
0-7803-7016-3/01/$10.00 ©2001 IEEE

A Unicast-based Approach for Streaming Multicast
Reuven Cohen and Gideon Kaempfer

Department of Computer Science
Technion, Haifa 32000, Israel

Abstract—Network layer multicast is know as the most efficient way to
support multicast sessions. However, for security, QoS and other consid-
erations, most of the real-time application protocols can be better served
by upper layer (transport or application) multicast. In this paper we pro-
pose a scheme called M-RTP for multicast RTP sessions. The idea behind
this scheme is to set up the multicast RTP session over a set of unicast RTP
sessions, established between the various participants (source and destina-
tions) of the multicast session. We then address the issue of finding a set of
paths with maximum bottleneck for an M-RTP session. We show that this
problem is NP-Complete, and propose several heuristics to solve it.

I. INTRODUCTION

Over the past few years the Internet has seen a rise in the
number of new applications that rely on multicast transmission.
In these applications, one sender sends data to a group of re-
ceivers simultaneously. In a network that supports IP multicast,
the sender needs to send only a single packet, which is then
replicated by fork routers in the multicast delivery tree. Many
protocols for supporting Network layer multicast have been de-
veloped, like DVMRP [7], CBT [4], and PIM [8] for Intra-AS
multicast and BGMP [3] for Inter-AS multicast.

However, multicast can be supported not only in the network
layer, but also in the transport layer or in the application layer.
In such a case the replication of data is performed by the up-
per layer, while using a unicast routing service from the net-
work layer. A straightforward advantage of such approach is
that multicast applications can be executed in networks that do
not support IP layer multicast. However, this approach is useful
for other reasons also in cases where multicast is supported in
the IP layer. As an example, the approach presented in [2] can
be viewed as supporting multicast in the UDP layer. The main
benefit there is reducing the overhead associated with setting up
and maintaining a multicast tree in the network layer. Other
reasons for supporting multicast using unicast in the Network
layer is to allow firewalls to handle better the traffic created by
the multicast application, and to facilitate the allocation of UDP
port numbers (with unicast, each participant is free to select its
port number for each session, whereas for multicast a global
agreement is needed).

However, the most important advantage is Quality of Service
(QoS): the provisioning, maintenance and tracking of QoS over
a unicast path is known to be a much easier problem than over a
multicast tree. Therefore, by provisioning upper layer multicast
over a set of unicast Network layer paths it becomes much easier
to guarantee QoS for a multicast session.

The theoretical problems, the main concepts and the algo-
rithms presented in this paper are general. They can therefore
be employed for addressing multicast-related issues in differ-
ent contexts and under different assumptions. However, we se-
lected to present them in the specific context of streaming mul-
ticast sessions. We consider an RTP multicast session, with a

source S that distributes real-time traffic to a group of destina-
tion nodes. Providing QoS over a set of unicast paths is feasible
today using the mechanisms and tools provided by frameworks
like MPLS and DiffServ. However, the provisioning of QoS in
a DiffServ network for an IP multicast routing tree is a tough
problem which has not been addressed yet.

Moreover, RTP has a lightweight companion protocol called
RTCP (Real Time Control Protocol), whose main purpose is to
monitor the QoS of the RTP packets. RTCP is based on the
periodic transmission of control messages to all participants in
the session, using the same distribution mechanism as the data
packets [14]. RTP receivers provide reception quality feedback
using RTCP reports. An RTCP report contains information on
the highest sequence number received, the number of packets
lost, a measure of the interarrival jitter and timestamps needed to
compute an estimate of the round-trip delay between the sender
and the receiver issuing the report. These reports can be used by
the sender in order to estimate the QoS perceived by the desti-
nations and to adjust its transmission accordingly. For instance,
when too many packets are lost, the sender can switch to a more
aggressive compression scheme, or require the network to allo-
cate more bandwidth. However, when multicast is performed
in the IP layer, analysis the RTCP reports becomes a very dif-
ficult task. As an example, Figure 1 shows a multicast session,
whose destination group consists of 2 hosts: d1 and d2, assum-
ing that IP multicast is employed. Suppose that the sender s is
informed that only 90% of the packets are received by d1, and
only 95% are received by d2. Even if s knows the exact struc-
ture of the tree, it cannot determine how much of the loss should
be attributed to each of the 3 paths comprising the tree: s ; x,
x ; d1 and x ; d2. For instance, two possible loss patterns
are: (a) no loss on s ; x, 10% loss on x ; d1 and 5% loss on
x; d2; (b) 5% loss on s; x, 5% loss on x; d1 and no loss
on x ; d2. Between these two extreme patterns, there exist an
infinite number of additional different possible patterns. There-
fore, there is no efficient method to improve the QoS in this case.
This problem is also recognized in [1], where a mechanism that
employs special probes from the sender to the receivers is pro-
posed.

A trivial way to support a multicast application over a unicast
routing layer is to set up a different unicast session between the
host and every destination. However, this approach overloads
the source and substantially increases the required bandwidth
compared to the case where IP layer multicast is used. Another
approach would be to use the fork nodes of the multicast tree
(e.g. node x in Figure 1) as “active nodes” that participate in
the higher layer protocol. For instance, if node x participates
in the RTP layer of the session considered above, 3 RTP ses-
sions are defined: between s and x, between s and d1, and be-
tween s and d2. Since each RTP session is associated with its

440 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

x

s

Fig. 1. A simple multicast session

own RTCP, each of the 3 senders can easily analyze the RTCP
reports it receives, in order to maintain the QoS of the stream
it generates. This approach combines the advantage of IP layer
multicast, namely scalability and efficiency, with the advantages
mentioned above of upper layer multicast. However, this ap-
proach requires the the network routers to participate in higher
layer protocols, in contrast to the fundamental design principal
of the Internet: “put smarts in the ends of the network hosts,
leaving the core dumb”.

