
286 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 3, JUNE 1998

Restricted Dynamic Steiner Trees for Scalable
Multicast in Datagram Networks

Ehud Aharoni and Reuven Cohen, Member, IEEE

Abstract- The paper addresses the issue of minimizing the
number of nodes involved in routing over a multicast tree and in
the maintenance of such a tree in a datagram network. It presents
a scheme where the tree routing and maintenance burden is laid
only upon the source node and the destination nodes associated
with the multicast tree. The main concept behind this scheme is
to view each multicast tree as a collection of unicast paths and
to locate only the multicast source and destination nodes on the
junctions of their multicast tree. The paper shows that despite this
restriction, the cost of the created multicast trees is not necessarily
higher than the cost of the trees created by other algorithms that
do not impose the restriction and therefore require all nodes along
the data path of a tree to participate in routing over the tree and
in the maintenance of the tree.

Index Terms-Dynamic trees, multicast routing, routing scala-
bility, Steiner trees.

I. INTRODUCTION

I N A POINT-TO-POINT communication network, multi-
cast is treated as the problem of creating, maintaining,

and updating efficient multicast trees, rooted at the multicast
source nodes and spanning the groups of destination nodes.
A multicast tree is dynamically created as network nodes join
and leave the destination group. It is maintained by some of
the network nodes, mainly those sitting on its data path. It
needs to be updated following changes in the connectivity or
in the load of the underlying network topology.

Internet employs the distance vector multicast routing pro-
tocol (DVMRP) [9] in order to construct a shortest-path tree
for every multicast {source, group} pair. This protocol, which
is a “pruning” variant of the reverse path-forwarding (RPF)
algorithm 171, suffers from two main scaling problems as fol-
lows [2], [S]. First, each network node has to maintain routing
information for every multicast tree.’ Second, prune messages
should be periodically exchanged between the network nodes
in order to maintain an updated version of each multicast tree.

The protocols presented in [2], [4], and 181 address these
problems. A tree spanning the members of the group is
established in the network, and only the nodes sitting on
the data path of the tree are required to maintain routing
information associated with the tree. When a new node joins
the multicast group, all of the nodes on the shortest path

Manuscript received February 21, 1997; revised September 22, 1997 and
February 3, 1998: approved by IEEE/ACM TRANSA(‘TIONS ON NETWORKING
Editor M. Ammar.

The authors are with the Department of Computer Science, Technion, Haifa
32000. Israel (e-mail: rcohen@cs.technion.ac.il).

Publisher Item Identifier S 1063.6692(98)04141-7.
’ It is assumed that all network node\ have multica\t routing capability.

between the new node and some node on the tree (the
predetermined core in [2], the rendezvous point(s) in [8], or
the closest node in 141) join the tree and update their multicast
routing tables accordingly.

A. Tunnel-Based Multicast

When multicast becomes pervasive, more techniques must
be employed in order to avoid scaling problems. If thousands
of trees are created, deleted, and updated every minute, the
processing burden on the network nodes will be excessive,
even if the burden associated with every multicast tree is
laid only upon the nodes sitting on the data path of that
tree. This is because these nodes will have to respond very
often to join or delete requests and to changes in the load
or connectivity of the underlying network. This burden can
be significantly reduced using the concept of tunneling [191 as
follows. The multicast packets are routed over a tree formed by
a collection of multicast links (tunnels), where each multicast
link is a simple unicast route. The intermediate nodes of each
multicast link do not have to maintain routing information for
the multicast tree because they are involved only in regular
unicast routing. Only the end points of each multicast link
have to maintain routing information for every tree established
over the link. For instance, consider a multicast source s, a
multicast group 2 = { ~1. ~2 ~ ~3. ~4, ZY, }, and the multicast tree
depicted in Fig 1. This tree can be viewed as a collection
of the following six multicast links: s - b, b n3 ~2, b +. ~1,
x1 ^3 (1, d -3 xy,, d 3 x:3, and d 9 ~1. The end points of these
multicast links are Z U {s} U li, where IJ is the set of nodes
not in 8 U {s} that have at least three links in the tree (b
and ol in Fig. I). Packets sent by the source s have two pairs
of source/destination addresses. One pair is of the multicast
source s and multicast group %. This pair remains fixed for
the entire routing. The other pair is the addresses of the source
and destination of the multicast link over which the packet is
routed. This pair is replaced when the packet reaches the end
of the multicast link. In terms of Fig. 1, a multicast packet
created by the source has a multicast address pair* (s, G) and
a unicast address pair (s, /J). The packet is routed through (I
based on the unicast address pair. Node n does not need to
know anything about the multicast destination G. When the
packet is received by the unicast destination h, it is processed
by the multicast routing procedure. In the multicast table of
b it is indicated that a multicast packet from s to G should

‘Throughout this paper, G represents a multicast address whereas Z
represents a dynamic set of nodes that want to receive the multicast packets
sent by .LI to G.

1063-6692/98$10.00 0 I998 IEEE

AHARONI AND COHEN: SCALABLE MULTICAST IN DATAGRAM NETWORKS 287

s

t

0 a

24
25

Fig. I. A multicast tree. B. The Proposed Scheme

be forwarded to z2 and to ~1. The copy destined for z2 has
the unicast address pair (b, 752). It is sent to c and routed as
a regular unicast packet whose destination is 22. At x2, the
packet is processed by the multicast routing procedure. The
latter uses its multicast routing table and deduces that the
packet is destined for the local node and that it should not
be forwarded elsewhere.3 Node zi, in contrast, deduces from
its multicast routing table that it needs to keep a copy of the
packet for itself and to send another copy on the multicast
link z1 9 d.

The concept of tunneling is already used for multicast
routing in the Internet multicast backbone (MBONE) [l l]
and is also proposed in the context of asynchronous transfer
mode (ATM) [l]. However, its purpose is not to reduce
the maintenance and routing burden at the multicast nodes,
but to connect multicast-capable nodes through the general
Internet protocol (IP) network. If all of the Internet routers
had multicast capability, as in the model considered in this
paper, tunneling would not have been used.

It can be easily shown by induction that in a multicast tree
rooted at source s and spanning the group 2, the number
1 of multicast links (tunnels) is 121 5 1 5 212) - 1. In
addition, only less than half of the nodes that are actively
involved in the maintenance of the tree and in the routing of
multicast packets from s to 2 (i.e., the nodes whose multicast
procedure is invoked when a multicast packet from s to G is
received) do not belong to 2 U {s}. It turns out, however, that
in a datagram network it is practically impossible to keep the
details of a multicast tree transparent to the intermediate nodes
of the multicast links. When a new member v joins an existing
multicast group, it might need to connect to some intermediate
node II’, say, of a multicast link 71” * v”‘, in which case

‘In terms of the Internet, ~2 as well as any other node in the multicast
group 2 can be viewed as a border router connecting an autonomous network
of some destination host(s) to the Internet backbone. Thus, the packet will be
forwarded by 32 into the autonomous network and multicast to the destination
hosts by means of an internal multicast protocol [IS].

