
286 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 3, JUNE 1998 
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Multicast in Datagram Networks 
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Abstract- The paper addresses the issue of minimizing the 
number of nodes involved in routing over a multicast tree and in 
the maintenance of such a tree in a datagram network. It presents 
a scheme where the tree routing and maintenance burden is laid 
only upon the source node and the destination nodes associated 
with the multicast tree. The main concept behind this scheme is 
to view each multicast tree as a collection of unicast paths and 
to locate only the multicast source and destination nodes on the 
junctions of their multicast tree. The paper shows that despite this 
restriction, the cost of the created multicast trees is not necessarily 
higher than the cost of the trees created by other algorithms that 
do not impose the restriction and therefore require all nodes along 
the data path of a tree to participate in routing over the tree and 
in the maintenance of the tree. 

Index Terms-Dynamic trees, multicast routing, routing scala- 
bility, Steiner trees. 

I. INTRODUCTION 

I N A POINT-TO-POINT communication network, multi- 
cast is treated as the problem of creating, maintaining, 

and updating efficient multicast trees, rooted at the multicast 
source nodes and spanning the groups of destination nodes. 
A multicast tree is dynamically created as network nodes join 
and leave the destination group. It is maintained by some of 
the network nodes, mainly those sitting on its data path. It 
needs to be updated following changes in the connectivity or 
in the load of the underlying network topology. 

Internet employs the distance vector multicast routing pro- 
tocol (DVMRP) [9] in order to construct a shortest-path tree 
for every multicast {source, group} pair. This protocol, which 
is a “pruning” variant of the reverse path-forwarding (RPF) 
algorithm 171, suffers from two main scaling problems as fol- 
lows [2], [S]. First, each network node has to maintain routing 
information for every multicast tree.’ Second, prune messages 
should be periodically exchanged between the network nodes 
in order to maintain an updated version of each multicast tree. 

The protocols presented in [2], [4], and 181 address these 
problems. A tree spanning the members of the group is 
established in the network, and only the nodes sitting on 
the data path of the tree are required to maintain routing 
information associated with the tree. When a new node joins 
the multicast group, all of the nodes on the shortest path 
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between the new node and some node on the tree (the 
predetermined core in [2], the rendezvous point(s) in [8], or 
the closest node in 141) join the tree and update their multicast 
routing tables accordingly. 

A. Tunnel-Based Multicast 

When multicast becomes pervasive, more techniques must 
be employed in order to avoid scaling problems. If thousands 
of trees are created, deleted, and updated every minute, the 
processing burden on the network nodes will be excessive, 
even if the burden associated with every multicast tree is 
laid only upon the nodes sitting on the data path of that 
tree. This is because these nodes will have to respond very 
often to join or delete requests and to changes in the load 
or connectivity of the underlying network. This burden can 
be significantly reduced using the concept of tunneling [191 as 
follows. The multicast packets are routed over a tree formed by 
a collection of multicast links (tunnels), where each multicast 
link is a simple unicast route. The intermediate nodes of each 
multicast link do not have to maintain routing information for 
the multicast tree because they are involved only in regular 
unicast routing. Only the end points of each multicast link 
have to maintain routing information for every tree established 
over the link. For instance, consider a multicast source s, a 
multicast group 2 = { ~1. ~2 ~ ~3. ~4, ZY, }, and the multicast tree 
depicted in Fig 1. This tree can be viewed as a collection 
of the following six multicast links: s - b, b n3 ~2, b +. ~1, 
x1 ^3 (1, d -3 xy,, d 3 x:3, and d 9 ~1. The end points of these 
multicast links are Z U {s} U li, where IJ is the set of nodes 
not in 8 U {s} that have at least three links in the tree (b 
and ol in Fig. I). Packets sent by the source s have two pairs 
of source/destination addresses. One pair is of the multicast 
source s and multicast group %. This pair remains fixed for 
the entire routing. The other pair is the addresses of the source 
and destination of the multicast link over which the packet is 
routed. This pair is replaced when the packet reaches the end 
of the multicast link. In terms of Fig. 1, a multicast packet 
created by the source has a multicast address pair* (s, G) and 
a unicast address pair (s, /J). The packet is routed through (I 
based on the unicast address pair. Node n does not need to 
know anything about the multicast destination G. When the 
packet is received by the unicast destination h, it is processed 
by the multicast routing procedure. In the multicast table of 
b it is indicated that a multicast packet from s to G should 

‘Throughout this paper, G represents a multicast address whereas Z 
represents a dynamic set of nodes that want to receive the multicast packets 
sent by .LI to G. 
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Fig. I. A multicast tree. B. The Proposed Scheme 

be forwarded to z2 and to ~1. The copy destined for z2 has 
the unicast address pair (b, 752). It is sent to c and routed as 
a regular unicast packet whose destination is 22. At x2, the 
packet is processed by the multicast routing procedure. The 
latter uses its multicast routing table and deduces that the 
packet is destined for the local node and that it should not 
be forwarded elsewhere.3 Node zi, in contrast, deduces from 
its multicast routing table that it needs to keep a copy of the 
packet for itself and to send another copy on the multicast 
link z1 9 d. 

The concept of tunneling is already used for multicast 
routing in the Internet multicast backbone (MBONE) [l l] 
and is also proposed in the context of asynchronous transfer 
mode (ATM) [l]. However, its purpose is not to reduce 
the maintenance and routing burden at the multicast nodes, 
but to connect multicast-capable nodes through the general 
Internet protocol (IP) network. If all of the Internet routers 
had multicast capability, as in the model considered in this 
paper, tunneling would not have been used. 

It can be easily shown by induction that in a multicast tree 
rooted at source s and spanning the group 2, the number 
1 of multicast links (tunnels) is 121 5 1 5 212) - 1. In 
addition, only less than half of the nodes that are actively 
involved in the maintenance of the tree and in the routing of 
multicast packets from s to 2 (i.e., the nodes whose multicast 
procedure is invoked when a multicast packet from s to G is 
received) do not belong to 2 U {s}. It turns out, however, that 
in a datagram network it is practically impossible to keep the 
details of a multicast tree transparent to the intermediate nodes 
of the multicast links. When a new member v joins an existing 
multicast group, it might need to connect to some intermediate 
node II’, say, of a multicast link 71” * v”‘, in which case 

‘In terms of the Internet, ~2 as well as any other node in the multicast 
group 2 can be viewed as a border router connecting an autonomous network 
of some destination host(s) to the Internet backbone. Thus, the packet will be 
forwarded by 32 into the autonomous network and multicast to the destination 
hosts by means of an internal multicast protocol [IS]. 