In this paper we study a third approach, that can be viewed as
a combination of the two proposed above. In this approach, the
multicast tree consists of multiple unicast paths. However, only
members of the multicast session – namely the source s and the
destination nodes – can sit on the end points of the paths. The
network routers are assumed to perform simple unicast routing
only. This idea was proposed in the first time in [2], in the con-
text of increasing the scalability of multicast tree maintenance.
However, in this paper we concentrate on the establishment of
such a tree while fulfilling the bandwidth requirements of a real-
time application. We show that the problem of finding such a
tree with sufficient bandwidth is NP-Complete. We then pro-
pose heuristic solutions and analyze their performance.

The rest of the paper is organized as follows. Section II
presents the main concepts of the considered scheme called M-
RTP. In Section III the routing problem associated with M-RTP
is studied. It is shown that finding an “M-RTP tree”, namely
a collection of paths that reaches each destination node, while
guaranteeing the required bandwidth for the application is an
NP-Complete problem. In Section IV we present two heuristics
for solving this problem and in Section V we analyze the per-
formance of these algorithms. Finally, section VI concludes the
paper.

II. THE M-RTP APPROACH FOR A MULTICAST RTP
SESSION

The main idea behind M-RTP is to replace a single multicast
RTP session with multiple unicast RTP sessions. In M-RTP each
multicast group member is involved in one RTP session as a
receiver, and in 0 or more RTP sessions as a proxy RTP sender.

RTP

RTP
RTP

RTCP RTCP

RTCP RTCP

s

d4 d3

d1d2

RTP

Fig. 2. Example of M-RTP

As an example, consider a multicast RTP session where s is
the source and M = fd1; d2; d3; d4g is the destination group.
Instead of establishing a single RTP session, an M-RTP-based
solution is presented in Figure 2. In this solution node s has a
unicast RTP session with d1 and another unicast RTP session
with d2. In these 2 sessions, s serves as the RTP source, while
d1 and d2 serve as two independent RTP receivers. Host d1
participates in 2 additional unicast RTP sessions, but this time
as a proxy RTP sender1: with d3 and d4.

M-RTP restricts the replication of data only to the parties ac-
tively participating in the multicast session. As already indi-
cated, this restriction bears several major advantages. The first
advantage is that this approach requires no multicast support
from the underlying routing layer. The second advantage is that
QoS provisioning becomes a much easier task. And finally, the
maintenance of QoS is significantly streamlined due to the fol-
lowing two reasons. Firstly, the reports received by every sender
or receiver are related to a path rather than to a tree. Secondly,
due to the RTCP bandwidth scaling algorithm [14], the num-
ber of reports received by every sender or receiver is jM j times
larger than in the case of a multicast tree though the total band-
width consumed by these reports is equal in both cases.

A possible disadvantage of M-RTP is the cost of the routing.
For instance, in certain cases, M-RTP causes multiple copies
of the same application data to be transmitted over a single
link. For instance, Figure 3(a) presents an undirected graph over
which a multicast session from s to M = fd1; d2g has to be
established. Figure 3(b) presents a solution where a single mul-
ticast RTP session is established over a multicast tree. Figure
3(c) presents an M-RTP solution where the multicast session is
carried out using 2 unicast RTP sessions: from s to d1 and from
s to d2. Whereas in Figure 3(b) each packet of the multicast
session is sent over the link s � x only once, such a packet is
sent twice over the same link in Figure 3(c). Although worst
case analysis may show this to be a major problem, simulations
suggest that the effect of M-RTP on routing cost is minimal.
Unlike RTP mixers and translator [14], M-RTP does not impose
processing of application data at the end point of an RTP con-

1In the terminology of RTP as defined in [14], a proxy-RTP sender can be
viewed as a simple “RTP translator” or “RTP mixer”.

441 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

s

(a)

s

(b)

s

(c)

x

Fig. 3. Inefficient routing for M-RTP.

nections. Hence, the only delay an RTP message encounters due
to M-RTP is the short time required in order to forward the mes-
sage from one RTP connection to another, while updating the
various RTP header fields.

The idea of restricting the multicast tree to contain fork nodes
only from the group of end nodes was suggested in the first time
in [2]. However, the algorithms presented there aimed at finding
a collection of unicast routes whose overall cost is minimized.
In contrast, the algorithms presented in this paper, in the con-
text of M-RTP, aim at finding a collection of unicast routes that
have sufficient bandwidth to support an RTP application. Refer-
ence [6]

III. THE PROBLEM OF ROUTING FOR M-RTP

A. Introduction

Many multicast routing algorithms have been proposed in the
literature. Most of these seek to optimize the cost of the mul-
ticast tree that is normally defined as the sum of costs associ-
ated with the communication links used by the tree. Preferring
low cost trees may be a practical model for some networks, but
many other models seem just as practical. For instance, a mini-
mum height tree is relevant for delay sensitive applications, and
a maximum bottleneck tree is relevant for bandwidth sensitive
applications. The actual bandwidth a multicast application can
utilize is no more than the bandwidth of the smallest bandwidth
link, or bottleneck, in the multicast tree. This is most accurate
in the case of real-time multicast applications where all the des-
tinations must receive the same data from the source. For this
reason, although a routing algorithm could construct a low total
cost multicast tree, the low utilization of this tree, due to a local
bottleneck, could render the tree much more “expensive” than
intended. Therefore, maximum bottleneck trees may be of great
practical importance.