21” “3 21”’ is removed from the tree and three multicast links
I/” h3 Ii’, II’ 9 I/“‘, and v’- ‘U are added. For this process to
take place, node U’ needs to know that it participates in the
multicast tree and to maintain some parameters describing its
position in the tree, like the identities of the end nodes of the
multicast link for which it acts as an intermediate node. This
information needs to be refreshed not only when multicast
links are added or removed due to changes in the destination
group, but also when the unicast routing tables change. For
instance, if in Fig. 1 the unicast routing tables are updated
such that the shortest path from d to ,754 goes through nodes
j and Ic rather than through g, nodes g, j, and k: must be
updated. The conclusion is that the concept of tunneling does
not remove the tree maintenance burden from the intermediate
nodes of the multicast links. It just removes from these nodes
the memory and processing burden associated with multicast
routing decisions.

In this paper we suggest an approach to solve the scalability
problem of establishing, updating, maintaining, and routing
over a great number of multicast trees in a datagram network.
According to this approach, for every multicast tree rooted
at a source node s and spanning a set Z of destination
nodes, only the nodes in {s} U 2 need to keep and update
information related to the tree routing and maintaining. This is
achieved by viewing a multicast tree as a collection of multicast
paths (tunnels) and ensuring that only nodes in {s} U Z are
selected as end points of the multicast links (namely, the set U
mentioned above is empty). In terms of Fig. 1, this means that
nodes b and d, which do not belong to {s} U 2, cannot function
as end nodes of multicast links but only as intermediate nodes.

The main advantage of the proposed scheme is that for
every multicast tree, only the nodes in {s} U 2, which in any
case must keep routing and maintenance information regarding
the tree, are required to do so. The existence of the tree is
absolutely transparent to any other network node, even to those
nodes that sit on the tree data path and route packets of the
tree as intermediate nodes of multicast links. Neither changes
in the unicast routing tables that affect the routes between
the end points of multicast links nor changes in the multicast
destination group can put any maintenance burden on nodes
not in {s} U 2.

The constraint imposed by the proposed scheme, where only
nodes in {s} U 2 can be located in the tree junctions and serve
as end nodes of the multicast links, may lead to the creation
of inefficient multicast trees. This issue is extensively studied
in the paper. As will be shown, the differences between the
cost of the trees generated without this constraint and the trees
generated under this constraint are minor and may therefore
justify the significant reduction in the maintenance overhead.

The problem of establishing a low-cost tree spanning a
partial set of the network nodes is known as the Steiner
tree problem. When the set of nodes dynamically changes,
a different problem-referred to as the dynamic Steiner tree
(DST)-is defined [14]. Section II discusses these problems
and presents the dynamic greedy algorithm (DGA) [14] for

288 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6. NO. 3, JUNE 1998

establishing and updating a low-cost multicast tree when the
destination group dynamically changes and when there is
no restriction to locate only nodes from {s} U Z in the
junctions of the multicast trees. In Section III we present a new
algorithm, referred to as restricted DGA (R-DGA), that locates
only nodes from {s} U Z in the junctions of the multicast trees.
Based on R-DGA, we then present a possible protocol for
creating, updating, and maintaining low-cost multicast trees.
In Section IV the performance of R-DGA is studied. We first
prove that despite the restriction, the worst-case performance
ratio of R-DGA is the same as that of DGA. Then we present
simulation results that show that the differences in the actual
cost of the trees established by a slightly improved version
of R-DGA (improved R-DGA, described in Section IV-B)
and those established by DGA are not significant. We also
calculate the average number of nodes not in {s} U 2 that are
included in the trees generated by DGA and by the shortest-
path algorithm (SPATH) (as suggested in [2] and [8]). We
use the result in order to compare the burden laid on an
average network node by R-DGA and by the other protocols.
SPATH is a simple algorithm that connects each joining node
to the tree via the shortest path to the source. We refer to it
and its performance in several places throughout the paper.
A detailed study of its performance can be found in [101. In
Section V we discuss the problem of creating, maintaining, and
updating low-cost multicast trees that guarantee some upper
bound on the distance between the source node and every
destination node. Such a requirement might be of importance
for many multicast applications. A new algorithm, referred
to as constrained R-DGA (C-R-DGA) is presented and its
performance is studied. Section VI concludes the paper.

II. THE DYNAMIC STEINER TREE PROBLEM

The Steiner tree problem can be formulated as follows:
Given a graph G(V, E), a nonnegative weight for each
I: E E, and a subset Z C V, find a subnetwork T of G
such that there is a path between every pair of vertices
in 2, and the total cost of T is a minimum.

The Steiner tree problem is NP-complete [121. It remains NP-
complete even if all edge weights are equal. Several heuristics
are known for this problem [22]. One of them, suggested in
[13] and [20], is the minimum cost paths heuristic (MPH).
This heuristic has a worst-case performance of two times the
optimum cost solution [5]. No heuristic with a better worst-
case performance is known [22]. The MPH works as follows
[221.

Step I: Choose an arbitrary vertex z from 2. Let 2’ = {z}
and T = {z}.

Step 2: Find in Z - 2’ the vertex z closest to T. Add z
to Z’, and add to T the minimum cost path joining
z to 2.

Step 3: If 2’ # Z, return to Step 2; otherwise, T is the
solution.

When the set 2 represents a multicast group, it cannot be
assumed to be known in advance since nodes can dynamically
join and leave the multicast group. This is known as the
DST problem, formally stated as follows [14]. Let R =

(7.0, Tl.. ‘. 1 r~} be a sequence of requests, where each 7’; is a
pair (u,, /I~)~ II; E V. p; E {add, remove}. Let 2; be the set of
nodes in the multicast group after step ‘I:, consisting of every
node II for which there exists .; 5 i such that ‘r,j = (II, add)
and 7’1 # (II, remove) for all j < 1 5 %. Then,

Given a graph G(V, E), a nonnegative weight for each
6: E E and a sequence R of requests, find a sequence of
multicast trees { Tl , T2, . TK} where Ti spans 2; and
has a minimum cost.

DST can be solved using any heuristic for the static Steiner
tree problem, like the MPH mentioned above, if we allow the
multicast tree to be completely rebuilt after each change. This
is, however, an unrealistic approach since it requires a lot of
coordination among the network nodes [3], and it is very likely
that a new request T; will come up before Ti-1 is ready. The
nonrearrangeable version of DST, referred to as DST-N [14],
requires that if ‘r, is an add request, 7: must include Ti-1 as a
subgraph (namely, no link can be removed from the old tree),
whereas if r’; is a remove request, ‘7-i must include T; as a
subgraph (namely, no link can be added to the old tree).

Imase and Waxman have shown [14] that when the request
sequence consists of only add requests, for any algorithm A
that solves DST-N there exists an instance such that for every
1: 0 < % 5 K

A(Zi) > 1 + ;lloa(lzzl - l)]
OPT(Z,) -

where K is the length of the request sequence, OPT(Z;)
is the optimum solution for a tree spanning 21, and A(Z;)
is the cost of a tree spanning 2; created by A. They have
also presented the DGA, where a new node appended to the
multicast group is connected to the existing multicast tree
through the cheapest path leading to any node in the tree,
and shown that DGA has a worst-case performance ratio
(competitiveness) of [loS(IZ;I)l-that is within two of the
optimal algorithm.