21” “3 21”’ is removed from the tree and three multicast links 
I/” h3 Ii’, II’ 9 I/“‘, and v’- ‘U are added. For this process to 
take place, node U’ needs to know that it participates in the 
multicast tree and to maintain some parameters describing its 
position in the tree, like the identities of the end nodes of the 
multicast link for which it acts as an intermediate node. This 
information needs to be refreshed not only when multicast 
links are added or removed due to changes in the destination 
group, but also when the unicast routing tables change. For 
instance, if in Fig. 1 the unicast routing tables are updated 
such that the shortest path from d to ,754 goes through nodes 
j and Ic rather than through g, nodes g, j, and k: must be 
updated. The conclusion is that the concept of tunneling does 
not remove the tree maintenance burden from the intermediate 
nodes of the multicast links. It just removes from these nodes 
the memory and processing burden associated with multicast 
routing decisions. 

In this paper we suggest an approach to solve the scalability 
problem of establishing, updating, maintaining, and routing 
over a great number of multicast trees in a datagram network. 
According to this approach, for every multicast tree rooted 
at a source node s and spanning a set Z of destination 
nodes, only the nodes in {s} U 2 need to keep and update 
information related to the tree routing and maintaining. This is 
achieved by viewing a multicast tree as a collection of multicast 
paths (tunnels) and ensuring that only nodes in {s} U Z are 
selected as end points of the multicast links (namely, the set U 
mentioned above is empty). In terms of Fig. 1, this means that 
nodes b and d, which do not belong to {s} U 2, cannot function 
as end nodes of multicast links but only as intermediate nodes. 

The main advantage of the proposed scheme is that for 
every multicast tree, only the nodes in {s} U 2, which in any 
case must keep routing and maintenance information regarding 
the tree, are required to do so. The existence of the tree is 
absolutely transparent to any other network node, even to those 
nodes that sit on the tree data path and route packets of the 
tree as intermediate nodes of multicast links. Neither changes 
in the unicast routing tables that affect the routes between 
the end points of multicast links nor changes in the multicast 
destination group can put any maintenance burden on nodes 
not in {s} U 2. 

The constraint imposed by the proposed scheme, where only 
nodes in {s} U 2 can be located in the tree junctions and serve 
as end nodes of the multicast links, may lead to the creation 
of inefficient multicast trees. This issue is extensively studied 
in the paper. As will be shown, the differences between the 
cost of the trees generated without this constraint and the trees 
generated under this constraint are minor and may therefore 
justify the significant reduction in the maintenance overhead. 

The problem of establishing a low-cost tree spanning a 
partial set of the network nodes is known as the Steiner 
tree problem. When the set of nodes dynamically changes, 
a different problem-referred to as the dynamic Steiner tree 
(DST)-is defined [14]. Section II discusses these problems 
and presents the dynamic greedy algorithm (DGA) [14] for 



288 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6. NO. 3, JUNE 1998 

establishing and updating a low-cost multicast tree when the 
destination group dynamically changes and when there is 
no restriction to locate only nodes from {s} U Z in the 
junctions of the multicast trees. In Section III we present a new 
algorithm, referred to as restricted DGA (R-DGA), that locates 
only nodes from {s} U Z in the junctions of the multicast trees. 
Based on R-DGA, we then present a possible protocol for 
creating, updating, and maintaining low-cost multicast trees. 
In Section IV the performance of R-DGA is studied. We first 
prove that despite the restriction, the worst-case performance 
ratio of R-DGA is the same as that of DGA. Then we present 
simulation results that show that the differences in the actual 
cost of the trees established by a slightly improved version 
of R-DGA (improved R-DGA, described in Section IV-B) 
and those established by DGA are not significant. We also 
calculate the average number of nodes not in {s} U 2 that are 
included in the trees generated by DGA and by the shortest- 
path algorithm (SPATH) (as suggested in [2] and [8]). We 
use the result in order to compare the burden laid on an 
average network node by R-DGA and by the other protocols. 
SPATH is a simple algorithm that connects each joining node 
to the tree via the shortest path to the source. We refer to it 
and its performance in several places throughout the paper. 
A detailed study of its performance can be found in [ 101. In 
Section V we discuss the problem of creating, maintaining, and 
updating low-cost multicast trees that guarantee some upper 
bound on the distance between the source node and every 
destination node. Such a requirement might be of importance 
for many multicast applications. A new algorithm, referred 
to as constrained R-DGA (C-R-DGA) is presented and its 
performance is studied. Section VI concludes the paper. 

II. THE DYNAMIC STEINER TREE PROBLEM 

The Steiner tree problem can be formulated as follows: 
Given a graph G(V, E), a nonnegative weight for each 
I: E E, and a subset Z C V, find a subnetwork T of G 
such that there is a path between every pair of vertices 
in 2, and the total cost of T is a minimum. 

The Steiner tree problem is NP-complete [ 121. It remains NP- 
complete even if all edge weights are equal. Several heuristics 
are known for this problem [22]. One of them, suggested in 
[13] and [20], is the minimum cost paths heuristic (MPH). 
This heuristic has a worst-case performance of two times the 
optimum cost solution [5]. No heuristic with a better worst- 
case performance is known [22]. The MPH works as follows 
[221. 

Step I: Choose an arbitrary vertex z from 2. Let 2’ = {z} 
and T = {z}. 

Step 2: Find in Z - 2’ the vertex z closest to T. Add z 
to Z’, and add to T the minimum cost path joining 
z to 2. 

Step 3: If 2’ # Z, return to Step 2; otherwise, T is the 
solution. 

When the set 2 represents a multicast group, it cannot be 
assumed to be known in advance since nodes can dynamically 
join and leave the multicast group. This is known as the 
DST problem, formally stated as follows [14]. Let R = 

(7.0, Tl.. ‘. 1 r~} be a sequence of requests, where each 7’; is a 
pair (u,, /I~)~ II; E V. p; E {add, remove}. Let 2; be the set of 
nodes in the multicast group after step ‘I:, consisting of every 
node II for which there exists .; 5 i such that ‘r,j = (II, add) 
and 7’1 # (II, remove) for all j < 1 5 %. Then, 

Given a graph G(V, E), a nonnegative weight for each 
6: E E and a sequence R of requests, find a sequence of 
multicast trees { Tl , T2, . TK} where Ti spans 2; and 
has a minimum cost. 

DST can be solved using any heuristic for the static Steiner 
tree problem, like the MPH mentioned above, if we allow the 
multicast tree to be completely rebuilt after each change. This 
is, however, an unrealistic approach since it requires a lot of 
coordination among the network nodes [3], and it is very likely 
that a new request T; will come up before Ti-1 is ready. The 
nonrearrangeable version of DST, referred to as DST-N [14], 
requires that if ‘r, is an add request, 7: must include Ti-1 as a 
subgraph (namely, no link can be removed from the old tree), 
whereas if r’; is a remove request, ‘7-i must include T; as a 
subgraph (namely, no link can be added to the old tree). 

