has to receive in order to correctly
decode the data block. It is equal to K minus the number of
packets correctly received in all previous rounds. The value
of b indicates the bandwidth available for transmission of
this data block, namely, Bmax minus the bandwidth used in
previous rounds.

We now present an optimal algorithm for RM-AMC(OC-1)
with an unbounded number of rounds.

Algorithm 5: (An optimal algorithm for RM-AMC(OC-1)
with an unbounded number of rounds)

1) Use dynamic programming to compute F (k, b) for 0 ≤
k ≤ K, 0 ≤ b ≤ Bmax, according to Eq. 6.

2) curk ← K, curb← Bmax.
3) While curk > 0 and curb ≥ b1 (i.e., the designated

receiver has not yet correctly received K packets and
there is enough bandwidth for a new packet) do:

a) In the ith round, transmit 1 packet using the
MCS indicated in A[curk, curb] and subtract the
bandwidth cost of this packet from curb.

b) If the designated receiver correctly receives the last
transmitted packet, curk ← curk − 1.

Since there are at most Bmax rounds, the running time of
Algorithm 5 is O(N ·K ·Bmax +Bmax) = O(N ·K ·Bmax).

VI. SIMULATION STUDY OF THE VARIOUS ALGORITHMS

The goal of this section is threefold:
• To compare the benefit of using multiple MCSs for the

considered reliable multicast application to the current
practice of using only one MCS, for OC-1.

• To compare the performance of the various algorithms
presented in this paper for OC-1.

• To evaluate the benefit of using multiple rounds.
Throughout this section we consider 7 possible MCSs.

These MCSs and the corresponding probabilities of the desig-
nated receiver to correctly receive a packet for a certain SNR
are computed according to [4]. To compare the results of using
multiple MCSs with those of a single MCS, we now present
the optimal single MCS algorithm:

Algorithm 6: (an optimal algorithm for 1-round RM-
AMC(OC-1) with a single MCS)

1) For every MCS, build a transmission configuration with
as many packets as can be accommodated using a
bandwidth of Bmax.

2) From all these transmission configurations, use the one
that maximizes the probability that the designated re-
ceiver will correctly decode the data block.

The time complexity of Algorithm 6 is O(N · Bmax · β).
The results reported in this section are for SNR values

between 6dB and 10dB. However, we saw similar results for
different SNR values. Some of our graphs show the probability
that the designated receiver will correctly decode the data
block vs. the SNR it experiences. The SNR values displayed
in those graphs are between 6dB and a value for which the
success probability is very close to 1 (> 0.999), because
increasing the SNR value further does not affect the success
probability. In the considered SNR range, there are up to 4
relevant MCSs, for which the success probability is greater
than 0.

Throughout this section we consider K = 6 packets per data
block. We saw no substantial differences when we increased K
to 10. For every SNR value, we set Bmax to be sufficient for
5 packets of the MCS that consumes the highest bandwidth,
plus 1 packet of the MCS that consumes the second-highest
bandwidth. Figure 2 shows the probability that the designated
receiver will correctly decode the data block vs. the SNR
it experiences for three algorithms: Algorithm 1 (optimal),
Algorithm 2 and Algorithm 6 (optimal for 1 MCS). For
Algorithm 2 we used an optimal pseudopolynomial algorithm
to solve the UKP problem. However, solving UKP using the
greedy algorithm instead of the optimal pseudopolynomial
algorithm only slightly reduces the performance of Algorithm
2.

Algorithm 2 performs very much like Algorithm 1 (the
optimal algorithm) and both are represented by a single curve.
When we use a single MCS, the performance is significantly
worse. This is because the value of Bmax is not large enough
for transmitting 6 packets using the best MCS for the desig-
nated receiver.

In Figure 3 and Figure 4 we concentrate on a single SNR, of
7.5dB, but consider different Bmax values. In both graphs we
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Fig. 2. Probability that the designated receiver will correctly decode a data
block vs. the SNR it experiences for Algorithm 1, 2 and 6

show the probability that the designated receiver will correctly
decode the data block vs. Bmax. In Figure 3 we see that
Algorithm 2 performs very much like Algorithm 1 for most of
the Bmax values. However, there is a range of Bmax where
Algorithm 2 is suboptimal because it sends fewer than 6
packets, which results in a probability 0 that the designated
receiver will correctly decode the data block.

In Figure 4 we see that Algorithm 6 (the optimal single MCS
algorithm) performs very much like Algorithm 1 exactly in the
same Bmax values for which Algorithm 2 performs poorly.
This is because Algorithm 6 uses at least 6 packets as soon
as the bandwidth allows it.