If both add and remove requests are allowed and if the
tree cannot be rearranged, no upper bound on the worst-
case performance ratio exists [14]. Several algorithms [4],
[141, [151 have been proposed in order to accommodate both
add and remove requests while restricting the number of
rearrangements required in order to derive a new efficient tree
T, from the old one T&-I.

III. R-DGA HEURISTIC FOR SCALABLE MULTICAST

In this section we describe a new algorithm, referred to as
the R-DGA, and then present an R-DGA-based protocol for
creating and maintaining dynamic multicast trees.

A. The R-DGA Algorithm

Throughout this paper we assume that unicast routing from
‘U to U’ is performed over the shortest path II ++u’. We also
assume that every node II’ knows the cost of the shortest
path II - 71’ from every other network node II. This kind of
information can be provided by the protocol that updates the
unicast routing tables, even in the general case where the cost

AHARONI AND COHEN: SCALABLE MULTICAST IN DATAGRAM NETWORKS 289

function and the delay function are different, or the costs of
w’ - w and ‘u 9 II’ are different.

R-DGA responds differently to add requests and to remove
requests. When a request r, to add a node 11 to the existing
multicast group Z;_i is received, R-DGA uses DGA with a
small but significant change: the new node IJ can be connected
only to a node in the former multicast group Z;- 1. The cost
of the path II’ “3 71 is checked for every II’ E Z;-1. The node
U’ E Zi-r for which the cost of 71’ 9 II is minimum is selected
as the parent of II, and a new multicast tree T’i is created by
appending the multicast link 71’ 9 71 to the previous multicast
tree Z’-1. When a request ri to remove II from a multicast
group Z;-i is received, II is removed from T;-1 along with
all of the multicast links connecting ‘u to its parent and to its
children. Then, every child 11’ of II in T,-l is connected to a
new parent U” E Zi(n’) from which the shortest path is of
minimum cost. The set Z~(U’) is a subset of 2~ = Zi-1 - {w}
consisting of all of the nodes in 2; that have joined the tree
(in the last time) before II’. The selected node ,u” becomes the
new parent of ‘U in Ti by appending the multicast link v” * 1)
to TiL1.

This algorithm is demonstrated in Fig. 2. The original graph
is shown in Fig. 2(a), and the multicast source is node s. The
number near every link indicates the cost and the delay on the
link for both directions. When node ,q is added to the multicast
group, it joins the tree through the unicast path multicast link
s 3 9 whose cost is six. When node c is added, it can join the
existing tree by a multicast link from s or from 9. Since the
latter is cheaper (three versus seven), c joins the tree through
the multicast link 9 “3 c. Packets from the source s to c will
be routed through s - 9 and then through g 9 c, namely, over
the path s - f - ,9 - f -c. Other multicast algorithms, like those
based on DGA or on the SPATH [2], [8], [14] would avoid this
unnecessary loop between f and g by creating three multicast
links s “3 f, f 9 g, and f - c. However, this is the price we
pay by requiring that only the source node and destination
nodes will be located in the forks of the tree. The next node
added to the multicast group is d. It can join the existing tree
by a multicast link from s, from 9, or from c. The cost of s c3 n
is eight, of g 3 d is two, and of c “3 d is three. Thus, g 9 d is
added to the tree, and the resulting tree is shown in Fig. 2(b).
Next, suppose that g is removed from the multicast group.
The multicast links s * g, g - c, and g 9 d are removed, and
new parents should be selected for c and d. For node c, only
node s can serve as the new parent of c, because no node in
the updated destination group has joined the group in the last
time before c. Thus, the multicast link s 3 c is added to the
tree. Regardless of the new parent selected for c, both s and c
can become the new parent of d. Since c 9 d is cheaper than
.T “3 d (three versus eight), c 9 d is added to the tree. The
resulting tree is shown in Fig. 2(c).

It is interesting to note that the problem of sending the
same multicast data over the same link more than once
arises also in the context of ATM, when the multicast tree
is established over a set of ATM point-to-point virtual paths
[l]. If the number of virtual paths (VP’s), which are the
equivalent to the multicast links in the present paper, has to be
minimized, a VP will be established only between members

(4 (b)

7
c

:

3

d

(cl

Fig. 2. R-DGA execution example. (a) Network graph. (b) q, c, and (1 are
added. (c) CJ is deleted.

of the multicast group, as with R-DGA. In [1] this problem is
addressed with an emphasis on possible enhancement to the
VP concept (introducing VP’s with intermediate exits) and on
asymmetric VP’s, whereas in the present paper the problem
is addressed with an emphasis on the dynamic nature of the
group and on the tradeoff between the routing burden and the
communication cost.

B. An R-DGA Protocol

A possible protocol based on R-DGA for creating and
maintaining a multicast tree is as follows. A node w wishing
to join a multicast group G sends a request message to the
source s over a reliable unicast [transmission control protocol
(TCP)] connection. The source s responds with a list ,Z’-1 of
the identities of the nodes currently in G. Then it generates
an updated list 2; +- Z;-1 U {u}. When node 11 receives
the response from s, it selects as a parent the node 7~ from
2,-l U {s} for which IL 9 ‘1) is of minimum cost. It then
sends a message asking u to be its parent. Node II, updates
its multicast routing table by adding the multicast link u 9 ‘u.
Consequently, when u receives later a message for G, it will
send one copy to u over the unicast route u * 71. When a node
v wants to leave G, it sends a remove request to s. It attaches
to this request a list of identities of its children in the current
tree. Node s generates an updated list Zi of the multicast
group by removing IJ from Z;-1. Then, for every child u of 11
in the existing tree, s determines the list 2, (u) of nodes that
had joined G before IL and have not left it yet. A response
message is then sent back to 71, containing a different list for
every child of 71. Node 71 then sends a message to every child
U, asking u to find a new parent from the list Z~(TL) provided
by s. The multicast link from u to 7~ can be removed either
when ‘U asks IL to find a new parent or after u notifies 71 that
it has a connection to the tree through a new parent. In either
case some of the packets sent by s might not be received by
II. due to the change.

The protocol as described so far retains the correct structure
of the tree even if multiple requests are received at the source
simultaneously. The requests are processed by the source

290 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 3, JUNE 1998

sequentially and a response message is sent back to the sender
of each request. The request senders, and their children in case
of a remove request, can continue their process distributedly,
independently of each other. It might happen therefore that for
a short period of time, a multicast link II “3 V’ is created before
U’ is connected to the tree. In contrast, cycles of multicast links
cannot be created, even for a short time. Hence, looping of
multicast packets is not possible, unless some multicast link
creates a self-loop due to inconsistency of the unicast routing
tables. Avoiding this inconsistency is, of course, the task of the
unicast routing algorithm rather than of the multicast routing
algorithm.