Imase and Waxman have shown [14] that when the request 
sequence consists of only add requests, for any algorithm A 
that solves DST-N there exists an instance such that for every 
1: 0 < % 5 K 

A(Zi) > 1 + ;lloa(lzzl - l)] 
OPT(Z,) - 

where K is the length of the request sequence, OPT(Z;) 
is the optimum solution for a tree spanning 21, and A(Z;) 
is the cost of a tree spanning 2; created by A. They have 
also presented the DGA, where a new node appended to the 
multicast group is connected to the existing multicast tree 
through the cheapest path leading to any node in the tree, 
and shown that DGA has a worst-case performance ratio 
(competitiveness) of [loS( IZ;I)l-that is within two of the 
optimal algorithm. 

If both add and remove requests are allowed and if the 
tree cannot be rearranged, no upper bound on the worst- 
case performance ratio exists [14]. Several algorithms [4], 
[ 141, [ 151 have been proposed in order to accommodate both 
add and remove requests while restricting the number of 
rearrangements required in order to derive a new efficient tree 
T, from the old one T&-I. 

III. R-DGA HEURISTIC FOR SCALABLE MULTICAST 

In this section we describe a new algorithm, referred to as 
the R-DGA, and then present an R-DGA-based protocol for 
creating and maintaining dynamic multicast trees. 

A. The R-DGA Algorithm 

Throughout this paper we assume that unicast routing from 
‘U to U’ is performed over the shortest path II ++u’. We also 
assume that every node II’ knows the cost of the shortest 
path II - 71’ from every other network node II. This kind of 
information can be provided by the protocol that updates the 
unicast routing tables, even in the general case where the cost 
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function and the delay function are different, or the costs of 
w’ - w and ‘u 9 II’ are different. 

R-DGA responds differently to add requests and to remove 
requests. When a request r, to add a node 11 to the existing 
multicast group Z;_i is received, R-DGA uses DGA with a 
small but significant change: the new node IJ can be connected 
only to a node in the former multicast group Z;- 1. The cost 
of the path II’ “3 71 is checked for every II’ E Z;-1. The node 
U’ E Zi-r for which the cost of 71’ 9 II is minimum is selected 
as the parent of II, and a new multicast tree T’i is created by 
appending the multicast link 71’ 9 71 to the previous multicast 
tree Z’-1. When a request ri to remove II from a multicast 
group Z;-i is received, II is removed from T;-1 along with 
all of the multicast links connecting ‘u to its parent and to its 
children. Then, every child 11’ of II in T,-l is connected to a 
new parent U” E Zi(n’) from which the shortest path is of 
minimum cost. The set Z~(U’) is a subset of 2~ = Zi-1 - {w} 
consisting of all of the nodes in 2; that have joined the tree 
(in the last time) before II’. The selected node ,u” becomes the 
new parent of ‘U in Ti by appending the multicast link v” * 1) 
to TiL1. 

This algorithm is demonstrated in Fig. 2. The original graph 
is shown in Fig. 2(a), and the multicast source is node s. The 
number near every link indicates the cost and the delay on the 
link for both directions. When node ,q is added to the multicast 
group, it joins the tree through the unicast path multicast link 
s 3 9 whose cost is six. When node c is added, it can join the 
existing tree by a multicast link from s or from 9. Since the 
latter is cheaper (three versus seven), c joins the tree through 
the multicast link 9 “3 c. Packets from the source s to c will 
be routed through s - 9 and then through g 9 c, namely, over 
the path s - f - ,9 - f -c. Other multicast algorithms, like those 
based on DGA or on the SPATH [2], [8], [14] would avoid this 
unnecessary loop between f and g by creating three multicast 
links s “3 f, f 9 g, and f - c. However, this is the price we 
pay by requiring that only the source node and destination 
nodes will be located in the forks of the tree. The next node 
added to the multicast group is d. It can join the existing tree 
by a multicast link from s, from 9, or from c. The cost of s c3 n 
is eight, of g 3 d is two, and of c “3 d is three. Thus, g 9 d is 
added to the tree, and the resulting tree is shown in Fig. 2(b). 
Next, suppose that g is removed from the multicast group. 
The multicast links s * g, g - c, and g 9 d are removed, and 
new parents should be selected for c and d. For node c, only 
node s can serve as the new parent of c, because no node in 
the updated destination group has joined the group in the last 
time before c. Thus, the multicast link s 3 c is added to the 
tree. Regardless of the new parent selected for c, both s and c 
can become the new parent of d. Since c 9 d is cheaper than 
.T “3 d (three versus eight), c 9 d is added to the tree. The 
resulting tree is shown in Fig. 2(c). 

It is interesting to note that the problem of sending the 
same multicast data over the same link more than once 
arises also in the context of ATM, when the multicast tree 
is established over a set of ATM point-to-point virtual paths 
[l]. If the number of virtual paths (VP’s), which are the 
equivalent to the multicast links in the present paper, has to be 
minimized, a VP will be established only between members 
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Fig. 2. R-DGA execution example. (a) Network graph. (b) q, c, and (1 are 
added. (c) CJ is deleted. 

of the multicast group, as with R-DGA. In [1] this problem is 
addressed with an emphasis on possible enhancement to the 
VP concept (introducing VP’s with intermediate exits) and on 
asymmetric VP’s, whereas in the present paper the problem 
is addressed with an emphasis on the dynamic nature of the 
group and on the tradeoff between the routing burden and the 
communication cost. 

B. An R-DGA Protocol 

A possible protocol based on R-DGA for creating and 
maintaining a multicast tree is as follows. A node w wishing 
to join a multicast group G sends a request message to the 
source s over a reliable unicast [transmission control protocol 
(TCP)] connection. The source s responds with a list ,Z’-1 of 
the identities of the nodes currently in G. Then it generates 
an updated list 2; +- Z;-1 U {u}. When node 11 receives 
the response from s, it selects as a parent the node 7~ from 
2,-l U {s} for which IL 9 ‘1) is of minimum cost. It then 
sends a message asking u to be its parent. Node II, updates 
its multicast routing table by adding the multicast link u 9 ‘u. 
Consequently, when u receives later a message for G, it will 
send one copy to u over the unicast route u * 71. When a node 
v wants to leave G, it sends a remove request to s. It attaches 
to this request a list of identities of its children in the current 
tree. Node s generates an updated list Zi of the multicast 
group by removing IJ from Z;-1. Then, for every child u of 11 
in the existing tree, s determines the list 2, (u) of nodes that 
had joined G before IL and have not left it yet. A response 
message is then sent back to 71, containing a different list for 
every child of 71. Node 71 then sends a message to every child 
U, asking u to find a new parent from the list Z~(TL) provided 
by s. The multicast link from u to 7~ can be removed either 
when ‘U asks IL to find a new parent or after u notifies 71 that 
it has a connection to the tree through a new parent. In either 
case some of the packets sent by s might not be received by 
II. due to the change. 