The communications network is often modeled as an undi-
rected graph. This implies that only one weight is assigned to
an edge, regardless of the direction in which it is used. This im-
plication is in many cases unrealistic and especially in the case
where the weight associated to an edge represents its available
bandwidth. For instance, consider a heavily loaded video server
connected to a network by a single link. Most of the traffic going
through this link would be from the server to the network, while
the incoming traffic to the server, containing mainly RTSP re-
quests and RTCP reports, would be only a small fraction of the
total traffic. Thus, even if the physical bandwidth available in
both directions of a link is equal, the available bandwidth on
the link connecting the server would probably be distributed in

(b)

x

d2d1

x

d3

y

d1 d2 d3

(a)

Fig. 4. An M-RTP session (a), and the “virtual multicast session tree” with
which it can be associated

a highly asymmetrical way. This is even more likely to occur if
the physical bandwidth is not symmetrically distributed, as for
ADSL, cable-modem or satellite links.

B. Graph theoretical problems related to routing for M-RTP

Figure 4 shows an example for an M-RTP session, and the
associated session tree. As already explained, M-RTP uses a
set of unicast sessions, that can be viewed as a “virtual multicast
session tree” Each fork node in this tree must be either the source
of the multicast RTP session, or a member of the destination
group.

The major restriction on the structure of the underlying ses-
sion tree is that every node with an outgoing degree of more than
1 in the tree must be either the source or a member in the multi-
cast group M (see Figure 4(b)). This restriction will be referred
to as the fork restriction. The formal definition of a new set of
optimization problems related to M-RTP is given below:

Problem 1: �-Optimal Multicast Path Set Problem (MPSP(�)).
Given a graphG(V;E), a weight functionw : E !R+, a group
of “active nodes” A � V , a multicast group M � A and a mul-
ticast source s 2 M , find a set of paths T that satisfies a given
optimality criterion � and:
1. 8p 2 T the endpoints of p are vertices in A.
2. 8v 2 M there exists a path pv = s ; v that is a concatena-
tion of a subset of paths from T .

The solution to MPSP(�) induces a “virtual multicast session
tree” spanning M . This tree is a “real” spanning tree in an in-
duced graph G0(A;E0) where an edge between two vertices in
A exists if and only if a path between these vertices exists in the
original graph G. Note, that a solution to MPSP(�) may actu-
ally induce a subgraph that is not a “real” tree inG. For instance,
the multicast session tree depicted in Figure 4(b) is not a tree in
the original graph shown in Figure 4(c) because it contains a
directed cycle between d3 and y.

When A � V , MPSP(�) reduces to the problem of finding
a “real” tree rooted at s and spanning M while satisfying �.
However, in this paper we consider the version of this problem
where A � M , namely every end-point of the paths in the set
T is either the source s or belonging to the multicast group M .
An interesting generalization is when A contains nodes in V �
M . Namely, allowing some of the network routers to have the
capability of serving as end points of RTP sessions.

The basic optimization criterion usually defined for multicast
trees is the multicast tree cost. The problem relevant to M-RTP
is defined as follows:

442 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

Problem 2: Minimum Sum Multicast Path Set Problem
(MPSP(MinSum)).
Find a solutionT to MPSP(�) where � is defined as minimizing:P

p2T

P
e2pw(e).

This definition penalizes a solution for using an edge several
times by multiplying its weight by the number of times it is used.
For example, consider again Figure 4(a), and assume that all
edges in the graph have an equal cost of 1. The depicted M-
RTP session has a cost of 8, since the edge s! x is used twice
and the edge d3 ! y is used in both directions. If x had been
in group A, we could have an RTP session between s and x, a
session between x and d1, and a third session between s and d2.
The cost of the resulting session would have been reduced from
8 to 7. From the same considerations, the cost could have been
reduced by one unit if node y had been in A.

For the case A � V , MPSP(MinSum) reduces to the clas-
sic Steiner Tree Problem (STP) (see [10]). Several variations
on STP have been defined in the literature. Two such variations
are the Directed STP [13], defined like STP but specifically for
directed graphs, and the Dynamic STP [11], defined for dynam-
ically changing multicast groups.

In [13], the SCTF algorithm for the construction of directed
Steiner Trees is presented. Applying a minor revision to this al-
gorithm results in an algorithm for the directed MPSP(MinSum)
which achieves the exact same approximation ratio that SCTF
achieves for STP. Static and dynamic approximation algorithms
for the undirected MPSP(MinSum) and its dynamic counterpart
are presented in [2]. These algorithms achieve approximation
ratios that are asymptotically equivalent to the ratios achieved
for the non-restricted problems.

However, in the context of real-time RTP sessions, the most
important criterion is the availability of bandwidth along the
path of every session. Let � be the bandwidth of the data gener-
ated by the source. Assuming that the RTP nodes do not change
the coding and the bandwidth, a legal multicast session tree is
one that consists of unicast paths whose available bandwidth is
� �. To find such a tree, we are seeking for the maximum bot-
tleneck multicast tree. If this tree has a bandwidth larger than
�, then it can be used for the considered multicast session. If
the maximum bottleneck multicast session tree has a bandwidth
smaller than �, then there is no possible way to establish the
considered RTP session in the network without using multicast
within the network. The maximum bottleneck version of the
multicast path set problem is defined as follows:

Problem 3: Find a solution T to MPSP(�) where � is de-
fined as maximizing the minimal bandwidth allocated to a
path in T . More formally, � is defined as maximizing:
minfeje2p;p2Tg

w(e)
jfpjp2T;e2pgj

, where w(e) is the bandwidth
available on edge e for the multicast session.
For example, in Figure 4, assume that all edges in the graph have
an equal capacity of 1 on every direction. The routing depicted
has two bottleneck paths, s ; d1 and s ; d2 of capacity 1

2 ,
that share a common edge s ! x. Therefore, the bandwidth
available for this tree is 1=2. If we allowed the network nodes to
support multicast, namely node x could receive a single packet
from s and sends one copy to d1 and another to d2, then we
could serve a multicast session of 1 rather than 1=2.