C. The Properties of R-DGA

In the following we discuss some of the properties of this
protocol. The most important property is that the protocol can
handle many multicast trees that dynamically change because
it requires that a minimum number of nodes will participate
in the multicast routing over each tree and in maintaining and
updating each tree. This is achieved in three steps. Firstly,
in order to avoid keeping at every network node routing and
maintenance information associated with every active group
(as in MBONE), the multicast trees are set up and updated
dynamically, according to the exact structure of the destination
group. This removes from the picture those network nodes
that do not sit on the tree data path. Secondly, the concept of
multicast over unicast paths (tunneling) is employed in order
to avoid routing burden from nodes sitting on the tree data
path. Finally, only the nodes directly related to the multicast
tree, namely, the source and the destinations, are located in the
end points of the multicast links. This eliminates the routing
and maintenance burden from all the other nodes in the tree.
The result of these three steps is that only those nodes directly
related to each multicast tree will have to encounter the burden
associated with routing over the tree, maintaining the tree, and
updating the tree following changes in the destination group
or in the underlying unicast routing.

Another important property of the protocol is that the
established trees are efficient. At first glance it seems that
due to the restriction to have only nodes from {s} U Z in
the junctions of the tree, the trees would be of a high cost.
This hypothesis can be supported by the example in Fig. 2 as
discussed before. However, the next section shows that despite
the restriction, the worst-case peformance ratio of R-DGA is
the same as that of DGA. It also shows that the differences in
the actual cost of the trees established by a protocol similar
to R-DGA and the trees established by DGA are minor and, in
many cases, do not exist at all.

A third property of the protocol is its fast response to
changes in the destination group. When a new node is added,
a new multicast link is created without affecting the rest of the
tree. When a node is removed, then unlike other algorithms
that try to minimize the number of rearrangements [4], [14],
[15], R-DGA minimizes the rearrangement time. All of the
affected nodes, whose parent has left the group, join the
new tree independently of each other. Consequently, the time
needed to rearrange the tree following a remove request is

roughly equal to the time needed to address a single add
request. As for the number of rearrangements, while it may
be as high as 121 - 1 for extreme cases, it is less than one on
the average case. This is because the average degree of a node
in a tree is less than two and, therefore, the average number
of children of a node in the multicast tree is less than one.

Finally, the protocol is not affected by unicast routing
changes, except in those rare cases where the connectivity
between end points of a multicast link is broken. If the unicast
route between the end points of a multicast link changes,
the tree might be less or more efficient, and the changes
will be taken into consideration when subsequent add/remove
requests are accommodated. However, since the protocol does
not consider the intermediate nodes of a multicast link as part
of the tree, the unicast routing changes will be transparent
to the tree. If a multicast link u * v is broken due to loss
of connectivity, node v will access the source s and will be
treated as a node whose parent has left the tree.

IV. THE PERFORMANCE OF R-DGA

In this section the performance of R-DGA is compared to
the performance of DGA. We first compare the worst-case
performance of both algorithms and then present simulation
results for the average case. As stated in Section II, when the
request sequence consists of only add requests, DGA has a
worst-case performance ratio (competitiveness) of [log(12, I)],
where 1: is the number of add requests and 12; I is the number of
nodes in the destination group after these requests are handled.
If both add and remove requests are allowed, no upper bound
on the worst-case performance ratio exists. Both claims are
proven in [14].

A. Worst-Case Perj&-mance Analysis

In the following we prove that any bound that applies to
the performance of DGA on every sequence of only add
requests applies to R-DGA as well. Moreover, such a bound
applies to R-DGA even if the sequence also contains remove
requests. Recall that since we employ the unicast routing as
the underlying layer of the multicast routing, R-DGA can use
only the shortest path between two nodes, regardless of its
cost. In order to compare the performance of these algorithms
we shall assume throughout this section that the cost function
is proportional to the delay function. This implies that the
shortest path between two nodes is also the cheapest path. A
private case of this assumption would be to consider equal
delay and cost functions.

Lemma I: When requests are restricted to additions only,
and the networks are restricted to complete graphs that satisfy
the triangle inequality, the cost of a tree generated by R-DGA
is equal to the cost of a tree DGA may generate.

Proof We prove by induction on the length of the
request sequence that the same tree generated by R-DGA can
be generated by DGA as well. For an empty sequence of
requests, the claim is obviously correct. When a new node
u joins the tree, both algorithms will connect it to the closest
node in the tree. Because the trees are, so far, identical, DGA
has the option of selecting the same node u selected by R-

AHARONI AND COHEN: SCALABLE MULTICAST IN DATAGRAM NETWORKS 291

DGA, though there might be other nodes in the tree having the
same minimum cost/distance to v. Since the graph is complete
and it satisfies the triangle inequality, the shortest path from
u to u is the single edge connecting them. No nonmember
nodes are in this path and, therefore, the two trees continue to
be identical. 0

Lemma 2: When requests are restricted to additions only,
any bound on the worst-case ratio of DGA as a function of the
number of requests (12; I) is a b ound for R-DGA’s worst-case
ratio as well.

Proof: Consider a network G(V, E) with N nodes join-
ing the multicast tree in some order. Suppose that R-DGA
builds a tree with cost L. Let G’(V, E’) denote the complete
distance graph of G. For every two nodes u and U, G’ has an
edge 9~ -+ u whose cost is equal to the cost of U-U in G
(i.e. the cost/distance of the shortest path from u to TJ), and an
edge ~1 -+ u whose cost is equal to the cost of TJ 9 11 in G.
The optimal solutions for G and G’ are of identical cost OPT,
since any tree in G spanning a set of nodes can be transformed
to a tree in G’ spanning the same nodes and having the same
cost, and vice versa. Also, running R-DGA on G’ with the
same sequence of add requests yields the same cost L. This
is because R-DGA needs as input only the distance matrix of
the graph nodes rather than the entire set of edges. Since the
cost of a path from II to IL in G’ is the same as in G, G and G’
are identical as far as R-DGA is concerned. G’ is a complete
graph satisfying the triangle inequality. Hence, according to
Lemma 1, the cost of the tree generated by R-DGA in G is
equal to the cost of a tree that DGA may generate in G'. Since
any bound on the worst-case ratio of DGA as a function of
the number of requests (1 Zi 1) is applicable for any graph, and
in particular for G’, the lemma is proven. 0

The logarithmic bound on DGA’s performance holds only
if remove requests are not allowed [141. We now prove that R-
DGA maintains the same bound even when remove requests
are allowed.

Lemma 3: Any tree generated by R-DGA following an
add/remove sequence of requests and spanning the set of nodes
2 can be generated by R-DGA with a sequence of 121 add
requests only.

Proof We consider the output of the algorithm on the
following two sequence requests:

1) (~1, add), . . . , (v,, add), (vi, remove);
2) (vr, add), (vx, add), . . . , (vi-l, add), (v;+r, add), . . . ,

(u,, , add).
We will prove that for every possible output of running the

algorithm on sequence 1) (there might be different outputs due
to arbitrary choices the algorithm is allowed to do), running
the algorithm on sequence 2) can yield the same tree. From
this follows that the tree created after a single remove request
can be created by a sequence of only add requests. Extending
this claim by induction to any number of remove requests is
straightforward.