The protocol as described so far retains the correct structure 
of the tree even if multiple requests are received at the source 
simultaneously. The requests are processed by the source 



290 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 3, JUNE 1998 

sequentially and a response message is sent back to the sender 
of each request. The request senders, and their children in case 
of a remove request, can continue their process distributedly, 
independently of each other. It might happen therefore that for 
a short period of time, a multicast link II “3 V’ is created before 
U’ is connected to the tree. In contrast, cycles of multicast links 
cannot be created, even for a short time. Hence, looping of 
multicast packets is not possible, unless some multicast link 
creates a self-loop due to inconsistency of the unicast routing 
tables. Avoiding this inconsistency is, of course, the task of the 
unicast routing algorithm rather than of the multicast routing 
algorithm. 

C. The Properties of R-DGA 

In the following we discuss some of the properties of this 
protocol. The most important property is that the protocol can 
handle many multicast trees that dynamically change because 
it requires that a minimum number of nodes will participate 
in the multicast routing over each tree and in maintaining and 
updating each tree. This is achieved in three steps. Firstly, 
in order to avoid keeping at every network node routing and 
maintenance information associated with every active group 
(as in MBONE), the multicast trees are set up and updated 
dynamically, according to the exact structure of the destination 
group. This removes from the picture those network nodes 
that do not sit on the tree data path. Secondly, the concept of 
multicast over unicast paths (tunneling) is employed in order 
to avoid routing burden from nodes sitting on the tree data 
path. Finally, only the nodes directly related to the multicast 
tree, namely, the source and the destinations, are located in the 
end points of the multicast links. This eliminates the routing 
and maintenance burden from all the other nodes in the tree. 
The result of these three steps is that only those nodes directly 
related to each multicast tree will have to encounter the burden 
associated with routing over the tree, maintaining the tree, and 
updating the tree following changes in the destination group 
or in the underlying unicast routing. 

Another important property of the protocol is that the 
established trees are efficient. At first glance it seems that 
due to the restriction to have only nodes from {s} U Z in 
the junctions of the tree, the trees would be of a high cost. 
This hypothesis can be supported by the example in Fig. 2 as 
discussed before. However, the next section shows that despite 
the restriction, the worst-case peformance ratio of R-DGA is 
the same as that of DGA. It also shows that the differences in 
the actual cost of the trees established by a protocol similar 
to R-DGA and the trees established by DGA are minor and, in 
many cases, do not exist at all. 

A third property of the protocol is its fast response to 
changes in the destination group. When a new node is added, 
a new multicast link is created without affecting the rest of the 
tree. When a node is removed, then unlike other algorithms 
that try to minimize the number of rearrangements [4], [14], 
[15], R-DGA minimizes the rearrangement time. All of the 
affected nodes, whose parent has left the group, join the 
new tree independently of each other. Consequently, the time 
needed to rearrange the tree following a remove request is 

roughly equal to the time needed to address a single add 
request. As for the number of rearrangements, while it may 
be as high as 121 - 1 for extreme cases, it is less than one on 
the average case. This is because the average degree of a node 
in a tree is less than two and, therefore, the average number 
of children of a node in the multicast tree is less than one. 

Finally, the protocol is not affected by unicast routing 
changes, except in those rare cases where the connectivity 
between end points of a multicast link is broken. If the unicast 
route between the end points of a multicast link changes, 
the tree might be less or more efficient, and the changes 
will be taken into consideration when subsequent add/remove 
requests are accommodated. However, since the protocol does 
not consider the intermediate nodes of a multicast link as part 
of the tree, the unicast routing changes will be transparent 
to the tree. If a multicast link u * v is broken due to loss 
of connectivity, node v will access the source s and will be 
treated as a node whose parent has left the tree. 

IV. THE PERFORMANCE OF R-DGA 

In this section the performance of R-DGA is compared to 
the performance of DGA. We first compare the worst-case 
performance of both algorithms and then present simulation 
results for the average case. As stated in Section II, when the 
request sequence consists of only add requests, DGA has a 
worst-case performance ratio (competitiveness) of [log( 12, I)], 
where 1: is the number of add requests and 12; I is the number of 
nodes in the destination group after these requests are handled. 
If both add and remove requests are allowed, no upper bound 
on the worst-case performance ratio exists. Both claims are 
proven in [14]. 

A. Worst-Case Perj&-mance Analysis 

In the following we prove that any bound that applies to 
the performance of DGA on every sequence of only add 
requests applies to R-DGA as well. Moreover, such a bound 
applies to R-DGA even if the sequence also contains remove 
requests. Recall that since we employ the unicast routing as 
the underlying layer of the multicast routing, R-DGA can use 
only the shortest path between two nodes, regardless of its 
cost. In order to compare the performance of these algorithms 
we shall assume throughout this section that the cost function 
is proportional to the delay function. This implies that the 
shortest path between two nodes is also the cheapest path. A 
private case of this assumption would be to consider equal 
delay and cost functions. 

Lemma I: When requests are restricted to additions only, 
and the networks are restricted to complete graphs that satisfy 
the triangle inequality, the cost of a tree generated by R-DGA 
is equal to the cost of a tree DGA may generate. 

Proof We prove by induction on the length of the 
request sequence that the same tree generated by R-DGA can 
be generated by DGA as well. For an empty sequence of 
requests, the claim is obviously correct. When a new node 
u joins the tree, both algorithms will connect it to the closest 
node in the tree. Because the trees are, so far, identical, DGA 
has the option of selecting the same node u selected by R- 
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DGA, though there might be other nodes in the tree having the 
same minimum cost/distance to v. Since the graph is complete 
and it satisfies the triangle inequality, the shortest path from 
u to u is the single edge connecting them. No nonmember 
nodes are in this path and, therefore, the two trees continue to 
be identical. 0 

Lemma 2: When requests are restricted to additions only, 
any bound on the worst-case ratio of DGA as a function of the 
number of requests (12; I) is a b ound for R-DGA’s worst-case 
ratio as well. 