Solving the non-restricted problem (namely the case where

A � V) for the maximal bottleneck optimization criteria, i.e.
finding a tree spanning the multicast group with a maximal value
for mine2Tfw(e)g, is considered easy. This is because many
polynomial time algorithms solve for this problem. For instance,
the SMMT algorithm in [5] solves this problem if it is used for
weights 1

w(e) . Another option is to run a variation on the Prim
algorithm, as shown in Section IV-C. However, MPSP(�) is NP-
Hard for many natural criteria �, including the maximal bottle-
neck criterion.

C. On the Hardness of MPSP(MaxBottleneck)

M-RTP introduces a new perspective to multicast routing
problems. It restricts the multicast fork nodes of the virtual
multicast session tree to the multicast group, thus introducing a
basic constraint that must be satisfied even before optimization
criteria can be approached. Clearly, this additional constraint
leaves previously hard optimization problems, such as STP, in
the NP-Hard domain [10]. The question is whether other op-
timization problems, such as the maximal bottleneck multicast
tree, become any harder.

In Section III-B a formal definition of optimization problems
subject to the fork restriction imposed by M-RTP was intro-
duced. In what follows we show that even without the optimiza-
tion criterion � of MPSP(�), if every edge may be used at most
once, finding a fork restricted routing is NP-Complete. From
this result follows that MPSP(MaxBottleneck) is NP-Hard2.

In order to satisfy the fork restriction imposed by M-RTP, it
is sufficient to find a set of paths inducing a virtual tree span-
ning the multicast group with fork nodes exclusively within this
group. We define the edge disjoint multicast path set problem
(MPSPE) as follows:

Problem 4: Edge Disjoint Multicast Path Set Problem
(MPSPE).
Given a graph G(V;E), a group of active nodes A � V , a mul-
ticast group M � A and a multicast source s 2 M , find a set
T of edge disjoint, but not necessarily vertex disjoint, paths that
satisfies:
1. 8p 2 T the endpoints of p are vertices in A.
2. 8v 2 M there exists a path pv = s ; v that is a concatena-
tion of a subset of paths from T .

The “virtual multicast session tree” shown in Figure 4(a) is
not a valid solution for MPSPE because the link x ! s is
used twice. However, a solution to MPSPE defines a virtual
tree spanning M but may still induce a subgraph that is still
not a tree. For instance, consider Figure 4(a) again, and sup-
pose that M consists of only d3 and d4. Then, the set of paths
fs ! y ! d3; d3 ! y ! d4g is a valid solution for MPSPE

that is not a “real” tree because of the directed cycle between d3
and y. MPSPE is closely related to MPSP(�) except that the op-
timization criterion is replaced by the restriction that the paths
in the solution remain edge disjoint. In what follows, it will
be shown that MPSPE is NP-Complete. The consequence of
this result is that many natural optimization problems stemming
from MPSP(�) are NP-Hard too, since MPSPE can be reduced
to them. The hardness of MPSPE will be proven by reducing the

2These results pertain for directed graphs. For undirected graphs we have only
partial evidence for the hardness of MPSP(�).

443 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

Directed Hamiltonian Circuit (DHC) problem [10] to it. DHC is
defined as follows:

Definition 1: Directed Hamiltonian Circuit (DHC).
Given a directed graph G(V;E), does G contain a directed
Hamiltonian circuit (i.e. a simple circuit that passes through
all vertices in V) ?
The following theorem proves the hardness of MPSPE .

Theorem 1: MPSPE on directed graphs is NP-Complete
Proof: We show a reduction from DHC:

Given a directed graph G(V;E), construct the following di-
rected graph G0(V 0; E0) (see Figure 5). First, choose an arbi-
trary source vertex s 2 V .

V 0 4
=

�
vin; vmid; voutjv 2 V n fsg

	
[�

sin; smid1; smid2; sout
	

E0 4
=

�
(vin; vmid); (vmid; vout)jv 2 V n fsg

	
[�

(sin; smid1); (smid1; smid2); (smid2; sout)
	
[�

(vout; win)j(v; w) 2 E
	
:

Define a multicast groupM 0 4=
�
vmidjv 2 V

	
[
�
smid1; smid2

	
and a multicast source s0

4
= smid2 in G0. It is now shown

that a solution to DHC on G exists if and only if a solution to
MPSPE on G0 exists assuming A0 � M 0. A directed Hamilto-
nian circuit C in G can be transformed into a directed Hamil-
tonian path P 0 in G0 as follows. For every edge (u; v) 2 C
add the edge (uout; vin) to P 0. For every vertex v0 2 V 0ns0

add the edges
�
(vin; vmid); (vmid; vout)

	
to P 0. Finally, add

the edges
�
(sin; smid1); (smid2; sout)

	
to P 0. Since P 0 touches

all vertices in V 0n
�
smid1; smid2

	
exactly twice and touches�

smid1; smid2
	

exactly once, it must be a directed Hamiltonian
path in G0 starting at s0. Now, P 0 can be cut into a set T 0 of sub-
paths connecting vertices inM 0, thus creating a valid solution to
MPSPE on G0. To prove the other direction, let T 0 be a solution
to MPSPE on G0. T 0 is by definition a set of edge disjoint paths,
and by construction, for every vertex v0 2 V 0, its in-degree or
its out-degree (or both) is exactly 1. Therefore, T 0 must be a set
of paths that form a single simple path P 0 when united. This
path must start at smid2, traverse every vertex in M 0 and finally
reach smid1. Thus, it induces a directed Hamiltonian circuit in
G. Clearly, MPSPE 2 NP, and thus MPSPE is NP-complete.

