
Proactive Rerouting in Network Overlays
Reuven Cohen Yuval Dagan Gabi Nakibly

Dept. of Computer Science
Technion – Israel Institute of Technology

Haifa, Israel

Abstract—Virtual overlay network technology provides impor-
tant benefits to large data centers and to service providers. These
benefits include traffic isolation and ease of service provisioning.
When the underlying network supports traffic engineering, tun-
neling brings another important benefit: the ability to control
the exact route of all packets without handling each independent
flow. This paper addresses the problem of rerouting when the
core network supports traffic engineering. We introduce the novel
concept of proactive (time-driven) rerouting, which we distinguish
from the well-known concept of reactive (event-driven) rerouting.
One important advantage of proactive rerouting is reducing the
communication between the core network controller and the edge
network controller. Another advantage is that new flows do not
have to wait before they are admitted into a rerouted tunnel.
Unlike a reactive rerouting algorithm that knows which tunnel
has to be rerouted, a proactive rerouting algorithm does not
receive as an input the identity of a specific tunnel. Thus, its main
goal is to predict which tunnel to reroute in order to increase
the probability that future flows will be accommodated. Our
main contribution is the development of a proactive rerouting
algorithm that performs very well, sometimes even better than
the reactive algorithms.

I. INTRODUCTION

Software defined networking (SDN) and network virtualiza-
tion use tunneling as a means of communication. Tunneling
is used in the building of virtual overlay networks, which are
known to better support virtual machine (VM) provisioning, to
enable scalability and to improve automation. Virtual overlay
network technology provides benefits to large data centers, the
most important of which is traffic isolation for multi-tenancy.
Another important benefit is ease of VM provisioning, because
a VM can be migrated to a new subnet without changing its IP
address or other network-dependent attributes. However, when
the underlying network is based on a virtual circuit technology,
such as MPLS, tunneling brings yet another important benefit:
the ability to control the exact routes of the data packet, a
process also known as traffic engineering, without handling
each independent flow.

In a network overlay, also known as “overlay SDN,” a
packet is encapsulated inside another packet. The encapsulated
packet is then forwarded along the route determined by the
encapsulating header, until it reaches the end of tunnel, where
it is de-encapsulated. Many different tunneling protocols are
used today, including MPLS, VXLAN, NVGRE, STT and
NVO3. The idea is that tunnels are built along routes with

This research was partially funded by the Office of the Chief Scientist of
the Israel Ministry of Economy under the Neptune generic research project.
Neptune is the Israeli consortium for network programming.

core switches
ingress
edge

switch

egress
edge

switch

source
host

dest
host

controller
fabric

edge
controller

Fig. 1. The considered network architecture, as proposed by [2]

available bandwidth and flows are routed over these tunnels
while taking advantage of the network resources reserved for
their tunnels. The combination of SDN with MPLS has been
identified by [2] as the best way to bring SDN into the carrier
networks.

Figure 1 shows the three components of the considered
network as described in [2]: hosts, edge switches, and the
core fabric. The core and the edge are controlled by separate
controllers: the edge controller handles the interface between
the operator and the network, whereas the core controller is
responsible for building tunnels and allocating resources to
them.

The core network controller is responsible for creating new
tunnels, each of which may contain thousands of flows at
any given time. Once a tunnel is ready, the admission of new
flows into it is the responsibility of the edge controller. These
two controllers sometimes need to interact, as they do, for
example, when the edge controller wants to admit a new flow
but there is no tunnel with enough available bandwidth. The
interaction between the two controllers can be a bottleneck in
the network. We therefore seek to minimize it by requesting
that the core controller maintain the tunnels without receiving
explicit requests from the edge controller. This is the rationale
behind the proactive algorithm presented later on.

Consider a pair of nodes (s, d). Let the tunnel between them
be t(s, d). A default tunnel is usually established over the
shortest path with sufficient resources between s and d (i.e.,
the shortest path after ignoring the links without sufficient
resources), but it can be established over any other path as
well. When t(s, d) runs out of resources, the edge controller
cannot admit new flows into it. This controller communicates
with the core network controller and requests that additional
resources be allocated to this tunnel. If additional resources
cannot be allocated, the only way to admit additional flows is
either by building a new tunnel or by moving the tunnel to a
new path, a process also known as rerouting. The advantage to
rerouting of tunnels is that all the already admitted flows areISBN 978-3-903176-08-9 c© 2018 IFIP

rerouted together with the tunnel, with no additional per-flow
overhead [7].

Rerouting is preferable over creating additional tunnels for
several reasons:

1) Every tunnel requires expensive forwarding entries in the
network switches.

2) Every tunnel needs to be protected against failures [6].
3) With many tunnels between every pair of nodes, band-

width utilization decreases due to a lower multiplexing
ratio (a single 10Gb/s tunnel can be better utilized than
10 1Gb/s tunnels).