Proof: Consider a network G(V, E) with N nodes join- 
ing the multicast tree in some order. Suppose that R-DGA 
builds a tree with cost L. Let G’(V, E’) denote the complete 
distance graph of G. For every two nodes u and U, G’ has an 
edge 9~ -+ u whose cost is equal to the cost of U-U in G 
(i.e. the cost/distance of the shortest path from u to TJ), and an 
edge ~1 -+ u whose cost is equal to the cost of TJ 9 11 in G. 
The optimal solutions for G and G’ are of identical cost OPT, 
since any tree in G spanning a set of nodes can be transformed 
to a tree in G’ spanning the same nodes and having the same 
cost, and vice versa. Also, running R-DGA on G’ with the 
same sequence of add requests yields the same cost L. This 
is because R-DGA needs as input only the distance matrix of 
the graph nodes rather than the entire set of edges. Since the 
cost of a path from II to IL in G’ is the same as in G, G and G’ 
are identical as far as R-DGA is concerned. G’ is a complete 
graph satisfying the triangle inequality. Hence, according to 
Lemma 1, the cost of the tree generated by R-DGA in G is 
equal to the cost of a tree that DGA may generate in G'. Since 
any bound on the worst-case ratio of DGA as a function of 
the number of requests ( 1 Zi 1) is applicable for any graph, and 
in particular for G’, the lemma is proven. 0 

The logarithmic bound on DGA’s performance holds only 
if remove requests are not allowed [ 141. We now prove that R- 
DGA maintains the same bound even when remove requests 
are allowed. 

Lemma 3: Any tree generated by R-DGA following an 
add/remove sequence of requests and spanning the set of nodes 
2 can be generated by R-DGA with a sequence of 121 add 
requests only. 

Proof We consider the output of the algorithm on the 
following two sequence requests: 

1) (~1, add), . . . , (v,, add), (vi, remove); 
2) (vr, add), (vx, add), . . . , (vi-l, add), (v;+r, add), . . . , 

( u,, , add). 
We will prove that for every possible output of running the 

algorithm on sequence 1) (there might be different outputs due 
to arbitrary choices the algorithm is allowed to do), running 
the algorithm on sequence 2) can yield the same tree. From 
this follows that the tree created after a single remove request 
can be created by a sequence of only add requests. Extending 
this claim by induction to any number of remove requests is 
straightforward. 

Let ~(II, S) denote the nodes of S which are closest to V. 
Let P,(V) and Pb(w) d enote the parent of v in the tree created 
by the end of sequence 1) and in the tree created by the end of 
sequence 2), respectively. Finally, let P:(u) denote the parent 

of ‘U in the tree created after processing only the n add requests 
of sequence 1) before wi is removed. We shall now see that 
for every 1 5 j 5 r~, where j # i, the following holds: 

EL(~Q) E o(lJj, {.% 211, ‘U2,. . . ,lJ,j-I} - {vi}). (1) 
Note that for each node Uj that joins the tree created by 
sequence 2), the algorithm is free to choose any node from 
cr(Wj, {5,711,2/2,~~. ,vj-l} - {uL}) as a parent. Thus, from 
(1) it follows that when running on sequence 2), the algorithm 
may choose as a parent the same node chosen for sequence 1). 
This would result in identical trees and it proves the lemma. 

To prove (I), note that PL(vj) E CJ(~~~,{S,W~,W~,~~~, 
~~-1)) must hold. If P~(IJ~) # TIN, then P:(l~j) E 
o(v~, {s, ~1, ,112,. . . ,9/j-i} - {II;}). Since the remove request 
at the end of sequence 1) affects only vi and its sons, 
Pa(,Uj) = PA(vj) and (1) holds. In the other case, where 
PL(wj) = v;, the remove request requires vj to select a new 
parent from ‘T(w~, {s,u~,v~, . . . , u-1) - {vi}). Hence, (1) 
holds in this case as well. cl 

Theorem 1: Consider an execution of R-DGA on a se- 
quence a of % add/remove requests. Let Zi be the set of 
nodes in the multicast group following this sequence. Let 
R - DGA(a) the cost of the tree created by R-DGA and let 
OPT be the optimal tree spanning Zi. Then 

Proof The theorem follows from [ 141, where this bound 
is proven for an execution of DGA on a sequence of only add 
requests, from Lemmas 2 and 3. 0 

It is interesting to note that although R-DGA can be viewed 
as a restricted version of DGA, applying to DGA the R-DGA 
approach for handling remove requests would not retain the 
logarithmic bound. Since in DGA a child is not necessarily a 
member of the multicast group, we will examine two natural 
approaches. The first approach is to reconnect the children of 
the removed node back to the tree in the same way as in R- 
DGA. The second approach is not necessarily to reconnect 
every immediate child of the removed node, but only the 
first descendants in every subtree of the removed node that 
is either a member of the multicast group or has degree three 
or more. The following example shows that both approaches 
do not retain the worst-case performance ratio of [log(JZil)]. 
Consider the graph depicted in Fig. 3(a). Suppose that all 
edges have a cost and delay of one except the long one between 
v and s whose cost and delay is two. Let s be the root of the 
multicast tree marked by the dark lines. Such a tree could 
have been created by adding the dark nodes from bottom to 
top. Suppose now that node z leaves the multicast group. In 
both approaches, node w must reconnect to the tree since it is a 
nonmember node of degree three. It has two possible shortest 
paths, and after the one that goes through z is chosen, the 
tree looks as depicted in Fig. 3(b). Next node z leaves the 
tree and node y joins it [Fig. 3(c)]. Following the sequence 
of add/remove requests described so far for the nodes in the 
topmost square, node 2 was removed from the tree without 
changing the long path connecting s to ‘II. This process can be 
repeated in the other squares all the way down, resulting in the 



292 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 3. JUNE 1998 

(b) 

Cc) (4 
Fig. 3. Example ot’ node removal in possible modifications of DGA. 

tree shown in Fig. 3(d). Since this example can be extended to 
any number of squares, and since the optimal tree connecting 
1) to 5 is of cost two, the performance ratio is O(N), where N 
is the number of add/remove requests. Since 12, I = 1 in the 
end, the performance ratio cannot be bounded by any function 
of IZ,l. 

B. Simulatkm Results 

So far we have shown that the worst-case performance of 
R-DGA is at least as good as of DGA. In order to compare 
the average performance we have tested DGA, R-DGA, and 
a third algorithm, referred to as improved R-DGA, on 100 
randomly generated networks. Improved R-DGA allows a 
wider selection for a node V, whose parent is deleted from 
the tree. Instead of sending II a list of the nodes that have 
joined the group in the last time before v and have not left 
since then, the source sends 71 (via V’S old parent) the entire 
list of nodes in the tree except those in the subtree of 71. Recall 
that the average number of sons of a deleted node is less than 
one, but if a deleted node has several sons N, say, then in 
order to avoid the creation of cycles the root arranges the 
sons in some arbitrary order v~,‘YI~, . . . , ‘UN and allows II; to 
connect to any node in the tree except those in the subtree 
of TJj for every % < ;J < N. Note that implementing the 
improved R-DGA would require the source to know the exact 
structure of its tree, namely, the identity of the parent of every 
destination node. R-DGA, in contrast, needs to know only the 
order according to which the destination nodes have joined 
the tree. This new requirement of the improved R-DGA leads 
to a small modification of the multicast protocol presented in 
Section III as follows. A node ‘~1 that selects a parent, either 
because ‘0 has just joined the multicast group or because its 
previous parent has left the tree, needs to inform s about its 
new parent. 