MPSPE holds the essence of the fork restriction imposed
by M-RTP. Therefore, it can be expected that any optimization
problem based on MPSPE is likely to be NP-Hard. Specifically,
MPSP(MaxBottleneck) is such a case.

Theorem 2: MPSP(MaxBottleneck) is NP-Hard.
Proof: The following is a reduction from MPSPE to

MPSP(MaxBottleneck). Given an input tuple (G;A;M; s)
for MPSPE , we create an input tuple (G;A;M; s; w0) for
MPSP(MaxBottleneck) where w0(e) � 1. If the bottleneck of
an optimal solution T � for MPSP(MaxBottleneck) is 1, it can
be deduced that every edge in T � is used exactly once. Thus,
T � is a solution to MPSPE too. On the other hand, if the bottle-
neck of T � is less than 1, no solution to MPSP(MaxBottleneck)
exists that uses every edge at most once. Hence, no solution to
MPSPE exists.

�

��

��

��

�
��

�� ��

Fig. 5. Construction example for the reduction from DHC to MPSPE .

IV. MAXIMUM BOTTLENECK ROUTING ALGORITHMS FOR

M-RTP

In this section we propose two algorithms for approximating
MPSP(MaxBottleneck). In what follows the approximation ra-
tio of an algorithm is defined as follows:

Definition 2: Approximation ratio of algorithmA.
For every instance p of a problemP , let B(p) be the value of the
solution found byA andB�(p) the value of the optimal solution.
The approximation ratio of algorithmA is either:

min
p2P

�
B(p)

B�(p)

�

for maximization problems, or:

max
p2P

�
B(p)

B�(p)

�

for minimization problems.
The first algorithm is referred to as the Widest Path Heuristic

(WPH). It achieves a solution that is no worse than 1
O(jMj) times

the bottleneck size of the optimal solution, where jM j is the size
of the multicast group. Although this approximation ratio can
be achieved by other algorithms, simulations show that WPH
performs nearly optimally (see Section V).

The second algorithm, referred to as the Double Tree Heuris-
tic (DTH), achieves an approximation ratio that is dependent on
the graph asymmetry rather than the size of the multicast group.
DTH assumes that every directed edge u ! v has an antisym-
metric edge v ! u. In symmetrically loaded networks, the ratio
guaranteed by DTH can be better than the ratio guaranteed by
WPH, even if the multicast group is of small size. For undi-
rected graphs, the approximation ratio DTH achieves is exactly
1
2 .

A. The Widest Path Heuristic (WPH)

WPH builds a virtual tree spanning M . The algorithm starts
with the source vertex s. In each iteration of the algorithm,

444 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

a maximum residual bottleneck path is considered from every
covered vertex in M to every vertex in M that has not yet been
covered. The residual weight of an edge e used n times by the
algorithm is defined as w(e)

n+1 , where w(e) is the available band-
width of the edge. The path with the maximal bottleneck is
added to the solution. Thus, after each iteration, at least one
more vertex from M is covered. As shown later, this algorithm
achieves an approximation ratio of 1

O(jMj)
in the worst case. A

formal definition of the algorithm is given below:
Algorithm 1: Widest Path Heuristic (WPH).

1. Initialization: T �; X fsg.
2. While MnX 6= � do

(a) Find the maximal residual bottleneck path p from X to a
vertex m in MnX.

(b) X X [m.
(c) Update all residual weights of edges in p (i.e the new resid-

ual weight of an edge e used n times so far is w(e)
n+1).

(d) T T [p.
3. T is the desired solution.

The implementation of finding the maximal residual bottleneck
path in step (2a) is similar to the construction of a maximal
bottleneck tree. A variation of the Prim algorithm for finding
a minimum spanning tree [12] can be used as follows. Two
sets of vertices are used: a set of “known” vertices and a set
of “unknown” vertices. In each iteration, the unknown vertex
connected by the edge of greatest capacity to a known vertex
is added to the known set. The algorithm terminates when all
unknown vertices become known. If the initial set of known
vertices is a single vertex s, the algorithm constructs a maxi-
mal bottleneck spanning tree rooted at s (see Section IV-C). We
use this algorithm slightly differently for the implementation of
step (2a). The initial set of known vertices is the set of ver-
tices X already covered by the algorithm. The algorithm stops
as soon as an unknown vertex of M becomes known. Every
time a vertex is added to the known set, the edge through which
it is discovered is remembered. At the end of the algorithm, a
maximal bottleneck path from a vertex in the initial known set
can be reconstructed by backtracking these stored edges from
any initially unknown vertex. In this manner, a minimal bot-
tleneck path is found at the end of the Prim algorithm variant.
For a formal proof, see Section IV-C. The algorithm can be im-
plemented in O(jEj+ jV j log jV j) time using a Fibonacci heap
[9]. Hence, the total time complexity of WPH is no more than
O(jM j(jEj+ jV j log jV j)).

Lemma 1: WPH achieves an approximation ratio of 1
O(jMj) .