This paper addresses the problem of tunnel management and
rerouting when the core network controller can determine the
exact route over which every tunnel is established. Rerouting
schemes have been extensively studied in the context of virtual
circuit technologies, such as ATM, WDM, and MPLS. While
most works on rerouting have focused on restoration following
a link or node failure [7], [6], [19], [22], there is also extensive
work on rerouting for throughput maximization[10], [27], [16],
[25], [3], [14], [26]. The main difference between these works
and the present work is that they all assume exact knowledge
of the flows introduced into the network and of the flows
that cannot be accommodated. Thus, they are all reactive.
In contrast, the SDN core controller is not directly aware
of the flows introduced into the network. Thus, it does not
know about specific routing failure events. Such a controller
can therefore use only proactive rerouting algorithms, which
require no exact knowledge about how current flows are
routed.

An important advantage of proactive rerouting is that it re-
quires no communication between the two controllers. Another
important advantage is that new flows do not have to wait
for rerouting before they are admitted into a tunnel, because
it alleviates congestion in hot-spots before the appearance of
new flows.

Our key contribution is the distinction between reactive
(event-driven) and proactive (time-driven) reroutings. With
reactive rerouting, a tunnel may be rerouted by the core
network controller only after the edge controller fails to admit
a new flow into the network due to lack of bandwidth in the
existing (default) tunnel between the corresponding end nodes.
With proactive rerouting, the core controller is periodically
invoked in order to replace the tunnels in the network such
that the likelihood that the edge controller will fail to admit
future data flows is minimized. We present algorithms for each
model, in order to find the one that yields the best trade-
off between the number of reroutings and the core network
throughput.

The rest of the paper is organized as follows. Section III
describes an algorithm for proactive rerouting. Section IV
describes several algorithms for reactive rerouting. Section V
presents simulation results for the various algorithms. Finally,
Section VI concludes the paper.

II. RELATED WORK

This paper is largely motivated by recent works that show
the potential of combining SDN with MPLS. In [2], the
authors suggest that a network fabric should be included as
an architectural building block within SDN. They also identify

the key properties for these fabrics: separation of forwarding
and separation of control. They suggest that this separation
would require an “edge” version of OpenFlow, which is much
more general than the legacy OpenFlow, and a “core” version
of OpenFlow, which resembles a slightly expanded version of
MPLS label-based forwarding.

The benefit from using an overlay SDN is also discussed
in [12]. The authors indicate that SDN has been successfully
applied to data centers and campus networks but it has
had little impact in the fixed wireline and mobile Telecom
domain. They propose using “vertical forwarding” (tunneling)
for extending SDN so that it can tackle the challenges of the
Telecom domain. They also claim that tunneling enables flow-
based policy enforcement, mobility and security.

Tunnel rerouting has been explored mainly in the context of
virtual circuit technologies such as ATM [5], [7], MPLS [6]
and WDM [21], [18]. It is usually used either when the original
tunnel fails or does not have sufficient bandwidth for new
flows. In [20], a “fast reroute” scheme is proposed in the
context of MPLS. The main idea is to build a predefined
bypass for each switch or link along the tunnel. When a switch
learns that its upstream link or upstream neighbor on a given
tunnel has failed, this switch can immediately forward the
traffic along the pre-established bypass. The main advantage
of this scheme is its very fast reaction to failures, thereby
minimizing packet loss. However, this scheme is expensive
from a management perspective, because it requires many
bypasses for each tunnel, and from a bandwidth perspective,
because bandwidth must be reserved in advance for each
bypass.

In [6], the bandwidth cost of fast reroute was compared
to the bandwidth cost of other rerouting schemes. This paper
presents a comprehensive study of restorable throughput max-
imization in MPLS networks. One of its conclusions is that
if the goal is to maximize revenue, fast reroute (referred to
as “local recovery” in [6]) should be the recovery scheme of
choice.

In [4], the authors study four rerouting algorithms to de-
termine how the characteristics of the underlying network
topology might affect their performance. They found that when
the average node degree is small, most common practices for
route placements, such as the shortest path algorithm, yield
good performance in terms of the blocking ratio and that there
is probably little advantage to rerouting. But when the average
node degree increases, so does the number of available paths,
and rerouting tends to improve the performance.

A recent line of research deals with rerouting of connections
in elastic optical networks to alleviate bandwidth fragmenta-
tion [28], [24], [29]. Elastic optical networks allocate spectrum
based on contiguous subcarrier slots with bandwidth. In such
networks, dynamic setup and tear-down of connections can
create bandwidth fragmentation, namely, non-contiguous slots
that are not aligned along the routing paths and therefore can-
not be used by new connections. In such networks, rerouting
is needed to decrease the level of fragmentation and reduce
the blocking probability of new requests. In [28], for example,
a proactive rerouting scheme is proposed based on the state
of the network links. However, rerouting in elastic optical
networks have different constraints and objective function
compared to the SDN case we deal with. In particular, in SDN

there is no bandwidth fragmentation.
Our paper focuses on tunnel rerouting due to lack of band-

width over the original path. Therefore, the main theoretical
problem is to find an alternative path with sufficient bandwidth.
Sometimes rerouting a single tunnel will not suffice, and more
tunnels need to be rerouted together. In such a case, the rerout-
ing problem is computationally equivalent to the well-known
NP-hard unsplittable multicommodity flow problem [9], [8],
[11], [13], [15].