We conclude that for 1-round RM-AMC(OC-1) with a small
number of MCSs, Algorithm 1 is recommended. For more than
3 MCSs, running both Algorithms 2 and 6 is recommended.
From the two returned transmission configurations, the one
that maximizes the probability for the designated receiver
to correctly decode the data block should be chosen. This
algorithm will be close to optimal for all Bmax values, and its
time complexity is equal to the time complexity of Algorithm
2. In addition, in Algorithm 2 the greedy 2-approximation
procedure is sufficient for solving the UKP problem.
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Fig. 3. Probability that the designated receiver will correctly decode a data
block vs. the bandwidth limitation for Algorithm 1 and 2

We now present simulation results for multiple rounds. We
used K = 6, and set Bmax to be sufficient for exactly 5
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Fig. 4. Probability that the designated receiver will correctly decode a data
block vs. the bandwidth limitation for Algorithm 2 and 6

packets of the most bandwidth consuming MCS (for every
considered SNR) and 1 packet of the second most bandwidth
consuming MCS. We compare the performance of 1 round
to 2 rounds and to an unbounded number of rounds. For 1
round we used Algorithm 1, for 2 rounds we used Algorithm
3 with R = 2, and for the theoretical unbounded number of
rounds we used Algorithm 5. Recall that all these algorithms
are optimal.

Figure 5 shows the probability that the designated receiver
will correctly decode the data block vs. the SNR it experiences.
We see that the 2-round protocol performs better than the 1-
round protocol and very close to the unbounded number of
rounds protocol.

We increased K to 30, and set Bmax to be sufficient for
29 packets of the most bandwidth consuming MCS and 1
packet of the second most bandwidth consuming MCS. The
results are depicted in Figure 6. We see that for larger values
of K, the benefit of using more rounds increases. This is
because the bandwidth used by the sender for each data block
is greater, which allows more combinations of MCSs using
the information collected during every round.

Another interesting case is when K = 30 and Bmax is
sufficient for 5 · 5 = 25 packets of the most bandwidth
consuming MCS and 1 · 5 = 5 packets of the second most
bandwidth consuming MCS. The results for this case are
depicted in Figure 7. Compared to Figure 6, the success
probability is smaller for SNRs < 8.5dB. The reason is
that less bandwidth is used and therefore more packets are
transmitted using the second most bandwidth consuming MCS.
For low SNRs, the probability to receive such a packet is very
small. As the SNR increases, the probability increases until it
reaches 1 for SNR of 9dB, because for this SNR value the
probability to receive a packet transmitted using the second
most bandwidth consuming MCS is close to 1. We can see
that for this case the benefit of using more rounds is greater
than for the case where K = 6.

We also compared the performance of 1 round, 2 rounds,
and the theoretical unbounded number of rounds with different
values of Bmax for K = 6 and constant SNR of 8.5dB. The
results, depicted in Figure 8, are similar to those reported in
Figure 5.
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when Bmax is sufficient for 29 packets of the most bandwidth consuming
MCS and 1 packet of the second most bandwidth consuming MCS
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when Bmax is sufficient for 25 packets of the most bandwidth consuming
MCS and 5 packets of the second most bandwidth consuming MCS

We also compared the performance of Algorithm 3 to the
performance of Algorithm 4 with 2 rounds, for K = 6 and
K = 30. Bmax is set to be sufficient for K − 1 packets
of the most bandwidth consuming MCS and 1 packet of the
second most bandwidth consuming MCS. Despite the fact that
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Fig. 8. Probability that the designated receiver will correctly decode a data
block vs. the bandwidth limitation for Algorithm 1, 3 and 5

Algorithm 3 is optimal while Algorithm 4 is only heuristic, we
found no difference in their performance. We made a similar
observation when we used other sets of parameters.

In summary, we saw that using multiple MCSs improves
the performance for OC-1. We also saw that when the optimal
algorithm (Algorithm 1) cannot be used, Algorithm 2 is the
second best. In addition, we saw that increasing the number
of rounds from 1 to 2 for OC-1 improves the performance
significantly for some SNR values. However, increasing the
number of rounds further adds no significant improvement.
Finally, we saw that the polynomial time heuristic for multiple
rounds (Algorithm 4) yields results similar to those of the
pseudopolynomial optimal algorithm.

VII. EXTENSIONS TO OTHER OPTIMIZATION CRITERIA

While OC-1 is an important optimization criterion for
reliable multicast, other optimization criteria are relevant as
well. In this section we describe two such criteria:

OC-2 Minimize the total bandwidth, while guaranteeing
that the probability of every receiver from the designated
group to decode a data block is ≥ P .