Proof: Denote by B(X) the bottleneck of a solution X
for MPSP(MaxBottleneck), and by B(p) the residual bottleneck
of a path p. Let T � be an optimal solution, and T a solution
found by WPH. Let p = x; y be the last path added to T with
B(p) = B(T). According to step (2a) of the algorithm, when
p is added to T it has a larger bottleneck than any other path p0

connecting a vertex from the multicast group already covered by
WPH with a vertex from the multicast group yet to be covered,
namely:

8p0 2 fx0 ; y0jx0 2 X; y0 2MnXg ; B(p) � B(p0): (1)

dK dK-2dK-1 d2 d1

x

s

1

1 2 3 K-1 K

1 1 1 1 1

Fig. 6. A worst case network for WPH

Since s 2 X at all stages of the algorithm, (1) implies that:

8p0 = s; y; where y 2MnX;B(p) � B(p0): (2)

Let p� be a simple path embedded over the path connecting s
to y in the optimal solution T � (e.g. in Figure 4(a), the path
from s to d4 is s ! y ! d3 ! y ! d4 whereas a simple path
embedded on this path is s ! y ! d4). By (2), at the time p is
selected, B(p) � B(p�) holds. Hence, we have:

B(T) = B(p) � B(p�): (3)

Let e� be an edge in p� with the minimal weight. Every edge
can be used no more than jM j � 1 times during the algorithm,
since all maximal bottleneck paths (found in step (2a)) are sim-
ple paths, and no more than jM j� 1 iterations of the while loop
are performed. Hence:

B(p�) �
w(e�)

jM j � 1
�

B(T �)

jM j � 1
: (4)

Thus, by (3) and (4), B(T) � B(T�)
O(jMj) .

The ratio of 1
O(jMj)

is a strict bound as demonstrated in
the following example. Consider the directed graph in Fig-
ure 6. missing antisymmetric edges may be defined as hav-
ing a weight of less than 1

jMj . For simplicity of presenta-
tion, these edges are ignored. Clearly, an optimal solution
for MPSP(MaxBottleneck) on the above defined network, must
have a bottleneck of 1 at the most, and such a solution indeed

exists: T � 4
= fs! x! dKg[fdi ! di�1j2 � i � Kg. How-

ever, WPH may cover vertex di in the ith iteration and the so-
lution it finds is: T = fs! x! dij1 � i � Kg. This solu-
tion has a bottleneck of 1

jMj�1 since the edge (s; x) is used K

times. Thus, the approximation ratio achieved in this example is
1

O(jMj) .

B. The Double Tree Heuristic (DTH)

DTH is aimed at achieving an approximation ratio that is in-
dependent of the size of the multicast group. The asymmetry of
a graphG is defined as the maximal ratio between the weights of

445 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

a pair of antisymmetric edges. Formally, the following notation
proposed in [13] is used:

Definition 3: Maximum edge asymmetry.
Let G = (V;E) be a directed graph with a weight function

w : E !R+. Define

	m(G)
4
= max

(u;v)2E

maxfw(u; v); w(v; u)g

minfw(u; v); w(v; u)g

as the maximum edge asymmetry.
Unlike WPH, DTH assumes that every directed edge u! v has
an antisymmetric edge v ! u. The algorithm has three phases.
In the first phase, the weight of the bottleneck of a maximal
bottleneck tree spanning M is computed. This can be done by
constructing a maximal bottleneck tree, using the variation on
Prim’s MST algorithm presented in Section IV-C. In the exam-
ple depicted in Figure 7, the bottleneck size is 6.

In the second phase, from all the trees whose bottleneck is
equal to the maximal bottleneck, a tree with a maximal re-
verse bottleneck is found. The reverse bottleneck of an outgoing
directed tree is defined as the minimum of the antisymmetric
weights. Note that these trees need not satisfy the fork restric-
tion. The second phase can again be implemented using a vari-
ation on the Prim algorithm. In the example, this tree (c) differs
from the first tree constructed in (b) since the reverse bottleneck
achieved is 3 (because of d1 ! x) whereas the reverse bottle-
neck of the first tree constructed is 2 (because of d2 ! d1).

In the third phase, the tree found in the second phase is trans-
formed into a set of paths with endpoints in the multicast group.
The paths are constructed by touring the second tree in a depth-
first manner. This tour is broken into subpaths such that ev-
ery time a vertex belonging to the multicast group is passed,
the previous subpath is ended and a new one is initiated. Fi-
nally, unneeded paths that lead to multicast destinations already
reached by previous paths from our solution can be removed. In
the example, the full tour includes three paths: s ! x ! d1,
d1 ! x ! d2 and d2 ! x ! s. The last path returns to
s and may therefore be omitted (d). The bottleneck of the so-
lution found by DTH in the example is 3 (because of the edge
d1 ! x) whereas the optimal solution (e) achieves a bottleneck
of 6. Note that any solution produced by DTH uses every edge
once at the most.

The algorithm can be implemented to run in O(jEj +
jV j log jV j) time.

Lemma 2: DTH achieves an approximation ratio of 1
O(m (G)) .

Proof: Denote by B(X) and Br(X) the bottleneck and
the reverse bottleneck of X respectively. Denote by T � an opti-
mal solution to MPSP(MaxBottleneck), by T the solution found
by DTH, and by T2 the tree found in the second phase of DTH.
DTH guarantees that:

B(T) � minfB(T2); B
r(T2)g

Note that the bottleneck of an optimal non-restricted spanning
tree is clearly greater or equal to the bottleneck of an optimal
solution to MPSP(MaxBottleneck). Thus, and since T2 is an
optimal non-restricted spanning tree, if B(T2) � Br(T2) then
B(T) � B(T2) � B(T �), namely B(T) = B(T �).

If B(T2) > Br(T2), let ~er be a reverse edge in T2 satisfying
w(~er) = Br(T2). Let ~e be the antisymmetric partner of ~er .

Since w(~e) � B(T2) > B (T2) = w(~e), by Definition 3:
	m(T2) �

w(~e)
w(~er)

. Therefore:

Br(T2) = w(~er) �
w(~e)

	m(T2)
�

B(T2)

	m(T2)

Thus, Br(T2) �
B(T2)
	m(T2)

holds, and

B(T) � Br(T2) �
B(T2)

	m(T2)
�

B(T �)

	m(T2)
�

B(T �)

	m(G)

Therefore, regardless of the relation between B(T2) and
Br(T2), it always holds that:

B(T) �
B(T �)

	m(G)

Although the worst case performance of DTH can be guaran-
teed by performing the third phase on any maximal bottleneck
tree rooted at s and spanning M , and not necessarily the one
that has the maximal reverse bottleneck, the second phase is
performed in order to improve the average performance. This
is clearly demonstrated in simulations (see Section V).