III. PROACTIVE REROUTING

In proactive rerouting, the core controller is periodically
invoked in order to reroute tunnels in a way that gives the edge
controller more flexibility in accommodating future flows. The
core network controller has no idea about future demands,
not even their statistical distribution. We present the Network
State Algorithm, which associates a “cost” with every link and
takes the sum of the costs of all links as the network cost. The
algorithm seeks to find a tunnel and a new path for this tunnel
such that the network cost after rerouting the tunnel to the new
path is minimized. The cost of every link reflects the load and
the available bandwidth on it.

Let G = (V,E) be a directed graph representing the
considered core network. There is a default tunnel t(s, d) that
should accommodate the flows from s to d. Let F be a set of
traffic flows to be admitted into the network one at a time, in
an online fashion. When a flow is introduced, its termination
time is unknown and future flows are also unknown.

A high level description of the algorithm is as follows.
Note that each link has a cost attribute and a different weight
attribute:

1) For every tunnel t(s, d)

(a) Remove the tunnel from the network.
(b) Assign a weight to every link. This weight is

used only for finding a new shortest path for t.
The weight of each link e is the cost of this link
if t is routed over e minus the cost of the link
if t is not routed over e.

(c) Run a shortest path algorithm between s and d
on the graph with the weights determined in the
previous step.

2) Choose for rerouting the tunnel whose new route imposes
a minimum total network cost.

We now explain how the cost of each link is determined. For
every link e, define

• cap(e) as the link capacity (in Mb/s, say);
• used(e) as the capacity used by tunnels that are routed

over e (also in Mb/s);
• load(e) as cap(e)/used(e).

The cost of link e depends on load(e) using the following
relationship:

c(e) =
1

θ
(exp(θ · load(e)) − 1) , (1)

where θ > 0 is a free parameter that determines how quickly
the cost increases with the load. Specifically, when θ is close
to 0, the relationship is linear, and when θ increases, the cost
growth is much faster, as depicted in Figure 2. The (-1) in Eq. 1
makes no algorithmic difference, because adding a constant to

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

co
st

(e
)

load(e)

θ = 0.01
θ = 3

θ = 10

Fig. 2. The correlation between the cost and the load as a function of θ

Function RerouteOne()
for every tunnel t ∈ T do
for every link e ∈ E do
if e can accommodate t then

c(e)+t ← the cost of e if t is rerouted to a
path that contains e
c(e)−t ← the cost of e if t is rerouted to a
path that does not contain e
wt(e) ← c(e)+t − c(e)−t

else
wt(e) ← ∞

end
end
pt ← the shortest path under the weight wt

rt ← the difference between weight of pt and the
weight of the old path of t, under the weight function
wt

end
Reroute the tunnel t∗ into pt∗ , where t∗ minimizes rt over
all tunnels t

Function RerouteMany()
for i = 1, . . . , num reroutes do

RerouteOne()
end

Fig. 3. A formal description of the Network State Algorithm (NSA)

the cost does not change the identity of the selected reroute. It
just guarantees that the cost equals zero if the link is unused.

Recall that the cost of the network is
∑

e∈E c(e). Therefore,
if θ is close to zero, the network cost equals the sum of the
loads of all links in the network, whereas if θ is very big
(θ > 1000), the cost of the network is approximately equal to
the cost of the most congested link.

Figure 3 gives a formal description of the algorithm. In this
figure, wt(e) is the weight of link e considered by the shortest
path in Step 1(c) of the informal description.

The cost function c gets a load level � ∈ [0, 1] and returns
the cost associated with this load. This can be expressed
formally as follows:

c(�) =
1

θ
(exp(θ�) − 1) .

In the following discussion we use c interchangeably as a
function that receives a link and as a function that receives
a load.

The derivative c′(�) indicates how costly it is to increase
the load of a link whose current load is �. Increasing the load
from � to � + b increases the cost by

c(� + b) − c(�) =

∫ �+b

x=�

c′(�)du.

A calculation shows that c′(�) = exp(θ�).
When θ is very small, the derivative is constant for any

value of �. Thus, the cost of increasing the load of a link from
� to �+b is not affected by the link’s current load �. Therefore,
the rerouting algorithm ignores the current loads on the links.

When θ is big, c′(�) is much larger for big values of � than
for small values. Thus, it is much more costly to increase the
load of an already congested link than it is to increase the load
of a non-congested link. Generally, increasing the value of θ
makes it more costly to increase the load of already congested
links than of non-congested links.

Given a tunnel t(s, d) whose bandwidth demand is
demand(t), we now analyze the weight wt(e) assigned to e
in order to find a shortest path from s to d when t is to be
rerouted. We use the notations from the formal definition of
the algorithm (Figure 3).

First, assume that θ is very small, namely, c(�) ≈ �. For a
link e, let load(e)−t be the load on e if t is rerouted to a path
that does not contain e, and load(e)+t be the load on e if we
reroute t to a path that contains e. It holds that

wt(e) = c(e)+t − c(e)−t = c(load(e)+t) − c(load(e)−t)

≈ load(e)+t − load(e)−t =
demand(t)

cap(e)
.