Let ~(II, S) denote the nodes of S which are closest to V.
Let P,(V) and Pb(w) d enote the parent of v in the tree created
by the end of sequence 1) and in the tree created by the end of
sequence 2), respectively. Finally, let P:(u) denote the parent

of ‘U in the tree created after processing only the n add requests
of sequence 1) before wi is removed. We shall now see that
for every 1 5 j 5 r~, where j # i, the following holds:

EL(~Q) E o(lJj, {.% 211, ‘U2,. . . ,lJ,j-I} - {vi}). (1)
Note that for each node Uj that joins the tree created by
sequence 2), the algorithm is free to choose any node from
cr(Wj, {5,711,2/2,~~. ,vj-l} - {uL}) as a parent. Thus, from
(1) it follows that when running on sequence 2), the algorithm
may choose as a parent the same node chosen for sequence 1).
This would result in identical trees and it proves the lemma.

To prove (I), note that PL(vj) E CJ(~~~,{S,W~,W~,~~~,
~~-1)) must hold. If P~(IJ~) # TIN, then P:(l~j) E
o(v~, {s, ~1, ,112,. . . ,9/j-i} - {II;}). Since the remove request
at the end of sequence 1) affects only vi and its sons,
Pa(,Uj) = PA(vj) and (1) holds. In the other case, where
PL(wj) = v;, the remove request requires vj to select a new
parent from ‘T(w~, {s,u~,v~, . . . , u-1) - {vi}). Hence, (1)
holds in this case as well. cl

Theorem 1: Consider an execution of R-DGA on a se-
quence a of % add/remove requests. Let Zi be the set of
nodes in the multicast group following this sequence. Let
R - DGA(a) the cost of the tree created by R-DGA and let
OPT be the optimal tree spanning Zi. Then

Proof The theorem follows from [141, where this bound
is proven for an execution of DGA on a sequence of only add
requests, from Lemmas 2 and 3. 0

It is interesting to note that although R-DGA can be viewed
as a restricted version of DGA, applying to DGA the R-DGA
approach for handling remove requests would not retain the
logarithmic bound. Since in DGA a child is not necessarily a
member of the multicast group, we will examine two natural
approaches. The first approach is to reconnect the children of
the removed node back to the tree in the same way as in R-
DGA. The second approach is not necessarily to reconnect
every immediate child of the removed node, but only the
first descendants in every subtree of the removed node that
is either a member of the multicast group or has degree three
or more. The following example shows that both approaches
do not retain the worst-case performance ratio of [log(JZil)].
Consider the graph depicted in Fig. 3(a). Suppose that all
edges have a cost and delay of one except the long one between
v and s whose cost and delay is two. Let s be the root of the
multicast tree marked by the dark lines. Such a tree could
have been created by adding the dark nodes from bottom to
top. Suppose now that node z leaves the multicast group. In
both approaches, node w must reconnect to the tree since it is a
nonmember node of degree three. It has two possible shortest
paths, and after the one that goes through z is chosen, the
tree looks as depicted in Fig. 3(b). Next node z leaves the
tree and node y joins it [Fig. 3(c)]. Following the sequence
of add/remove requests described so far for the nodes in the
topmost square, node 2 was removed from the tree without
changing the long path connecting s to ‘II. This process can be
repeated in the other squares all the way down, resulting in the

292 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 3. JUNE 1998

(b)

Cc) (4
Fig. 3. Example ot’ node removal in possible modifications of DGA.

tree shown in Fig. 3(d). Since this example can be extended to
any number of squares, and since the optimal tree connecting
1) to 5 is of cost two, the performance ratio is O(N), where N
is the number of add/remove requests. Since 12, I = 1 in the
end, the performance ratio cannot be bounded by any function
of IZ,l.

B. Simulatkm Results

So far we have shown that the worst-case performance of
R-DGA is at least as good as of DGA. In order to compare
the average performance we have tested DGA, R-DGA, and
a third algorithm, referred to as improved R-DGA, on 100
randomly generated networks. Improved R-DGA allows a
wider selection for a node V, whose parent is deleted from
the tree. Instead of sending II a list of the nodes that have
joined the group in the last time before v and have not left
since then, the source sends 71 (via V’S old parent) the entire
list of nodes in the tree except those in the subtree of 71. Recall
that the average number of sons of a deleted node is less than
one, but if a deleted node has several sons N, say, then in
order to avoid the creation of cycles the root arranges the
sons in some arbitrary order v~,‘YI~, . . . , ‘UN and allows II; to
connect to any node in the tree except those in the subtree
of TJj for every % < ;J < N. Note that implementing the
improved R-DGA would require the source to know the exact
structure of its tree, namely, the identity of the parent of every
destination node. R-DGA, in contrast, needs to know only the
order according to which the destination nodes have joined
the tree. This new requirement of the improved R-DGA leads
to a small modification of the multicast protocol presented in
Section III as follows. A node ‘~1 that selects a parent, either
because ‘0 has just joined the multicast group or because its
previous parent has left the tree, needs to inform s about its
new parent.

The simulated networks were created as in 161. One hundred
nodes were randomly distributed on a [0 ~400] [O . . .400]
grid. An edge was then added between every pair of nodes

*I

1.1 c-,3
0 10 20 30 40 50 60 70 80 Do 1w

average (pwp St20

Fig. 4. Average cost of R-DGA versus DGA.

II, and *U with probability /j . c:xl)(-(d,,,,,/576ru)), where d,,,,,
is the Euclidean distance between II, and V. The values selected
for (t and /j are 0.1 and 0.4, respectively. The network was then
made connected by randomly selecting nodes from distinct
components of the graph and connecting them with an edge.
The cost and length of each edge are set to the Euclidean
distance between the edge nodes.

The add/remove sequence of requests was created by adding
a nonmember node with probability I’;,, and removing a
member node with probability ITlrlt. These values determine
the average density of the multicast group. We tried densities
ranging from 5% to 95% (a density of p% means an average
of p% of the network nodes were members of the multicast
group at any given time). The created trees were tested after
sequences of 500 requests.

The metrics used for comparison is the competitiveness
of each heuristic. Since calculating the optimal tree is NP-
complete, we considered the cost of the tree generated by the
static MPH as the optimal tree. Thus, for all of the following
simulations, we define competitiveness of an algorithm A as
the ratio between the cost of the tree constructed by A and
the tree constructed by MPH.4

The simulation results are depicted in Fig. 4. The graph
reflects 2400 executions on different networks and different
group sizes. For each group size, the average performance of
25 executions is presented. The results show that the extra
cost that R-DGA pays, due to the restriction of connecting
new nodes only to nodes in the group or to the source, is
more than desirable. For instance, when the density of the
multicast group is larger than 30%, the competitiveness of
R-DGA gets larger than 1.3, while DGA’s competitiveness
drops below 1.2. This is because the penalty for putting only
group members in the junctions of the multicast trees becomes
heavier as the group gets more dense. The improved R-DGA
yields much better results, which are similar to those gained by
DGA. When the density of the multicast group is smaller than
20%, the results of the improved R-DGA become distinctly

4Recall that MPH has a worst-case performance of two times the optimum

[5]. However, simulations show 1211 that its actual performance is only 5%

worse than the optimum.