C. An Algorithm for Finding a Maximal Bottleneck Tree

In Section IV-A a variant of the Prim algorithm [12] was in-
troduced. For a given graph G(V;E), this algorithm builds a
maximal bottleneck spanning tree T rooted at a given vertex s.
A formalization of this algorithm and proof of its correctness is
given hereafter.

Algorithm 2: Maximum Bottleneck Tree (MBT) (Prim vari-
ant).
1. K �; U V
2. predecessor[s] := NULL
bottleneck[s] :=1
8v 2 Un fsg ; bottleneck[v] := 0
Q fsg
3. while Q 6= �

(a) Let v be a vertex in Q with the maximal bottleneck[v]
(b) K K [fvg ; U Un fvg

(c) for every edge v
e
! u such that u 2 U :

if bottleneck[u] < minfbottleneck[v]; w(e)g then
i. bottleneck[u] := minfbottleneck[v]; w(e)g
ii. predecessor[u] := v
iii. Q Q [fug
(d) Q Qn fvg

This algorithm constructs a predecessor array that defines a tree
rooted at s. Clearly, if the graph is connected, this tree spans the
entire graph G(V;E). Otherwise, only the vertices found in K
at the end of the algorithm are reached by this tree. In the fol-
lowing lemma it will be shown that this is a maximal bottleneck
tree.

Lemma 3: MBT constructs a maximal bottleneck tree span-
ning K.

Proof: It suffices to show that for every vertex v, if a path
from s to v containing only edges in predecessor exists, it is
a maximal bottleneck path connecting s to v with a bottleneck

446 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

6s x

d1

d2

11

4

2

10

5

3

6

(a) Input graph

s x

d1

d2

11

10

3

6

(d) Phase III: Tree is transformed
 into paths.

(b) Phase I: Max bottleneck spanning tree

s x

d1

d2

11

6

10

s x

d1

d2

11

10

6

(c) Phase II: Max bottleneck spanning tree
 with max reverse bottleneck

(e) Optimal

s x

d1

d2

11

10

6

Fig. 7. The DTH algorithm

equal to bottleneck[v]. We prove by induction on the order by
which vertices are added to the set of “known” verticesK. For s
this is trivial. Assume the correctness of the induction assump-
tion for all vertices in K at the beginning of step (3). We will
prove the assumption for the vertex v added to K in step (3b).

Let w
4
= predecessor[v]. By step (3c), w is already in K.

Thus, by the assumption, bottleneck[w] is the size of a maximal
bottleneck path from s to w contained in predecessor. Also, by
steps (3(c)i) and (3(c)ii), this path can be extended to v by the
edge predecessor[v] thus creating a path with a bottleneck of
bottleneck[v].

Assume towards a contradiction, that a maximal bottleneck
path p from s to v has a bottleneck b that is greater than
bottleneck[v]. p must pass from the set of “known” vertices K
to the set of “unknown” vertices U by means of an edge x e

! y,
since s 2 K and v 2 U . Since b � w(e) and x 2 K, by step
(3(c)i):

bottleneck[y] � minfbottleneck[x]; w(e)g �
� b > bottleneck[v].

Thus, by step (3a), y should have been added to K before v - a
contradiction.

A variant of MBT can be used to construct a maximal bottle-
neck tree spanning only a subset X of the vertices in the graph.
To achieve this, the algorithm must be stopped immediately af-
ter the last vertex in X has become “known”. A formal proof
of the correctness of this algorithm is similar to the proof for
SMMT in [5].

Consider a minor change to MBT that allows more than one
vertex to be initially put in the “known” set of vertices K: In the
description of the algorithm, change every appearance of s into
M , where M is a set of vertices. The resulting algorithm, finds
a maximal bottleneck path fromM to any vertex reachable from
M . The proof for this algorithm can be constructed by changing
every appearance of s into M in the above lemma.

V. SIMULATION RESULTS

In the previous Section IV two approximation algorithms for
MPSP(MaxBottleneck) were presented and analyzed for worst
case performance. In this section we present the results these al-
gorithms achieve on actual graphs that hopefully represent real-
world communications networks. The main conclusion of these
simulations is that the proposed algorithms, and in particular
WPH, behave in practice almost optimally.

Two versions of DTH are considered. DTH is the version
presented in the previous section, whereas DTH’ is DTH with-
out the second phase (i.e. the paths in the solution are created by
running the third phase of the algorithm on an arbitrary maximal
bottleneck tree). DTH’ is presented only in order to assess the
benefit of the second phase of DTH.

The algorithms were tested on 500 randomly generated net-
works, based on the model used in [2]. The weights (capacities)
of the edges were initialized at random values uniformly dis-
tributed between 2 and 22. For every edge e with initial weight
w(e) used i times in the above paths, the edge weight was up-
dated to be w(e)

i+1 . On every graph, the algorithms were run on
every multicast group size between 3 and 99 (this size includes
the source node). The multicast groups were reselected at ran-
dom for every graph and every group size.

Since MPSP(MaxBottleneck) is NP-Hard (see Section III-C),
the optimal solution could not be computed. Instead, the bottle-
neck of a maximal bottleneck tree rooted at the multicast source
and spanning the destinations was computed. This bottleneck
is an upper bound on the value of the optimal solution since is
disregards the fork restriction imposed by M-RTP. As shown in
the following, it frequently equaled the optimal solution.