OC-3 Like OC-2, except that P might be different for
different subgroups. For example, one may define two
subgroups: one with a good channel and one with a
bad one, and assign to the first subgroup a higher target
probability.

We note that all the problems defined earlier, except for the
unbounded number of rounds case, are NP-hard for OC-2 and
OC-3 as well. To see why, observe that the decision version of
RM-AMC(OC-2) is identical to the decision version of RM-
AMC(OC-1), and therefore RM-AMC(OC-2) is also NP-hard.
To prove that OC-3 is also NP-hard, it is sufficient to show
that every OC-2 instance can be reduced to an OC-3 instance.
The reduction is trivial: select for every receiver the same
probability threshold considered for OC-2.

That OC-2 holds for a given transmission configuration can
be verified using our OC-1 verification procedure, described
in Section IV-A. To verify that OC-3 holds for a given
transmission configuration, we divide the receivers into groups
according to the OC-3 thresholds. Then, we verify that OC-2
holds for each subgroup.
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In practical applications there exists an MCS for which
the probability of the receiver with the worst SNR in the
designated group to successfully receive a packet encoded
using this MCS is very close to 1. Let bm be the bandwidth
cost of a packet sent using this MCS. Transmitting only K
packets using this MCS guarantees, with probability very close
to 1, that every receiver in the designated group of OC-2 and
OC-3 will successfully receive the data block. Therefore, an
optimal solution for RM-AMC(OC-2) and RM-AMC(OC-3)
will have a bandwidth≤ K ·bm. This rationale can be used for
finding an optimal solution for OC-2/OC-3 using the following
algorithm:

1) Let Lp contain all possible transmission configurations
whose bandwidth ≤ K · bm.

2) Find in Lp the transmission configuration m that satisfies
OC-2/OC-3 and has the minimal bandwidth require-
ments. Store it in solval.

3) Return solval.
The running time of this algorithm is O(β · (K · bm)N ).

As we did for the optimal single MCS algorithm for OC-1
(Algorithm 6), we can also define polynomial time optimal
single MCS algorithms for OC-2 and OC-3, as follows:

1) For every MCS, build a transmission configuration with
as many packets as can be accommodated using a
bandwidth of ≤ K · bm.

2) From all these transmission configurations, choose the
one that minimizes the bandwidth and satisfies the
relevant probability threshold(s).

We compared the performance of the OC-2 optimal algo-
rithm and the OC-2 single MCS algorithm for K = 6 and
K = 10 with probability threshold of P = 0.99. The results
are depicted in Figure 9, which describes the bandwidth used
for transmitting a data block vs. the SNR. It turns out that
both algorithms have the same performance for this set of
parameters, as well as for every other set we used. Therefore,
the graph shows only one curve.
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Fig. 9. The bandwidth for transmitting a data block vs. the SNR experienced
by the designated receiver for OC-2

In Figure 9 we see that as the SNR value of the designated
receiver increases, the bandwidth remains constant up to a
certain point and then drops until it reaches a new step. This

discrete drop between two constant bandwidth points can be
explained as follows. Although we see an increase in the SNR,
a new MCS is relevant only when the probability to receive a
packet using this MCS becomes sufficiently high. As the SNR
further increases, it becomes sufficiently high for transmitting
fewer packets using this MCS. If we can transmit K packets
using this MCS, the bandwidth remains constant until the next
MCS becomes relevant.

To simulate our OC-3 algorithms, we used K = 6 and
two groups of receivers. The group with the lower SNRs is
assigned a probability threshold of 0.95 and the group with
the higher SNRs is assigned a probability threshold of 0.99.
Figure 10 shows the bandwidth vs. the SNR experienced by
the designated receiver in the group with the lower SNRs.
The SNR value of the designated receiver in the group with
the higher SNRs was set to be higher by 2.0dB. We saw,
again, no differences between the optimal algorithm and the
best MCS algorithm. Thus, only one curve is shown in the
graph. Similar results were obtained when we increased the
value of K to 10.
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Fig. 10. The bandwidth for transmitting a data block vs. the SNR experienced
by the designated receiver from the lower-quality subgroup for OC-3

When we used 3 OC-3 subgroups with probability thresh-
olds of 0.95, 0.99 and 0.999 and a 2.0dB difference between
the SNRs of the designated receivers, we got very similar
results.