Thus, the shortest path for rerouting t is the path p from s to
d for which ∑

e∈p

1

cap(e)

is minimized.
Next, assume that θ is very big; thus, for most values of

�1 > l2 it holds that c(�1) >> c(�2). The weight assigned to
any link e is c(e)+t−c(e)−t ≈ c(e)+t. Thus, the shortest path
for rerouting t is the path p from s to d for which∑

e∈p

c(e)+t ≈ max
e∈p

c(e)+t = max
e∈p

c (load(e)+t)

is minimized.
The shortest path is the one that minimizes

max
e∈p

load(e)+t.

Increasing the value of θ results in choosing longer rerouting
paths, because a large number of low-load links can be added
to the path without significantly affecting the cost. A simple
example for this is given in Figure 4. In this figure, the
numbers on the links indicate their capacities. Assume that
the network has one active tunnel, from v1 to v3, whose
bandwidth demand is 1. Assume that this tunnel is currently
established over the path v1 → v3. The controller is invoked
for performing one reroute. The controller can actually leave
the tunnel on its current route or move it to v1 → v2 → v3. For
x = 3, simple mathematical analysis reveals that if θ < 2.887,
the Network State Algorithm will leave the tunnel on its

v1 2

v2

v3

xx

Fig. 4. An example of a network. The numbers indicate the capacity of each
link.

current path, and if θ > 2.887 the algorithm will move the
tunnel to the longer path v1 → v2 → v3. For x = 3.5, the θ
threshold decreases to ≈ 1.159, and for x > 4 the threshold
is 0, namely, the algorithm always chooses the long path.

IV. REACTIVE REROUTING

The purpose of this section is two-fold. First, we classify
reactive rerouting into several schemes, depending on how
much freedom is given to the controller during the rerouting
process. Second, we present efficient and simple algorithm for
each scheme. These algorithms are later used for comparing
between the performance of reactive and proactive rerouting.

When the edge controller is unable to admit a new flow f
into the network due to lack of bandwidth in the appropriate
tunnel, it contacts the core network controller and requests to
increase the bandwidth of the tunnel. If there is not enough
spare bandwidth that can be added to the tunnel, the core
network controller can invoke a rerouting algorithm. We will
study the following rerouting schemes:
Scheme-A: The flow is rejected (rerouting is not performed).
This scheme will be used as a benchmark.
Scheme-B: The default tunnel t(s, d) of the considered flow,
f , is rerouted to a new path that has sufficient bandwidth for
all the existing flows that use this tunnel as well as for the
new flow f .
Scheme-C: Any single tunnel from T can be rerouted in order
to admit the new flow f , not necessarily t(s, d).
Scheme-D: Up to N tunnels from T can be rerouted in order
to admit the new flow.

Scheme-C is a generalization of Scheme-B, because for a
given network state, every solution found by Scheme-B can
also be found by Scheme-C. However, Scheme-C may reroute
tunnels that are not related to the new flow, nor, in particular,
to the same customer. Thus, not every network operator will
prefer Scheme-C over Scheme-B. In the same way, Scheme-D
is a generalization of Scheme-C.

A. Shortest-Path Algorithms
This subsection presents efficient (polynomial time) online

algorithms for Scheme-B and Scheme-C, referred to as SP(B)
and SP(C). For a given new flow, these algorithms are optimal
in the sense that if a reroute exists, they will find it. For
Scheme-D, an efficient algorithm that accommodates the new
flow, if possible, while minimizing the number of rerouted
tunnels, is unlikely to exist because this problem is NP-hard.
This can be easily shown using a reduction to the well-known
NP-hard unsplittable multicommodity flow problem [9], [8],
[11], [13], [15]. Thus, the shortest path version for Scheme-
D, referred to as SP(D), is only heuristic.

In all the following algorithms, let f ′ be a new flow that
cannot be admitted into its default tunnel t′.
SP(B) Consider G(V, E) while excluding the bandwidth

used by all the tunnels except t′ (none of this bandwidth can
be used for the to-be-rerouted tunnel t′). From this graph, also
excluded are the links whose available bandwidth is less than
what is required to accommodate all the current flows of t′

and the new flow f ′. On the residual graph, if s and d are
connected, the shortest path is chosen for t′. If s and d are
not connected, f ′ is rejected because t′ cannot be rerouted by
Scheme-B.
SP(C) For each t ∈ T , where T is the set of tunnels,

consider G(V,E) while excluding the bandwidth used by all
the tunnels except t. Try to accommodate the new flow f ′

along tunnel t′. If this is possible, try to accommodate t over
the shortest path while considering only links whose residual
bandwidth is sufficiently large. If f ′ cannot be accommodated
or if t cannot be accommodated after f ′ is accommodated,
repeat the procedure with another t ∈ T . If the procedure
fails for all ts, reject f ′.
SP(D) A similar procedure to SP (C) is used. However,

if a single reroute is insufficient, the tunnel whose rerouting
maximizes the minimum available bandwidth over t′ is chosen
for rerouting. This can be stated formally as follows: for
every e ∈ E, let avail(e) be the available bandwidth in link
e. The tunnel chosen for rerouting is either t′ or any other
tunnel whose rerouting maximizes mine∈path(t′) avail(e). This
procedure is repeated until flow f ′ can be admitted into t′,
but no more than N times. If f ′ cannot be admitted after N
reroutings then no tunnel is actually rerouted. The pseudocode
of this algorithm is as follows:

Run algorithm SP(C)
for i = 1, . . . , N do
if f ′ can be admitted into t′ then

stop
end
find the tunnel t ∈ T whose rerouting maximizes the
minimum available bandwidth along t′, and reroute
it (the actual rerouting will be performed only if we
succeed in admitting f ′)

end
No rerouting is performed and flow f ′ cannot be
admitted into tunnel t′

B. A Linear Program Algorithm for Scheme-D
Since SP(D) does not guarantee an optimal solution to

Scheme-D, we present here another algorithm for this scheme.
This is an integer linear program algorithm, referred to as
LP(D), whose main purpose is to serve as a benchmark for
SP(D).

Let F ′ ⊂ F be the set of flows admitted so far into the
network. Recall that f ′ is a new flow that cannot be admitted
into its default tunnel t′. The following LP parameters are
defined:

• yte – indicates whether tunnel t is currently routed over
link e, ∀t ∈ T .

• bt – denotes the bandwidth routed on tunnel t, while bt′

already includes the demand of f ′.

The following LP variables are defined:
• y′

te – indicates whether tunnel t will be routed over link
e after the current iteration, ∀t ∈ T

• rt – indicates whether tunnel t is rerouted.
The target function is to minimize the number of rerouted

tunnels, namely, to minimize
∑

t rt, subject to several
sets of constraints. The first set of constraints ensures flow
conservation. The second set ensures that no link e carries
more than its capacity cap(e). The third set ensures that the
new path of each tunnel is identical to its old path unless
this tunnel is rerouted. The fourth set ensures that at most N
tunnels are rerouted, and the fifth set ensures that each flow
is rerouted in only one path.

(1)
∑

e=(u,v) y′

te −
∑

e=(v,u) y′

te

=

⎧⎨
⎩

−1 v = s
1 v = d
0 else

∀v ∈ V,∀t ∈ T, where s and d
are the tunnel source and destination.

(2)
∑

t bt · y
′

te ≤ cap(e) ∀e ∈ E
(3) y′

te + rt ≥ yte ∀ tunnel t ∈ T
(4)

∑
t rt ≤ N

(5)
∑

e=(v,u) y′

te = 1 ∀t ∈ T, v = s (the source of t)
(6) y′

te ∈ {0, 1} ∀e ∈ E ∀t ∈ T
rt ∈ {0, 1} ∀t ∈ T

V. SIMULATION STUDY

In Section V-A we evaluate the performance of the various
reactive algorithms and in Section V-B we compare them
to the proactive algorithm. Two criteria are relevant for this
comparison:

1) Relative added throughput, namely, how much greater
the percent of throughput that each algorithm admits into
the network compared to the case where no rerouting is
allowed (Scheme-A). Formally, if a rerouting algorithm
admits B Mb/s while only B′ Mb/s is admitted without
rerouting, then the relative added throughput for this
algorithm is (B −B′)/B. The relative added throughput
is indicated in the y-axis of all the graphs presented in
this section.

2) Management burden, defined as the total number of
rerouting events. This number is indicated in the x-axis
of all the graphs presented in this section.

Scheme-A gets no further mention because for this scheme
the value of the y-axis and the value of the x-axis are always
0, by definition.

We expect to see some cases where the increase in relative
added throughput is due to a substantial increase in the
number of rerouting events. Thus, to get a good understanding
on how each algorithm really performs with respect to the
tradeoff between throughput and number of rerouting events,
we always consider both criteria together.

A. Reactive Rerouting Simulations
We first study the performance of the reactive algorithms.

Since SP(B) and SP(C) are optimal online algorithms for their
schemes (when flows are received and considered one by

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350 400

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

DLP

A

B

C D

SP

(a) Offered load = 0.5

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350 400

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

D

LP

A

B

C
D

SP

(b) Offered load = 1

Fig. 5. The performance of the reactive algorithms SP(B), SP(C), SP(D) and LP(D) for small networks

one) while SP(D) is not necessarily optimal for its scheme,
the LP(D) algorithm for Scheme-D is also simulated as a
benchmark but, due to its computational complexity, this is
done only for small-sized networks. Later, the results for larger
networks will also be presented, but without LP(D).

Figure 5 shows the simulation results for the small scale
networks. In this figure, 5 artificially generated topologies
are considered, each with 15 nodes and 30 links. These
topologies are generated using the BRITE simulator [1], which
captures two important characteristics of network topologies:
incremental growth and preferential connectivity of a new
node to well-connected existing nodes. These characteristics
yield a power law distribution to the degrees of the nodes.
For each topology, 5 sequences of flows are generated, each
with 1,000 requests. Each request is either for initiating a
new flow or removing an existing flow. When a new flow
is introduced, the algorithm is executed and the flow is either
rejected or admitted following 0 or more rerouting events. The
flow sequences are generated using the gravity model [17].