The simulated networks were created as in 161. One hundred 
nodes were randomly distributed on a [0 ~400] [O . . .400] 
grid. An edge was then added between every pair of nodes 

*I 

1.1 c-,3 
0 10 20 30 40 50 60 70 80 Do 1w 

average (pwp St20 

Fig. 4. Average cost of R-DGA versus DGA. 

II, and *U with probability /j . c:xl)(-(d,,,,,/576ru)), where d,,,,, 
is the Euclidean distance between II, and V. The values selected 
for (t and /j are 0.1 and 0.4, respectively. The network was then 
made connected by randomly selecting nodes from distinct 
components of the graph and connecting them with an edge. 
The cost and length of each edge are set to the Euclidean 
distance between the edge nodes. 

The add/remove sequence of requests was created by adding 
a nonmember node with probability I’;,, and removing a 
member node with probability ITlrlt. These values determine 
the average density of the multicast group. We tried densities 
ranging from 5% to 95% (a density of p% means an average 
of p% of the network nodes were members of the multicast 
group at any given time). The created trees were tested after 
sequences of 500 requests. 

The metrics used for comparison is the competitiveness 
of each heuristic. Since calculating the optimal tree is NP- 
complete, we considered the cost of the tree generated by the 
static MPH as the optimal tree. Thus, for all of the following 
simulations, we define competitiveness of an algorithm A as 
the ratio between the cost of the tree constructed by A and 
the tree constructed by MPH.4 

The simulation results are depicted in Fig. 4. The graph 
reflects 2400 executions on different networks and different 
group sizes. For each group size, the average performance of 
25 executions is presented. The results show that the extra 
cost that R-DGA pays, due to the restriction of connecting 
new nodes only to nodes in the group or to the source, is 
more than desirable. For instance, when the density of the 
multicast group is larger than 30%, the competitiveness of 
R-DGA gets larger than 1.3, while DGA’s competitiveness 
drops below 1.2. This is because the penalty for putting only 
group members in the junctions of the multicast trees becomes 
heavier as the group gets more dense. The improved R-DGA 
yields much better results, which are similar to those gained by 
DGA. When the density of the multicast group is smaller than 
20%, the results of the improved R-DGA become distinctly 

4Recall that MPH has a worst-case performance of two times the optimum 

[5]. However, simulations show 1211 that its actual performance is only 5% 

worse than the optimum. 
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Fig. 5. Number of nonmember nodes involved in multicast routing in DGA and SPATH protocols (in R-DGA this number is always 0). (a) Average 
degree of network graph is eight. (b) Average degree of network graph is three. 

better than those of DGA, whereas for larger groups it retains 
a reasonable competitiveness. The reduction in cost, even 
compared to DGA, is due to the smart mechanism employed 
by improved R-DGA when remove requests are received. 

In order to view the advantage of R-DGA, Fig. 5 shows the 
number of nodes in the multicast tree that are not members of 
the multicast group, under DGA and SPATH, when the average 
degree of a node is eight [Fig. 5(a)] and three [Fig. 5(b)]. The 
left graphs show absolute numbers while the right ones show 
these numbers relative to the group size. These graphs show 
that for almost all sizes of multicast groups, the multicast tree 
created by SPATH or DGA contains 10-25 network nodes 
which are not members of the group. All of these nodes have to 
maintain and update state information in any case, and routing 
information in the case where the concept of tunneling is not 
employed, regarding multicast trees for which they serve as 
intermediate nodes only. Of course, when the network size 
increases, these numbers increase as well. For instance, for 
a 500-node network, an average tree with 40-60 destination 
nodes has about 60-70 nondestination nodes. 

From Figs. 4 and 5, it follows that improved R-DGA is most 
effective when the destination group consists of no more than 
lo%-30% of the total network nodes. In such a case the cost 
of the improved R-DGA algorithm is smaller than the cost of 
DGA, and the number of nodes that need to encounter routing 
and maintenance burden is reduced by 50%. 

Another potential scalability issue is the processing burden 
laid on the source, since it handles all add and remove 
requests. We believe that this will not pose any problem for the 
following reasons. Firstly, having a single node monitoring all 
additions and deletions from the tree may be required anyway 
for purposes such as admission control. Secondly, R-DGA is 
expected to be employed as an exterior multicast algorithm. 
Hence, each participating node is expected to be a border 
gateway rather than an end user. Consequently, the number of 
add/delete requests received by the source grows much more 
slowly than the number of end users. An add request issued 
by some end user will be forwarded by the border gateway to 
the source only if the border gateway does not yet belong to 
the tree. Similarly, a delete request issued by some end user 



294 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 3, JUNE 1998 

will be forwarded to the source only if no additional user in 
the same autonomous network belongs to the tree. Thirdly, 
when multiple sources are associated with the same multicast 
group, only one tree has to be established and only one source 
needs to maintain this tree. Finally, as previously discussed 
and is evident from Fig. 5, R-DGA significantly reduces the 
average processing burden imposed on the nodes. Hence, each 
node may be able to spend more processing power on those 
multicast trees for which it functions as a root. 

V. DELAY CONSTRAINED MULTICAST TREES 

In the previous section we considered only the cost of the 
multicast tree and ignored the distance between the source and 
each destination node. However, for many future multicast 
applications, it will be desirable to bound the latency between 
the source and each member of the destination group. In what 
follows we analyze the problem of minimizing the cost of a 
multicast tree satisfying such a latency constraint. 

The problem, referred to as the constrained Steiner tree 
problem, can be formulated as follows [ 161. As before, the 
network is represented by a graph G(V, E). Each edge e is 
associated with two values: its cost c(e) and its delay d(e). 
Delay constraint r is given. A tree T satisfies the delay 
constraint if the delay along each path from the root to a leaf 
is not more than l?. The cost of the tree is, as before, the sum 
of the costs of the edges of the tree. The problem is given 
a source s E V and a destination group 2 2 V to find the 
cheapest tree spanning 2 U {s} and satisfying the constraint. 

In the following we give lower bounds for the dynamic and 
static cases. Then we present a dynamic algorithm achieving 
the lower bound in a restricted version of the problem, where 
the delay of an edge is proportional to its cost. Finally, we 
present simulation results for that algorithm. 