For both OC-2 and OC-3, we found very specific scenar-
ios for which the optimal algorithm reduces the bandwidth
consumed by the single MCS algorithm. Since the maximum
improvement we found was smaller than 8%, and since in
most scenarios no difference was found, we believe that the
polynomial time single MCS algorithm should be preferred
for OC-2 and OC-3, unless the number N of MCSs is very
small (2-3).

VIII. CONCLUSIONS

We defined a new problem, called RM-AMC, that arises
when a base station in a broadband wireless network wishes to
multicast information to a large group of nodes and to guaran-
tee some level of reliability using Application layer FEC codes
with or without ARQ. The problem is to determine which PHY
layer MCS the base station should use for each packet. RM-
AMC was shown to have several variants, depending on the
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number of transmission rounds the sender can use. We defined
an optimization criterion, referred to as OC-1. We showed that
RM-AMC(OC-1) is NP-hard for any fixed number of rounds.
We then presented several algorithms for one or more rounds
and studied their performance under different conditions. We
then considered two other optimization criteria, referred to
as OC-2 and OC-3. We showed that RM-AMC remains NP-
hard, and compared the performance of the optimal and the
single MCS algorithms for OC-2 and OC-3 under different
conditions.
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APPENDIX

A. The Proof of Theorem 1
To prove that 1-round RM-AMC(OC-1) is NP-hard, we

present the Unbounded Subset Sum Problem (USSP) [12]. The
instance of USSP is a set S of item types s1, s2, . . . , sm and a
capacity C. Each type si has a weight w(si). The objective is
to find a vector S

′

= (s′1, . . . , s
′
m) of items whose aggregated

weight
∑m

i=1 s′i · w(si) is maximum but not larger than C.
USSP is known to be NP-hard in the weak sense2 [12].

We reduce the decision version of USSP into the decision
version of 1-round RM-AMC(OC-1). Recall that in a decision
version of a problem, an algorithm is only expected to tell
whether or not a solution with a specified value exists. In the
decision version of 1-round RM-AMC(OC-1), the algorithm
only needs to tell whether there is a transmission configuration
whose total bandwidth cost is B and the probability that the
designated receiver will correctly decode the data block is P .

Given an input for USSP, we translate it into an input for
1-round RM-AMC(OC-1) in the following way. Every item
type si ∈ S is transformed into a function fi(SNR) = 1 −
2−w(si)/C that determines the probability to correctly receive
an MCS-i packet for a given SNR value. The size of a packet
encoded using MCS-i is equal to w(si). Note that with this
transformation we have N = |S| = m MCSs. In addition, for
the RM-AMC(OC-1) instance, we set P ← 1

2 , K ← 1 and
B ← C.

We now show that there exists an USSP solution that uses
the entire capacity C if and only if there exists a transmission
configuration with bandwidth B = C such that the probability
that the designated receiver will correctly decode the data
block is P = 1

2 . Let τi be the number of packets transmit-
ted using MCS-i in the solution for RM-AMC(OC-1). The
probability that the designated receiver will not receive the
data block correctly is equal to the probability that it will
not receive any packet, namely,

∏N
j=1 (1− fj(SNR))τj =

∏N
j=1 2−w(sj)·τj/C = 2

−
∑

N

j=1
w(sj)·τj/C . If there is a solution

for USSP that uses the entire capacity C, then there is
a transmission configuration that uses the entire bandwidth
B = C. In such a case,

∑N
j=1 w(sj) · τj = C and the

probability that the designated receiver will correctly decode

2A problem is NP-hard in the weak sense if it is NP-hard when the input
is represented as a binary string.
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the data block is 1
2 . If a solution for USSP does not exist, then

for every transmission configuration,
∑N

j=1 w(sj) · τj < C,
and the probability that the designated receiver will correctly
decode the data block is < 1

2 .

B. The Proof of Theorem 2
In Theorem 1, we proved that 1-round RM-AMC(OC-1)

is NP-hard even if K = 1. We now reduce the instance of
the 1-round RM-AMC(OC-1) decision problem considered in
Theorem 1 to an instance of the R-round RM-AMC(OC-1)
decision problem for a constant R > 1. The reduction is trivial:
the input remains the same and the decision to be made by an
R-round RM-AMC(OC-1) algorithm is whether there exists an
R-round algorithm with total bandwidth cost B for which the
probability that the designated receiver will correctly decode
the data block is P .