AHARONI AND COHEN: SCALABLE MULTICAST IN DATAGRAM NETWORKS

Network load of OQA and SPATH

:

Oo (0 20 50 40 50 50 70 *i 20 loo
wecage group 8420

Nelwwk load OI DOA and SPATH

3p 1 :” “’

t

0 10 20 a0 40 50 50 70 so 00 loo
mwaga group lIza

(4

293

Nelwotk load 01 WA and SPATH

: :
:

Netwon lold of DQA 2nd SPATH

4501 ! : : : : : 1

(b)
Fig. 5. Number of nonmember nodes involved in multicast routing in DGA and SPATH protocols (in R-DGA this number is always 0). (a) Average
degree of network graph is eight. (b) Average degree of network graph is three.

better than those of DGA, whereas for larger groups it retains
a reasonable competitiveness. The reduction in cost, even
compared to DGA, is due to the smart mechanism employed
by improved R-DGA when remove requests are received.

In order to view the advantage of R-DGA, Fig. 5 shows the
number of nodes in the multicast tree that are not members of
the multicast group, under DGA and SPATH, when the average
degree of a node is eight [Fig. 5(a)] and three [Fig. 5(b)]. The
left graphs show absolute numbers while the right ones show
these numbers relative to the group size. These graphs show
that for almost all sizes of multicast groups, the multicast tree
created by SPATH or DGA contains 10-25 network nodes
which are not members of the group. All of these nodes have to
maintain and update state information in any case, and routing
information in the case where the concept of tunneling is not
employed, regarding multicast trees for which they serve as
intermediate nodes only. Of course, when the network size
increases, these numbers increase as well. For instance, for
a 500-node network, an average tree with 40-60 destination
nodes has about 60-70 nondestination nodes.

From Figs. 4 and 5, it follows that improved R-DGA is most
effective when the destination group consists of no more than
lo%-30% of the total network nodes. In such a case the cost
of the improved R-DGA algorithm is smaller than the cost of
DGA, and the number of nodes that need to encounter routing
and maintenance burden is reduced by 50%.

Another potential scalability issue is the processing burden
laid on the source, since it handles all add and remove
requests. We believe that this will not pose any problem for the
following reasons. Firstly, having a single node monitoring all
additions and deletions from the tree may be required anyway
for purposes such as admission control. Secondly, R-DGA is
expected to be employed as an exterior multicast algorithm.
Hence, each participating node is expected to be a border
gateway rather than an end user. Consequently, the number of
add/delete requests received by the source grows much more
slowly than the number of end users. An add request issued
by some end user will be forwarded by the border gateway to
the source only if the border gateway does not yet belong to
the tree. Similarly, a delete request issued by some end user

294 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 3, JUNE 1998

will be forwarded to the source only if no additional user in
the same autonomous network belongs to the tree. Thirdly,
when multiple sources are associated with the same multicast
group, only one tree has to be established and only one source
needs to maintain this tree. Finally, as previously discussed
and is evident from Fig. 5, R-DGA significantly reduces the
average processing burden imposed on the nodes. Hence, each
node may be able to spend more processing power on those
multicast trees for which it functions as a root.

V. DELAY CONSTRAINED MULTICAST TREES

In the previous section we considered only the cost of the
multicast tree and ignored the distance between the source and
each destination node. However, for many future multicast
applications, it will be desirable to bound the latency between
the source and each member of the destination group. In what
follows we analyze the problem of minimizing the cost of a
multicast tree satisfying such a latency constraint.

The problem, referred to as the constrained Steiner tree
problem, can be formulated as follows [161. As before, the
network is represented by a graph G(V, E). Each edge e is
associated with two values: its cost c(e) and its delay d(e).
Delay constraint r is given. A tree T satisfies the delay
constraint if the delay along each path from the root to a leaf
is not more than l?. The cost of the tree is, as before, the sum
of the costs of the edges of the tree. The problem is given
a source s E V and a destination group 2 2 V to find the
cheapest tree spanning 2 U {s} and satisfying the constraint.

In the following we give lower bounds for the dynamic and
static cases. Then we present a dynamic algorithm achieving
the lower bound in a restricted version of the problem, where
the delay of an edge is proportional to its cost. Finally, we
present simulation results for that algorithm.

As stated before, a static Steiner algorithm can achieve
a worst-case performance ratio of two. For the constrained
Steiner tree problem, we show that a polynomial algorithm
achieving constant performance ratio is unlikely to exist, by
providing a reduction from the minimum set cover (MSC)
problem. It has been shown in [17] that no polynomial
algorithm for MSC can achieve better than logarithmic ap-
proximation factor unless ~~,~‘“‘~“‘1~(‘1) contains NP, which is
thought to be as unlikely as P = NP.

MSC can be formulated as follows. Given a set V =
{YJ~, . T/,, } and a set of subsets of V, S = {Sl, , S,,,},
where Y’% 1 5 % 5 111; 5’~ C V, find the smallest subset C
of S such that every element of V occurs in at least one
set of C. The A-approximated MSC is to find such a subset
whose size is not more than A times the smallest subset. The
A-approximated constrained Steiner tree problem is to find a
solution to the constrained Steiner tree problem whose cost is
within A times the optimal one.

Lemma 4: There is a polynomial reduction from 2A-
approximated MSC to the A-approximated constrained Steiner
tree problem.

Proofi Given V and S, we build a bipartite graph G’(V U

{s }. S, E), where E is the set of edges defined as follows:
E = {(II;. S,;) 1 *!I, E S; } U { (s, Sj) 1 1 5 j 5 ,m}. An

Fig. 6. An example of the reduction in the case where

1. = {I,, , (‘2. I‘:$. I’,. l’s}, Sl = { ,‘,.Il:(}, s2 = {r,n.q.v5}, sr = {VI},

S.1 = {I’:$. P,}, and S = {S1,.5’2. S:c.S-I}.

example of such a graph is shown in Fig. 6. We will refer to
the edges connected to s as the first-level edges and to the other
edges as the second-level edges. Let the first-level edges have
cost and delay of n,, and the second-level edges have cost and
delay of one. Using a constrained Steiner tree approximation
algorithm, we get a tree T rooted in s and spanning V with
delay constraint ‘r/, + 1. Since the graph is bipartite, every node
in V has a parent in S. The delay constraint forces every node
in S that is a member of the tree to be connected directly to
s in T. Let C denote those nodes in S that are members of
T. Since every node in V has a parent in C and since the
graph was constructed so that a neighbor of a node ‘II in V is
a set that contains pi, C covers all the nodes in V. Let C(T)
denote T’s cost. Since T has exactly ICI first-level edges and
exactly ‘II second-level edges, we get C(T) = nlC +rr, which
yields ICI 2 (C(T)/71) - 1. If T’ is the optimal constrained
Steiner tree, then by definition of the approximation problem
C(T) 1. AC(T’), ICI 5 A(C(T’)/n) - 1 holds. From the
optimal solution to the set cover problem C’, a tree T” can be
built by connecting the members of C’ to s via first-level edges
and then connecting each node in V to the subset that contains
it in C’. This yields a tree with cost C(T”) = 7blC’I +‘r~. Since
T’ is the optimal tree, C(T’) 5 C(T”) holds and thus we get
ICI 5 AlC’l + A - 1 5 2AlC’l. 0

Note that in the graph built in the reduction, every edge’s
cost is the same as its delay; therefore, the lower bound holds
for the restricted problem where the delay is proportional to
the cost.