Figure 5 shows the simulation results for two levels of
offered load: 0.5 and 1. The offered load of a network at
a given time τ is defined as the sum of the offered loads
of all the flows introduced to the network before τ (and that
were accepted or rejected) whose termination time is after
τ , divided by the total capacity of the network links. The
offered load of a flow is the bandwidth demand of the flow
multiplied by the number of links on the shortest path (while
assigning a weight of 1 to every link) between the flow’s
source and destination. The flow sequences are generated for
each simulation such that the network load remains roughly
constant, and this yields one point on our graph, after it is
averaged with additional executions using the same set of
parameters but with a different seed.

It is evident from both graphs of Figure 5 that tunnel
rerouting significantly increases the accommodated bandwidth.
As expected, the schemes that accommodate more bandwidth
impose a greater rerouting burden. In absolute numbers, more
bandwidth is accommodated in heavily loaded networks. But
the relative added throughput decreases when the load on the
network increases because, in a heavily loaded network, there
are fewer options for rerouting to gain additional throughput.

This behavior is particularly noticeable for Scheme-B, because
in this scheme only one tunnel can be rerouted.

For Scheme-D, the LP algorithm performs significantly
more reroutings compared to SP(D), with only moderate
increase in the admitted throughput. This is due to the fact
that LP(D) is completely flexible in choosing the tunnels to
reroute. In contrast, SP(D) is limited in the selection of a new
path to rerouted tunnels.

To compare the performance of the various schemes, SP(B),
SP(C) and SP(D), we define the “benefit-cost ratio” of an
algorithm as the fraction obtained by dividing the relative
added throughput by the number of reroutings, y/x. Using
this ratio, SP(C) is the best algorithm, and SP(D) is better
than LP(D).

Figure 6 depicts the results for large networks. The networks
simulated in Figure 6(a), (b) and (c) are synthetic networks
built using BRITE with 40 nodes and 80 links, 40 nodes
and 160 links, and 80 nodes and 320 links respectively. The
network simulated in Figure 6(d) is a RocketFuel inferred
topology[23] with 138 nodes and 730 links. LP(D) is not
executed due to its exponential running time. For all these
graphs, the offered load ratio is 0.5.

It is evident that the bandwidth accommodated by the
algorithms, as well as the rerouting overhead, grow with the
network size: as the network grows, there are more tunnel
rerouting options. It is interesting to note that the various
algorithms in the RocketFuel topology perform worse than
they do for the synthetic topologies, despite the RocketFuel
topology having more node links. But another property of
this topology is that it has a few nodes with very large
degree. These nodes create hotspots for which rerouting is
less effective.

The results in Figure 6 strengthen our earlier finding that
SP(C) yields a better benefit-cost ratio than SP(B) and SP(D).
In other words, it results in a better tradeoff between the
relative added throughput and the cost of rerouting.

B. Proactive Rerouting Simulations
This subsection compares the proactive approach and the

reactive approach, by comparing the results of the three SP al-
gorithms – SP(B), SP(C) and SP(D) – to those of the Network

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

A

B

C

D

(a) |V | = 40, |E|/|V | = 2

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

A

B

C
D

(b) |V | = 40, |E|/|V | = 4

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

A

B

C

D

(c) |V | = 80, |E|/|V | = 4

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

A

B

C D

(d) RocketFuel Topology, |V | = 138, |E|/|V | = 5.3

Fig. 6. The performance of the reactive algorithms SP(B), SP(C) and SP(D) for large networks

State Algorithm. Consider first Figure 7. The figure shows 4
graphs, for the same networks considered in the discussion of
Figure 6. For each network type, the reactive SP algorithm
is simulated for schemes B, C and D. Also simulated is
the proactive Network State Algorithm for different execution
periods: 5, 10, 20 and 40. The execution period is the average
number of flows arriving between two consecutive invocations
of the algorithm. Unless otherwise specified, for all these
graphs the offered load is 0.25 and θ = 10.

One cannot expect the proactive algorithm to admit as many
flows as the reactive algorithms for a very simple reason:
reactive algorithms are invoked only when the admission of
a new flow fails, and the algorithm knows exactly which
flow should be admitted over which tunnel. Thus, a reactive
algorithm focuses on a specific tunnel and tries to increase the
bandwidth available for it. In contrast, the proactive algorithm
has no information about the flows that enter the network, and
it is invoked regardless of whether past flows could or could
not be accommodated.

For each graph in Figure 7, consider first the four points
that represent different execution periods for the Network State
Algorithm (NSA). From these points we learn that determining
the length of this interval is the most significant performance
parameter. For example, in Figure 7(a) we see that when NSA
is invoked every 5 time units it is able to admit into the
network 15% more bandwidth while performing 95 reroutings.

However, when it is invoked every 10 time units, it is able
to admit the same percentage of extra bandwidth, but with
an overhead of only 48 reroutings. This indicates that for
this simulation instance NSA(10) performs much better than
NSA(5). However, this is not always the case: in Figure 7(d)
NSA(5) also performs many more reroutings than NSA(10),
but it succeeds in accommodating much more bandwidth. This
suggests that on small networks it is better to invoke NSA not
very often, whereas in big networks NSA should be invoked
more frequently.