If there is a solution for the considered 1-round RM-
AMC(OC-1) instance, the same transmission configuration can
be used in the first round of the R-round RM-AMC(OC-1)
problem, and in the remaining R−1 rounds no packet is sent.
If there is a solution for the reduced R-round RM-AMC(OC-1)
problem, then, since K = 1, there is an algorithm composed
of R transmission configurations where the ith transmission
configuration is used in the ith round. The event that occurs if
in the ith round the receiver correctly receives at least 1 packet
is denoted Di. Note that since K = 1, this is equivalent to
the event that the receiver correctly decodes the data block
after the ith round. The probability that the receiver will
correctly decode the data block is Pr(D1 ∨D2 ∨ · · ·∨DR) =
1−Pr(Dc

1∧Dc
2∧· · ·∧Dc

R), where Dc
i is the complement of Di.

Let τ(i) be the transmission configuration used in the ith round
and let τ̃ =

∑R
i=1 τ(i). The probability for correctly decoding

the data block when using τ̃ in the considered 1-round RM-
AMC(OC-1) instance is exactly 1−Pr(Dc

1 ∧Dc
2 ∧ · · · ∧Dc

R).
The bandwidth of τ̃ is equal to the bandwidth used in the
solution for the reduced R-round RM-AMC(OC-1) problem.
Hence, there is a solution for the considered 1-round RM-
AMC(OC-1) instance and the reduction holds.

C. The Proof of Theorem 3
We prove the theorem by induction on the number of rounds

r. For r = 1, the correctness of Eq. 2 is straightforward,
because we select the maximum value of Gτ [≥ k] over
all transmission configurations with bandwidth b. By the
induction hypothesis, Eq. 2 calculates H(k, b, r) correctly for
every r < l for a given l > 1 and for every k, b. We now show
that Eq. 2 also calculates H(k, b, l) correctly. By the induction
hypothesis, for every i Gτ [i] ·H(max(k− i, 0), b− c, l− 1) is
equal to the maximum probability that the designated receiver
will correctly receive at least k packets using l rounds and
bandwidth b, assuming that in round l the transmission con-
figuration τ is used and exactly i packets are correctly received
during this round. Since the summation in Eq. 2 is performed
for 0 ≤ i ≤ c, it is equal to the probability that the designated
receiver will correctly receive at least k packets using l rounds
and bandwidth b assuming that in round l the transmission
configuration τ is used. Since the selected summation value

is the maximum over all transmission configurations with
bandwidth ≤ b, the theorem holds.

D. The Proof of Theorem 4
We prove the theorem by induction on the number of rounds

r. For r = 1, the correctness of Eq. 5 is straightforward,
because we select the maximum between the performance of
Alg. 2 and that of a single MCS (for every MCS-j) in the
single round. Assume that Eq. 5 calculates M(k, b, r) correctly
for every r < l for a given l > 1 and for every k, b. We now
show that Eq. 5 also calculates M(k, b, l) correctly. By the in-
duction hypothesis,

∑c
i=0 Uc[i]·M(max(k−i, 0), b−c, l−1) is

equal to the maximum probability that the designated receiver
will correctly receive at least k packets using l rounds and
bandwidth b, while Alg. 2 is used with bandwidth c in the lth
round. Now, note that

∑c
i=0 Sj

c [i]·M(max(k−i, 0), b−c, l−1)
is equal to the maximum probability that the designated
receiver will correctly receive at least k packets using l rounds
and bandwidth b where in round l only MCS-j packets are
transmitted and the total bandwidth of this round is c. Since
in Eq. 5 we consider every 0 ≤ c ≤ b and every 1 ≤ j ≤ N
and select the maximal value, the theorem holds.

E. The Proof of Theorem 5
We prove the theorem by induction on the bandwidth b.

For b = 0, the correctness of Eq. 6 is straightforward because
no packet can be transmitted. By the induction hypothesis we
assume that Eq. 6 calculates F (k, b) correctly for every b <
l where l > 0 and for every k. We now show that Eq. 6
calculates F (k, l) correctly. First, note that by Observation 3
it is sufficient to consider the cases where in every round a
single packet is transmitted. We first consider the case where
for every j, bj > l. Although the bandwidth is > 0, in this case
we still cannot transmit any packet. Thus, F (k, l) = F (k, 0),
and Eq. 6 holds. If bj ≥ l holds for some j, the expression pj ·
F (k−1, l−bj)+(1−pj)·F (k, l−bj) is equal to the maximum
probability that the designated receiver will correctly receive
at least k packets using bandwidth l, where in round l an
MCS-j packet is transmitted. Since we select the maximum
value over all values of j from which a packet can be sent
using MCS-j (bj < b), Eq. 6 calculates F (k, l) correctly in
this case as well.
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