We now turn to the dynamic case. We show that no
nonrearrangeable algorithm can achieve better than linear
performance ratio.

Lemma 5: Any dynamic algorithm for the constrained
Steiner tree problem that does not rearrange the tree after
add requests has a worst-case ratio of 121.

Proof: We shall start by considering a graph for which
the cost and the length of every edge are not necessarily equal.
Let G,,(V, U, E) be a bipartite graph defined as follows for
any integer n larger than 0. V = {s; ~1, ~2; . . . , vk:}, where
k = ,r/,‘; lJ = {u~,~/L~;~~~ ~ ut}, where t = (ii). An edge of
cost one connects every node in U to s; an edge of negligible
cost c connects every node in U to exactly n nodes in V such
that each node in U is connected to a different choice of 71,
nodes from V (the nodes in V cover together all of the (:)
choices of 7/, nodes from V). Suppose that all edges have a

AHARONIANDCOHEN:SCALABLEMULTICASTIN DATAGRAM NETWORKS 295

delay of one and that the delay constraint is two. Every tree
satisfying the constraint has a height of two levels at most.
The first level is of nodes in 1T and the second level is of
nodes in V. In any nonrearrangeable algorithm when a node
71 E V joins the tree, there are two possible cases. If ‘u has a
neighbor in U already in the tree, one e-edge is added to the
tree. Otherwise, a neighbor of ‘0 in U must be added along
with its edge toward a, increasing the cost of the tree by 1 + E.

If the cost of the tree is % < 11, it contains at most i nodes
from U. In such a case there exist no more than rt * i nodes in
V that have neighbors in the tree, and a node in V without such
a neighbor can be found and added to the group, increasing
the cost of the tree by 1 + t. Inductively, we can get a tree of
cost rz after adding no more than n nodes of V. The cost of
this tree is 71 times the optimal cost, since there always exists a
single node in Ii connected to these n nodes by t-edges. This
example can be extended to the case where the delay and the
cost of each edge are equal by setting the cost of the edges
between U and .s to a high cost IC (rather than one), the cost
of the t-edges to one, and the delay constraint to 5 + 1. The
performance ratio in this case is (7~ + n,)/ (X + n). For z much
larger than 71, this ratio tends to n. It can be then extended to
the case where all edges costs are equal to one by replacing
each edge with a higher cost c by a path of c edges and c - 1
new nodes. 0

To address the constrained Steiner tree problem, a version
of R-DGA, referred to as C-R-DGA, is presented in the
following. Like R-DGA, C-R-DGA aims at finding a low-
cost tree rooted at s and spanning the destination group Z
such that only nodes from {s} U 2 are located in the tree
forks. In addition, C-R-DGA ensures that the path from s to
any member of the multicast group is not longer than some
threshold a.

C-R-DGA is very similar to R-DGA, except that when a
new node searches for a parent, it takes into consideration not
only the cost of the path leading to its parent but also the sum
of the delay of this path and the delay from the source to the
parent on the tree. More formally, let C(UY U) be the cost
of the unicast path from u to II, let D(u Y II) be the delay of
this path, and let 6(~) be the delay from s to u E 2 on the
multicast tree. In addition, let a be the delay constraint. Node
I/ selects node u E {s} U 2 as a parent if the following holds:

1) 2)(1L”3 II) + h(U) 2 a;

2) for no IL’ E 2, where U’ # U, 2)(~’ “3 U) + S(u’) 5 a
and C(u’ 3 U) < C(U “3 U) hold.

Assuming that the delay constraint a is not smaller than the
delay of the shortest path from s to any network node,5 node
71 can always find a parent because the first requirement is
fulfilled by selecting the root s as a parent.

When the parent of 71 is deleted from 2, w has to select a
new parent. This is performed according to 1) and 2) above,
with two exceptions. Firstly, the new parent is selected by 11
from a subset Z(U) of 2 as in R-DGA (or in the improved R-
DGA). Secondly, the path from s to ‘11 through the new parent
must not be longer than the path from s to %I through the

‘If for some I‘ ‘I?(* YZ- 11) > A, no algorithm can create a tree that spans
11 and satisties the constraint.

old parent. Without this requirement, node w may have in its
subtree some nodes in Z for which the delay constraint A was
fulfilled with the old parent but not with the new one. Again,
this stricter constraint can always be guaranteed by selecting
the source s as the new parent.

Note that C-R-DGA requires every node w to know the
value of 6(~) for every IL E 2 before selecting a new parent.
This information can be provided to 21 by the source s when
the latter responds to an add request of w or to a remove
request of IJ’S parent. To this end, every node joining the
destination group must inform s of the identity of its parent,
like in the improved R-DGA (see Section IV). In any case, C-
R-DGA is currently more applicable for ATM networks than
for IP networks. This is mainly because a multicast link can
be associated in ATM with a maximum delay for the entire
duration of the multicast session, as C-R-DGA requires.

In the following we study the performance of C-R-DGA.
We first prove that C-R-DGA has the best possible worst-case
performance ratio. Again, for the analysis we assume that the
cost function is proportional to the delay function.

Lemma 6: C-R-DGA has a worst-case performance ratio
of 121.

Proof: Let Tops be the cheapest tree satisfying the delay
constraint and let C(v, TOPT) be the cost of the path from the
source s to r~ E 2 in this tree. Let TC-R-DGA be the tree
constructed by C-R-DGA and PC-n-DGA(w) be the parent of
II E 2 in this tree; thus, C(Pc-n-~~h(rl) - U) is the cost of
the path connecting ‘u to Tc-R-DGA. In addition, C(s * U) is
the cost of the shortest path from the multicast source s to u
in the network graph.

First, note that C(P c n DGA(V) *u) 5 C(s 3 TV), because - -
C-R-DGA always gives u the option to choose s as its parent
and to be connected to TC-R-DGA through s “3 II. Since the
delay of s - ‘u in the network graph cannot be larger than the
delay from s to u in TOPT, and following the assumption
that the cost function is proportional to the delay func-
tion, C(s “3 U) < C(U, TOPT). Consequently, c(P~-n-o~~(w)
- w) 5 C(w, TOPT) holds. Let C(T) be the cost of a tree
T. Thus, C(TC-n-DGA) = C1,EZ C(PC-n-DGA(U) *w) holds,
implying that C(TC-R-DGA) _< CliEZC(w,T~p~). Since for
every 1) E 2, ~(~,ToPT) L ~(ToPT), then C(TC-R-DGA) I

121 . C(TOPT) holds, and the lemma is correct. 0
Theorem 2: No algorithm for finding the cheapest tree with

delay constraint that does not rearrange the tree after add
requests has a worst-case performance ratio better than C-
R-DGA.