When the NSA execution period is well chosen, the perfor-
mance of NSA is surprisingly good compared to the perfor-
mance of the best reactive algorithm. For example, consider
Figure 7(d). In this figure, among all the reactive algorithms,
SP(B) has the best benefit-cost ratio: 50/390 = 0.13.
However, for NSA(5) and NSA(10) the benefit-cost ratios are
much better: 35/195 = 0.18 and 21/100 = 0.2 respectively!
In Figure 7(c), the benefit-cost ratio of the best reactive
algorithm, SP(C), is 48/220 = 0.22, whereas the ratio of the
best proactive algorithm, NSA(10), is 10/50 = 0.2. We can
conclude from this analysis that although the NSA algorithm
cannot accommodate as much extra bandwidth as the reactive
algorithms, it is competitive in terms of its benefit-cost ratio.

Figure 8 presents simulation results for the Network State
Algorithm in two different Rocketfuel topology networks. In
each network, the input traffic load is 0.25 and 0.5. The first

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

510

2030

proactive

A

B
C D

reactive

(a) |V | = 40, |E|/|V | = 2

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

5

10
20

30

proactive

A

B C D

reactive

(b) |V | = 40, |E|/|V | = 4

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

5

10

2030

proactive

A

BCD
reactive

(c) |V | = 80, |E|/|V | = 4

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

5

10

20
30

proactive

A

B C Dreactive

(d) RocketFuel Topology, |V | = 138, |E|/|V | = 5.3

Fig. 7. The performance of the reactive algorithms vs. the performance of the proactive algorithm for various networks

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140 160 180

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

5

10

20

30

Load=0.25

5
10

20
30

Load=0.5

(a) RocketFuel Topology |V | = 80, |E|/|V | = 1.8

 0

 10

 20

 30

 40

 50

 0 50 100 150 200

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

5

10

20
30

Load=0.25

5

10

20

30

Load=0.5

(b) RocketFuel Topology |V | = 138, |E|/|V | = 5.3

Fig. 8. The performance of the Network State Algorithm for different offered loads

thing to note is that the offered load does not affect the number
of reroutings. But this is expected because, in contrast to
the reactive algorithms, the proactive algorithms are invoked
periodically, regardless of the input traffic load.

When the benefit-cost ratio of the various algorithms is
considered, it is evident that the performance of NSA for all
execution periods is better on light loads. This is consistent
with the results shown earlier for the reactive algorithms, and
can be attributed again to the fact that a rerouting algorithm
has more flexibility when the load is lighter. The simulation
shown in Figure 8(a) resulted in much greater performance

differences among the various algorithms as compared to the
simulation shown in Figure 8(b). This is due to the much
smaller link degree in the former, which makes effective
rerouting more difficult. Figure 8(a) also shows that increasing
the load has greater negative impact in this simulation.

Finally, Figure 9 shows the impact of θ on the simulation
results for different execution periods. Each simulation is
performed on 100 randomly created networks, using the same
BRITE generator, each with 100 nodes whose average degree
is 6. The x-axis denotes the execution period of NSA, namely,
the average number of flows arriving to the network between

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

5 50 500 No reroute

Fr
ac

tio
n

of
 A

dm
itt

ed
 F

lo
w

s

Execution Period

1
6

10
40

Fig. 9. The impact of θ on the performance of the Network State Algorithm

two invocations of the algorithm. The y-axis denotes the
fraction of admitted flows. For each value of execution period
there are 4 bars, denoting different θ values: 1, 6, 10 and 40.
The leftmost bar for each period is θ = 1. The y-axis denotes
the total throughput. It is evident that θ has a significant
impact on the performance. Moreover, large values of θ show
significant improvement compared to small values. This can
be explained by the fact that the initial routing of each tunnel
is performed over the shortest path while ignoring the load on
the various links. When rerouting is necessary, for high values
of θ, the maximum load is kept low, and the network has room
for new incoming flows. We can also see in this graph that
our proactive rerouting algorithm is very efficient even if
it is invoked relatively rarely: when the execution period
is 500, namely, 500 new flows are introduced between two
consecutive invocations of the algorithm, the percentage of
rejected flows is reduced by 50%, from 0.2 (with no reroute)
to only 0.1.

VI. CONCLUSIONS

This paper addressed the problem of tunnel rerouting in
network overlays when the core network supports traffic
engineering. For the first time, we introduced the concept of
proactive (time-driven) rerouting, which we distinguish from
the well-known concept of reactive (event-driven) rerouting.
The main motivation behind proactive rerouting is to reduce
the communication between the core network controller and
the edge network controller, and to expedite the admission of
new flows into the network.

We presented efficient algorithms for reactive rerouting, and
then a novel Network State Algorithm for proactive rerouting.
This algorithm associates a value with every network state,
which indicates how well current tunnels take advantage of
the available bandwidth resources. The algorithm tries to move
tunnels such that the network state is maximally improved.
Using simulations we show that although the Network State
Algorithm cannot accommodate as many flows as the reactive
algorithms, it performs surprisingly well with respect to the
tradeoff between cost and value.

REFERENCES

[1] I. M. A. Medina, A. Lakhina and J. Byers. BRITE: An approach to
universal topology generation. In Proceedings of MASCOTS, 2001.