As stated before, a static Steiner algorithm can achieve 
a worst-case performance ratio of two. For the constrained 
Steiner tree problem, we show that a polynomial algorithm 
achieving constant performance ratio is unlikely to exist, by 
providing a reduction from the minimum set cover (MSC) 
problem. It has been shown in [17] that no polynomial 
algorithm for MSC can achieve better than logarithmic ap- 
proximation factor unless ~~,~‘“‘~“‘1~(‘1) contains NP, which is 
thought to be as unlikely as P = NP. 

MSC can be formulated as follows. Given a set V = 
{YJ~, . T/,, } and a set of subsets of V, S = {Sl, , S,,,}, 
where Y’% 1 5 % 5 111; 5’~ C V, find the smallest subset C 
of S such that every element of V occurs in at least one 
set of C. The A-approximated MSC is to find such a subset 
whose size is not more than A times the smallest subset. The 
A-approximated constrained Steiner tree problem is to find a 
solution to the constrained Steiner tree problem whose cost is 
within A times the optimal one. 

Lemma 4: There is a polynomial reduction from 2A- 
approximated MSC to the A-approximated constrained Steiner 
tree problem. 

Proofi Given V and S, we build a bipartite graph G’( V U 

{s }. S, E), where E is the set of edges defined as follows: 
E = {(II;. S,;) 1 *!I, E S; } U { (s, Sj) 1 1 5 j 5 ,m}. An 

Fig. 6. An example of the reduction in the case where 

1. = {I,, , (‘2. I‘:$. I’,. l’s}, Sl = { ,‘,.Il:(}, s2 = {r,n.q.v5}, sr = {VI}, 

S.1 = {I’:$. P,}, and S = {S1,.5’2. S:c.S-I}. 

example of such a graph is shown in Fig. 6. We will refer to 
the edges connected to s as the first-level edges and to the other 
edges as the second-level edges. Let the first-level edges have 
cost and delay of n,, and the second-level edges have cost and 
delay of one. Using a constrained Steiner tree approximation 
algorithm, we get a tree T rooted in s and spanning V with 
delay constraint ‘r/, + 1. Since the graph is bipartite, every node 
in V has a parent in S. The delay constraint forces every node 
in S that is a member of the tree to be connected directly to 
s in T. Let C denote those nodes in S that are members of 
T. Since every node in V has a parent in C and since the 
graph was constructed so that a neighbor of a node ‘II in V is 
a set that contains pi, C covers all the nodes in V. Let C(T) 
denote T’s cost. Since T has exactly ICI first-level edges and 
exactly ‘II second-level edges, we get C(T) = nlC +rr, which 
yields ICI 2 (C(T)/71) - 1. If T’ is the optimal constrained 
Steiner tree, then by definition of the approximation problem 
C(T) 1. AC(T’), ICI 5 A(C(T’)/n) - 1 holds. From the 
optimal solution to the set cover problem C’, a tree T” can be 
built by connecting the members of C’ to s via first-level edges 
and then connecting each node in V to the subset that contains 
it in C’. This yields a tree with cost C(T”) = 7blC’I +‘r~. Since 
T’ is the optimal tree, C(T’) 5 C(T”) holds and thus we get 
ICI 5 AlC’l + A - 1 5 2AlC’l. 0 

Note that in the graph built in the reduction, every edge’s 
cost is the same as its delay; therefore, the lower bound holds 
for the restricted problem where the delay is proportional to 
the cost. 

We now turn to the dynamic case. We show that no 
nonrearrangeable algorithm can achieve better than linear 
performance ratio. 

Lemma 5: Any dynamic algorithm for the constrained 
Steiner tree problem that does not rearrange the tree after 
add requests has a worst-case ratio of 121. 

Proof: We shall start by considering a graph for which 
the cost and the length of every edge are not necessarily equal. 
Let G,,(V, U, E) be a bipartite graph defined as follows for 
any integer n larger than 0. V = {s; ~1, ~2; . . . , vk:}, where 
k = ,r/,‘; lJ = {u~,~/L~;~~~ ~ ut}, where t = (ii). An edge of 
cost one connects every node in U to s; an edge of negligible 
cost c connects every node in U to exactly n nodes in V such 
that each node in U is connected to a different choice of 71, 
nodes from V (the nodes in V cover together all of the ( : ) 
choices of 7/, nodes from V). Suppose that all edges have a 
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delay of one and that the delay constraint is two. Every tree 
satisfying the constraint has a height of two levels at most. 
The first level is of nodes in 1T and the second level is of 
nodes in V. In any nonrearrangeable algorithm when a node 
71 E V joins the tree, there are two possible cases. If ‘u has a 
neighbor in U already in the tree, one e-edge is added to the 
tree. Otherwise, a neighbor of ‘0 in U must be added along 
with its edge toward a, increasing the cost of the tree by 1 + E. 

If the cost of the tree is % < 11, it contains at most i nodes 
from U. In such a case there exist no more than rt * i nodes in 
V that have neighbors in the tree, and a node in V without such 
a neighbor can be found and added to the group, increasing 
the cost of the tree by 1 + t. Inductively, we can get a tree of 
cost rz after adding no more than n nodes of V. The cost of 
this tree is 71 times the optimal cost, since there always exists a 
single node in Ii connected to these n nodes by t-edges. This 
example can be extended to the case where the delay and the 
cost of each edge are equal by setting the cost of the edges 
between U and .s to a high cost IC (rather than one), the cost 
of the t-edges to one, and the delay constraint to 5 + 1. The 
performance ratio in this case is (7~ + n,)/ (X + n). For z much 
larger than 71, this ratio tends to n. It can be then extended to 
the case where all edges costs are equal to one by replacing 
each edge with a higher cost c by a path of c edges and c - 1 
new nodes. 0 

To address the constrained Steiner tree problem, a version 
of R-DGA, referred to as C-R-DGA, is presented in the 
following. Like R-DGA, C-R-DGA aims at finding a low- 
cost tree rooted at s and spanning the destination group Z 
such that only nodes from {s} U 2 are located in the tree 
forks. In addition, C-R-DGA ensures that the path from s to 
any member of the multicast group is not longer than some 
threshold a. 

C-R-DGA is very similar to R-DGA, except that when a 
new node searches for a parent, it takes into consideration not 
only the cost of the path leading to its parent but also the sum 
of the delay of this path and the delay from the source to the 
parent on the tree. More formally, let C(UY U) be the cost 
of the unicast path from u to II, let D(u Y II) be the delay of 
this path, and let 6(~) be the delay from s to u E 2 on the 
multicast tree. In addition, let a be the delay constraint. Node 
I/ selects node u E {s} U 2 as a parent if the following holds: 

1) 2)(1L”3 II) + h(U) 2 a; 

2) for no IL’ E 2, where U’ # U, 2)(~’ “3 U) + S(u’) 5 a 
and C( u’ 3 U) < C(U “3 U) hold. 