In Figure 8, the performance of the evaluated algorithms is
presented as a function of the multicast group size. The most
prominent property of the graph is that the optimal solution and
the performance of the algorithms rapidly decline with the mul-
ticast group size. This behavior is expected since the greater
the multicast group size, the more edges need to be used on the

447 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

�

���

���

���

���

�

���

���

���

���

�

� �� �� �� �� �� �� �� �� �� ���

0XOWLFDVW JURXS VL]H

%
R
WW
OH
Q
H
F
N
V
L]
H

237

:3+

'7+

'7+

Fig. 8. Algorithm performance versus multicast group size

�

���

���

���

���

���

���

���

���

���

�

� �� �� �� �� �� �� �� �� �� ���

0XOWLFDVW JURXS VL]H

�
R
I
R
S
WL
P
DO

�X
S
S
HU

E
R
X
Q
G
�

:3+�

'7+�

'7+
�

Fig. 9. Algorithm relative performance versus multicast group size

average, and thus the probability of using a low capacity edge
increases.

In practice, WPH performs almost optimally, regardless of the
multicast group size, despite the theoretical approximation ratio
of 1

O(jMj) . DTH performs relatively worse than WPH averaging
78% of the optimal solution. DTH’ is consistently worse than
DTH, averaging 45% of the optimal solution, thus justifying the
second phase of DTH.

In Figure 9, the relative performance of the evaluated algo-
rithms is presented as a function of the multicast group size.
This graph highlights the results discussed previously.

Our main conclusion is that WPH is in practice almost op-
timal for any multicast group size. Although WPH is the only
algorithm proposed that may cause the same data to be trans-
mitted more than once over the same link, in practice this rarely
occurs. For very large group sizes, DTH may be preferable,
since it too achieves almost optimal solutions within less time.

Throughout our study we have also measured the cost penalty
induced by the restriction that data is replicated only by the
members of the multicast session. We have compared the cost of
every tree to the cost incurred by the MBT algorithm, proposed

in Section IV-C, which finds the maximal bottleneck tree with-
out this restriction. It turns out that the average cost of the tree
found by both WPH and DTH is only 5-15% higher than the av-
erage cost of the optimal tree found by MBT. These results are
in accordance with those presented in [2].

VI. CONCLUSIONS

We have proposed a scheme called M-RTP for multicast RTP
sessions. The main idea behind this scheme is to set up the mul-
ticast session over a set of unicast paths between the participants
of the multicast session. The main advantage of this approach is
the ease of QoS provisioning and maintenance. In particular, the
information carried by RTCP reports can be more accurately an-
alyzed in order to increase the allocated bandwidth over a path
whose QoS falls short of expectations.

We have studied the problem of setting up a multicast tree un-
der the constraints imposed by the new scheme. This gave rise
to a new family of problems called MPSP (Minimum Path Set
Problem). We have concentrated on the MPSP(MaxBottleneck)
variation of this problem, which seeks for a set of paths that
guarantees maximum bottleneck. This problem was shown to be
NP-Complete and 2 heuristics were proposed: the Widest Path
Heuristic (WPH) and the Double Tree heuristic (DTH). For each
algorithm we analyzed the approximation ratio analytically, and
the average performance by means of simulations. The simula-
tions show that WPH is almost optimal for any group size.

REFERENCES

[1] A. Adams, T. Bu, J. Horowitz, D. Towsley, R. Caceres, N. Duffield, F. Lo-
Presti, S. Mon, and V. Paxson. The use of end-to-end multicast measure-
ments for characterizing internal network behaviour. IEEE Communica-
tions Magazine, 38(5), 2000.

[2] E. Aharoni and R. Cohen. Restricted dynamic Steiner trees for scalable
multicast in datagram networks. IEEE/ACM Transactions on Networking,
6(3), June 1998.

[3] A. Almeroth. The evolution of multicast: from the ”mbone” to internet2
deployment. IEEE Communications Magazine, 14(1), 2000.

[4] T. Ballardie, P. Francis, and J. Crowcroft. Core based trees (CBT). In
SIGCOMM Symposium on Communications Architectures and Protocols,
pages 85–95, September 1993.

[5] Charles Chiang, Majid Sarrafzadeh, and C. K. Wong. Global routing based
on Steiner min-max trees. IEEE Transactions on Computer Aided Design,
9(12):1318–1325, December 1990.

[6] Y. Chu, S. Rao, and H. Zhang. A case for end system multicast. In ACM
Sigmetrics, Santa Clara, CA, June 2000.

[7] S. Deering, C. Partridge, and D. Waitzman. Distance vector multicast
routing protocol. RFC-1075, November 1988.

[8] Stephen Deering, Deborah L. Estrin, Dino Farinacci, Van Jacobson, Liu
Ching-Gung, and Liming Wei. The PIM architecture for wide-area multi-
cast routing. IEEE/ACM Transactions on Networking, 4(2):153–162,April
1996.

[9] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their
uses in improved networks optimization algorithms. Journal of the ACM,
34(3):596–615, July 1987.

[10] Michael R. Garey and David S. Johnson. Computers and Intractability - A
Guide to the Theory of NP-Completeness. W. H. Freeman and company,
1979.

[11] Makoto Imase and Bernard M. Waxman. Dynamic Steiner tree problem.
SIAM Journal on Discrete Mathematics, 4(3):369–384, August 1991.

[12] R.C. Prim. Shortest connection networks and some generalizations. Bell
System Technical Journal, 36(6):1389–1401, November 1957.

[13] S. Ramanathan. An algorithm for multicast tree generation in networks
with asymmetric links. In Proceedings of the Conference on Computer
Communications (IEEE Infocom), pages 337–344, San Fransisco, Califor-
nia, March 1996.

[14] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: a transport
protocol for real-time applications. RFC-1889, January 1996.

448 IEEE INFOCOM 2001