[2] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian. Fabric: A
retrospective on evolving SDN. In HotSDN’12, Proceedings of the First
Workshop on Hot Topics in Software Defined Networks, 2012.

[3] M. C. Chan and Y.-J. Lin. Behaviors and effectiveness of rerouting: A
study. In Communications, 2005. ICC 2005. 2005 IEEE International
Conference on, volume 1, pages 218–223. IEEE, 2005.

[4] M. C. Chan and Y.-J. Lin. Behaviors and effectiveness of rerouting:
a study. In IEEE International Conference on Communications (ICC),
volume 1, 2005.

[5] R. Cohen. Smooth intentional rerouting and its applications in ATM
networks. In Infocom’94, June 1994.

[6] R. Cohen and G. Nakibly. Maximizing restorable throughput in MPLS
networks. IEEE/ACM Transactions on Networking, 18(2), April 2010.

[7] R. Cohen and A. Segall. Connection management in ATM networks. In
Infocom’94, June 1994.

[8] Y. Dinitz, N. Garg, and M. Goemans. On the single-source unsplittable
flow problem. Combinatorica, 19:17–41, 1999.

[9] J. A. et al. Online load balancing with applications to machine
scheduling and virtual circuit routing. Journal of the ACM, 44(3):486–
504, 1997.

[10] V. Friesen, J. J. Harms, and J. Wong. Resource management with virtual
paths in atm networks. IEEE network, 10(5):10–20, 1996.

[11] N. Garg and J. Koenemann. Faster and simpler algorithms for multi-
commodity flow and other fractional packing problems. SIAM Journal
on Computing, 37(2), 2007.

[12] G. Hampel, M. Steiner, and T. Bu. Applying software-defined network-
ing to the telecom domain. In Infocom workshop, 2013.

[13] J. T. Havill and W. Mao. Greedy online algorithms for routing permanent
virtual circuits. Networks, 34:136–153, 1999.

[14] A. E. Helvaci, C. Cetinkaya, and M. B. Yildirim. Using rerouting to
improve aggregate based resource allocation. 2008.

[15] S. G. Kollopoulus and C. Stein. Improved approximation algorithms for
the unsplittable flow problems. In Proceedings of FOCS, pages 426–435,
1997.

[16] M. Koubàa and M. Gagnaire. Lightpath rerouting strategies in wdm all-
optical networks under scheduled and random traffic. Journal of Optical
Communications and Networking, 2(10):859–871, 2010.

[17] J. P. Kowalski and B. Warfield. Modelling traffic demand between nodes
in a telecommunications network. In in ATNAC95, 1995.

[18] M. Liu, M. Tornatore, and B. Mukherjee. Survivable traffic grooming
in elastic optical networksshared protection. Journal of lightwave
technology, 31(6):903–909, 2013.

[19] G. Mohan and C. S. R. Murthy. A time optimal wavelength rerouting
algorithm for dynamic traffic in wdm networks. J. Lightwave Technol.,
17(3), Mar 1999.

[20] P. Pan et al. Fast reroute extensions to RSVP-TE for LSP tunnels. IETF
RFC 4090, May 2005.

[21] C. Rozic and G. Sasaki. Optical protection cost of ip fast reroute on a
fully connected ip network over a wdm ring. In National Fiber Optic
Engineers Conference, page JWA3. Optical Society of America, 2011.

[22] D. A. Schupke and R. Prinz. Performance of path protection and
rerouting for WDM networks subject to dual failures. In Optical Fiber
Communication Conference, 2003.

[23] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies
with RocketFuel. In Proceedings of the ACM SIGCOMM, August 2002.

[24] T. Takagi, H. Hasegawa, K.-i. Sato, Y. Sone, A. Hirano, and M. Jinno.
Disruption minimized spectrum defragmentation in elastic optical path
networks that adopt distance adaptive modulation. In European Confer-
ence and Exposition on Optical Communications, pages Mo–2. Optical
Society of America, 2011.

[25] S.-W. Wang and C.-Y. Wen. Lightpath-level active rerouting algorithms
in all-optical wdm networks with alternate routing and traffic grooming.
In Information Networking (ICOIN), 2012 International Conference on,
pages 42–46. IEEE, 2012.

[26] A. Wason and R. Kaler. Rerouting technique with dynamic traffic in
wdm optical networks. Optical Fiber Technology, 16(1):50–54, 2010.

[27] E. W. Wong, A. K. Chan, and T.-S. P. Yum. Analysis of rerouting
in circuit-switched networks. IEEE/ACM Transactions on Networking
(TON), 8(3):419–427, 2000.

[28] M. Zhang, W. Shi, L. Gong, W. Lu, and Z. Zhu. Bandwidth
defragmentation in dynamic elastic optical networks with minimum
traffic disruptions. In Communications (ICC), 2013 IEEE International
Conference on, pages 3894–3898. IEEE, 2013.

[29] M. Zhang, C. You, H. Jiang, and Z. Zhu. Dynamic and adaptive
bandwidth defragmentation in spectrum-sliced elastic optical networks
with time-varying traffic. Journal of Lightwave Technology, 32(5):1014–
1023, 2014.