Assuming that the delay constraint a is not smaller than the 
delay of the shortest path from s to any network node,5 node 
71 can always find a parent because the first requirement is 
fulfilled by selecting the root s as a parent. 

When the parent of 71 is deleted from 2, w has to select a 
new parent. This is performed according to 1) and 2) above, 
with two exceptions. Firstly, the new parent is selected by 11 
from a subset Z(U) of 2 as in R-DGA (or in the improved R- 
DGA). Secondly, the path from s to ‘11 through the new parent 
must not be longer than the path from s to %I through the 

‘If for some I‘ ‘I?(* YZ- 11) > A, no algorithm can create a tree that spans 
11 and satisties the constraint. 

old parent. Without this requirement, node w may have in its 
subtree some nodes in Z for which the delay constraint A was 
fulfilled with the old parent but not with the new one. Again, 
this stricter constraint can always be guaranteed by selecting 
the source s as the new parent. 

Note that C-R-DGA requires every node w to know the 
value of 6(~) for every IL E 2 before selecting a new parent. 
This information can be provided to 21 by the source s when 
the latter responds to an add request of w or to a remove 
request of IJ’S parent. To this end, every node joining the 
destination group must inform s of the identity of its parent, 
like in the improved R-DGA (see Section IV). In any case, C- 
R-DGA is currently more applicable for ATM networks than 
for IP networks. This is mainly because a multicast link can 
be associated in ATM with a maximum delay for the entire 
duration of the multicast session, as C-R-DGA requires. 

In the following we study the performance of C-R-DGA. 
We first prove that C-R-DGA has the best possible worst-case 
performance ratio. Again, for the analysis we assume that the 
cost function is proportional to the delay function. 

Lemma 6: C-R-DGA has a worst-case performance ratio 
of 121. 

Proof: Let Tops be the cheapest tree satisfying the delay 
constraint and let C(v, TOPT) be the cost of the path from the 
source s to r~ E 2 in this tree. Let TC-R-DGA be the tree 
constructed by C-R-DGA and PC-n-DGA(w) be the parent of 
II E 2 in this tree; thus, C(Pc-n-~~h(rl) - U) is the cost of 
the path connecting ‘u to Tc-R-DGA. In addition, C(s * U) is 
the cost of the shortest path from the multicast source s to u 
in the network graph. 

First, note that C(P c n DGA(V) *u) 5 C(s 3 TV), because - - 
C-R-DGA always gives u the option to choose s as its parent 
and to be connected to TC-R-DGA through s “3 II. Since the 
delay of s - ‘u in the network graph cannot be larger than the 
delay from s to u in TOPT, and following the assumption 
that the cost function is proportional to the delay func- 
tion, C(s “3 U) < C(U, TOPT). Consequently, c(P~-n-o~~(w) 
- w) 5 C(w, TOPT) holds. Let C(T) be the cost of a tree 
T. Thus, C(TC-n-DGA) = C1,EZ C(PC-n-DGA(U) *w) holds, 
implying that C(TC-R-DGA) _< CliEZC(w,T~p~). Since for 
every 1) E 2, ~(~,ToPT) L ~(ToPT), then C(TC-R-DGA) I 

121 . C(TOPT) holds, and the lemma is correct. 0 
Theorem 2: No algorithm for finding the cheapest tree with 

delay constraint that does not rearrange the tree after add 
requests has a worst-case performance ratio better than C- 
R-DGA. 

Proof: Directly from Lemmas 6 and 5. 0 
We conclude this section with simulation results for C-R- 

DGA on the network model described in the previous section. 
We tried two values of constraint. The first is equal to the 
longest distance of a node to the root, namely, the tightest 
possible constraint, and the second is 1.5 times larger than 
that distance. Each of these two values was tested on networks 
and group sizes similar to those in the previous section. 
The resulting graphs are shown in Fig. 7. In all cases the 
performance of C-R-DGA is compared to the performance 
of a simple SPATH, where the multicast tree consists of a 
collection of the shortest paths from the source to each member 
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Fig. 7. Average cost of C-R-DGA versus the SPATH. 

-.“.‘F “._“” - 

(a) 

of the destination group. We use this SPATH as a benchmark 
because the tree it generates, which is actually the same tree 
generated by the MBONE DVMRP [9], obviously fulfills the 
delay constraint, and because this algorithm has the same 
worst-case performance ratio of 121 (see [.5]). 

The graphs in Fig. 7 show that when the delay is tight, the 
performance of C-R-DGA and the SPATH are similar. These 
results show that we can apply the restriction that removes the 
routing and maintenance burden from all of the nodes in the 
tree that are not in {s} U 2, while imposing a tight upper 
bound on the delays without increasing the cost of the tree at 
all. For the 150% constraint, the performance of C-R-DGA is 
even better than that of the SPATH. This shows that C-R-DGA 
can trade off the cost of the tree and the maximum delay. 

VI. CONCLUSION 

The paper has presented an approach for solving the scal- 
ability problem of routing over, updating, and maintaining 
a great number of multicast trees in a datagram network. 
According to the presented approach, only the nodes directly 
related to a multicast tree, namely, the source node and 
destination group nodes, need to keep information related 
to the tree routing and maintenance. This is achieved by 
viewing a multicast tree as a collection of multicast paths 
and imposing a restriction where only the source node and 
destination nodes can be located in the tree junctions as 
end points of multicast links. Based on this restriction, two 
algorithms were presented: R-DGA and C-R-DGA. R-DGA 
aims at establishing a low-cost tree, whereas C-R-DGA aims 
at establishing such a tree while imposing a constraint on 
the distance from s to every node in the destination group. 
The paper has shown that both algorithms can be efficiently 
implemented by a multicast protocol that can guarantee fast 
response to changes in the destination group. The paper 
has also shown that despite the restriction imposed by the 
proposed approach, both R-DGA and C-R-DGA yield a good 
performance. The worst-case performance of C-R-DGA is the 

C-R-DQA w SPATH (~onlralnl~150%) 

0 10 20 30 40 60 60 70 80 90 loo 

best that any nonrearrangeable algorithm may yield, whereas 
the worst-case performance of R-DGA is within two times 
of the best that any nonrearrangeable algorithm may yield. In 
terms of their average performance, both algorithms perform 
as well as (and, in many cases, even better than) other known 
and applicable algorithms that do not impose the restriction 
and, therefore, require all of the nodes along the data path 
of a tree to participate in the routing over the tree or in the 
maintenance of the tree. 
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