Proof: Directly from Lemmas 6 and 5. 0
We conclude this section with simulation results for C-R-

DGA on the network model described in the previous section.
We tried two values of constraint. The first is equal to the
longest distance of a node to the root, namely, the tightest
possible constraint, and the second is 1.5 times larger than
that distance. Each of these two values was tested on networks
and group sizes similar to those in the previous section.
The resulting graphs are shown in Fig. 7. In all cases the
performance of C-R-DGA is compared to the performance
of a simple SPATH, where the multicast tree consists of a
collection of the shortest paths from the source to each member

296 IEEE/ACM TRANSACTIONS ON NETWORKING. VOL. 6, NO. 3, JUNE IY98

C-R-WA vu SPATH (coMlr&l1=100%)

Fig. 7. Average cost of C-R-DGA versus the SPATH.

-.“.‘F “._“” -

(a)

of the destination group. We use this SPATH as a benchmark
because the tree it generates, which is actually the same tree
generated by the MBONE DVMRP [9], obviously fulfills the
delay constraint, and because this algorithm has the same
worst-case performance ratio of 121 (see [.5]).

The graphs in Fig. 7 show that when the delay is tight, the
performance of C-R-DGA and the SPATH are similar. These
results show that we can apply the restriction that removes the
routing and maintenance burden from all of the nodes in the
tree that are not in {s} U 2, while imposing a tight upper
bound on the delays without increasing the cost of the tree at
all. For the 150% constraint, the performance of C-R-DGA is
even better than that of the SPATH. This shows that C-R-DGA
can trade off the cost of the tree and the maximum delay.

VI. CONCLUSION

The paper has presented an approach for solving the scal-
ability problem of routing over, updating, and maintaining
a great number of multicast trees in a datagram network.
According to the presented approach, only the nodes directly
related to a multicast tree, namely, the source node and
destination group nodes, need to keep information related
to the tree routing and maintenance. This is achieved by
viewing a multicast tree as a collection of multicast paths
and imposing a restriction where only the source node and
destination nodes can be located in the tree junctions as
end points of multicast links. Based on this restriction, two
algorithms were presented: R-DGA and C-R-DGA. R-DGA
aims at establishing a low-cost tree, whereas C-R-DGA aims
at establishing such a tree while imposing a constraint on
the distance from s to every node in the destination group.
The paper has shown that both algorithms can be efficiently
implemented by a multicast protocol that can guarantee fast
response to changes in the destination group. The paper
has also shown that despite the restriction imposed by the
proposed approach, both R-DGA and C-R-DGA yield a good
performance. The worst-case performance of C-R-DGA is the

C-R-DQA w SPATH (~onlralnl~150%)

0 10 20 30 40 60 60 70 80 90 loo

best that any nonrearrangeable algorithm may yield, whereas
the worst-case performance of R-DGA is within two times
of the best that any nonrearrangeable algorithm may yield. In
terms of their average performance, both algorithms perform
as well as (and, in many cases, even better than) other known
and applicable algorithms that do not impose the restriction
and, therefore, require all of the nodes along the data path
of a tree to participate in the routing over the tree or in the
maintenance of the tree.

REFERENCES

[I] M. H. Ammar, S. Y. Cheung, and C. M. Scoglio, “Routing multi-
point connections using virtual paths in an ATM network,” in Proc.
INFOCOM, 1993, pp. 98-105.

[2] T. Ballardie, P. Francis, and J. Crowcroft, “Core based trees (CBT),” in
Proc. SIGCOMM, San Francisco, CA, 1993, pp. 85-95.

[3] F. Bauer and A. Varma, Distributed algorithms for multicast path setup
in data networks,” in Proc. GLOBECOM, Singapore, Nov. 1995, pp.
1374-1378.

[4] F. Bauer and A. Varma, “ARIES: A rearrangeable inexpensive edge-
based on-line Steiner algorithm,” in Pmt. INFOCOM, Mar. 1996, pp.
361-368.

151 K. Bhdrdth-Kumar and J. Jaffe, “Routing to multiple destinations in
computer networks,” IEEE Trans. Commun., vol. COM-31, pp. 343-35 I,
Mar. 1983.

[6] R. Bryant, “Graph-based algorithms for Boolean function manipulation,”
IEEE Trans. Commun., vol. COM-34, pp. 677-691, May 1986.

[7] Y. Dalal and R. Metcalfe, “Reverse path forwarding of broadcast
packets,” Commun. ACM, vol. 21, no. 12, pp. 1040-1048, 1978.

[8] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, and L. Wei,
“Protocol independent multicast (PIM): Motivation and architecture,”
Internet draft, Jan. 1995.

191 S. Deering, C. Partridge, and D. Waitzman, “Distance vector multicast
routing protocol,” vol. RFC-1075, Nov. 1988.

[IO] M. Doar and 1. Leslie, “How bad is naive multicast routing?,” in Proc.
INFOCOM, San Francisco, CA, 1993, pp. 82-89.

[I I] H. Eriksson, “MBone: The multicast backbone,” Commun. ACM, vol.
37, no. 8, pp. 54-60, Aug. 1994.

1121 M. Garey and D. Johnson, Computrrs and Intracruhility. San Fran-
cisco, CA: Freeman, 1979.

[131 E. Gilbert and H. Pollak, “Steiner minimal tree,” SIAM J. App. Math.,
vol. 16, pp. l-29, 1968.

[14] M. Imase and B. Waxman, “Dynamic Steiner tree problem,” S/AM J.
Discrrrr Math., vol. 4, no. 3, pp. 369-384, Aug. 1991.

1151 J. Kddirire and G. Knight, “Comparison of dynamic multicast routing al-
gorithms for wide-area packet switched networks,” in Prw. INFOCOM.
Apr. 1995, pp. 212-219.

AHARONI AND COHEN: SCALABLE MULTICAST IN DATAGRAM NETWORKS 291

[1’4

[I71

[I81

[I91
v-01

1211

WI

V. Kompella, J. Pasquale, and G. Polyzos, “Multicast routing for
multimedia communication,” IEEE/ACM Trans. Networking, vol. I, pp.
286-292, June 1993.
C. Lund and M. Yannakakis, “On the hardness of approximating
minimization problems,” in Proc. 25th ACM Annual Symp. Theory
Computing, San Diego, CA, 1993, pp. 286-293.

Ehud Aharoni received the B.Sc. and MSc. de-
grees in computer science from the Technion, Israel
Institute of Technology, Haifa, Israel, in 1995 and
1997, respectively. Since then he has been develop-
ing products for the Internet.

I. Moy, “Multicast routing extensions for OSPF,” Commun. ACM, vol.
37, no. 8, pp. 6 l-66, Aug. 1994.
W. Simpson, “IP in IP tunneling,” vol. RFC-1853, Oct. 1995.
H. Takahashi and A. Matsuyama, “An approximate solution for the
Steiner problem in graphs,” Math. Japnnica, vol. 24, pp. 573-577, 1980.
B. Waxman, “Routing of multipoint connections,” IEEE J. Select. Areas
Commun., vol. 6, pp. 1617-1622, 1988.
P. Winter, “Steiner problem in networks: A survey,” Networks, vol. 17,
pp. 129-167, 1987.

Reuven Cohen (M’92). for photograph and biography, see p. 29 of the
February 1998 issue of this TRANSACTIONS.

