
JID:IPL AID:5195 /SCO [m3G; v1.142; Prn:27/10/2014; 13:44] P.1 (1-7)

Information Processing Letters ••• (••••) •••–•••
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A unified scheme for generalizing cardinality estimators to

sum aggregation ✩

Reuven Cohen ∗, Liran Katzir, Aviv Yehezkel

Department of Computer Science, Technion, Haifa 32000, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 February 2014
Received in revised form 25 June 2014
Accepted 14 October 2014
Available online xxxx
Communicated by M. Yamashita

Keywords:
Algorithms
Statistical
Big data processing

Cardinality estimation algorithms receive a stream of elements that may appear in
arbitrary order, with possible repetitions, and return the number of distinct elements. Such
algorithms usually seek to minimize the required storage at the price of inaccuracy in their
output. This paper shows how to generalize every cardinality estimation algorithm that
relies on extreme order statistics (min/max sketches) to a weighted version, where each
item is associated with a weight and the goal is to estimate the total sum of weights. The
proposed unified scheme uses the unweighted estimator as a black-box, and manipulates
the input using properties of the beta distribution.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Consider a very long stream of elements x1, x2, . . . , xs

with repetitions. Finding the number n of distinct elements
is a well-known problem with numerous applications. The
elements might represent IP addresses of packets passing
through a router [8,9,16], elements in a large database [12],
motifs in a DNA sequence [10], or elements of RFID/sen-
sor networks [17]. One can easily find the exact value of n
in the following way. When a new element xi is encoun-
tered, compare its value to every distinct (stored) value
encountered so far. If the value of xi has not been seen
before, keep it in the storage as well. After all the ele-
ments are treated, count the number of stored elements.
This simple approach does not scale if storage is limited, or
if the computation performed for each element xi should
be minimized. In such a case, the following cardinality es-
timation problem should be solved:

✩ The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007–2013)
under grant agreement No. 610802.

* Corresponding author.
E-mail address: rcohen@cs.technion.ac.il (R. Cohen).
http://dx.doi.org/10.1016/j.ipl.2014.10.009
0020-0190/© 2014 Elsevier B.V. All rights reserved.
Problem 1 (The cardinality estimation problem).
Instance: A stream of elements x1, x2, . . . , xs with repeti-

tions, and an integer m. Let n be the number of dif-
ferent elements, namely n = |{x1, x2, . . . , xs}|, and let
these elements be {e1, e2, . . . , en}.

Objective: Find an estimate n̂ of n using only m storage
units, where m � n.

Several algorithms have been proposed for the cardinal-
ity estimation problem. See [2] for a theoretical overview
and [16] for a practical overview with comparative simula-
tion results. In this paper we study the following weighted
generalization of the cardinality estimation problem:

Problem 2 (The weighted cardinality estimation problem).
Instance: A stream of weighted elements x1, x2, . . . , xs

with repetitions, and an integer m. Let n be the num-
ber of different elements, namely n = |{x1, x2, . . . , xs}|,
and let these elements be {e1, e2, . . . , en}. Finally, let
w j be the weight of e j .

Objective: Find an estimate ŵ of w = ∑n
j=1 w j using only

m storage units, where m � n.

An example of an instance for the cardinality estima-
tion problem is the stream: a, b, a, c, d, b, d. For this

http://dx.doi.org/10.1016/j.ipl.2014.10.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:rcohen@cs.technion.ac.il
http://dx.doi.org/10.1016/j.ipl.2014.10.009

JID:IPL AID:5195 /SCO [m3G; v1.142; Prn:27/10/2014; 13:44] P.2 (1-7)

2 R. Cohen et al. / Information Processing Letters ••• (••••) •••–•••
instance, n = |{a, b, c, d}| = 4. An example of an instance
for the weighted problem is: a(3), b(4), a(3), c(2), d(3),
b(4), d(3). For this instance, e1 = a, e2 = b, e3 = c, e4 = d,
w1 = 3, w2 = 4, w3 = 2, w4 = 3 and

∑
w j = 12.

As an application example, x1, x2, . . . , xs could be IP
packets received by a server. Each packet belongs to one
of n IP flows e1, e2, . . . , en . The weight w j can be the load
imposed by flow e j on the server. Thus,

∑n
j=1 w j repre-

sents the total load imposed on the server by all the flows
to which packets x1, x2, . . . , xs belong.

The main contribution of this paper is a unified scheme
for generalizing any extreme order statistics estimator for
the unweighted cardinality estimation problem to an es-
timator for the weighted cardinality estimation problem.
This scheme can be used for obtaining known estimators
and new estimators in a generic way. In particular, we
show in Section 6 that:

• The new scheme can be used to extend the Hyper-
LogLog algorithm [6], originally developed for the un-
weighted problem, to solve the weighted problem.
The extended algorithm offers the best performance,
in terms of statistical accuracy and memory stor-
age, among all the other known algorithms for the
weighted problem.

• The new scheme can be used to extend the “data
sketching with Bernoulli random variables” estimator
[2] to solve the weighted algorithm. The extended al-
gorithm offers the best performance, in terms of sta-
tistical accuracy and memory storage, when sufficient
a priori information about n is given.

• The new scheme can be used to obtain, in the same
generic way, the estimator proposed by [3].

The rest of this paper is organized as follows: In Sec-
tion 2 we discuss previous works on both the unweighted
and weighted cardinality estimation problems. In Section 3
we describe the beta distribution and recall several prop-
erties that will be used later. We present our new unified
scheme in Sections 4 and 5. In Section 6 we present a
weighted version for several known estimators. Finally, in
Section 7 we conclude the paper.

2. Related work

State-of-the-art cardinality estimators hash every el-
ement e j into a low dimensional data sketch h(e j),
which can be viewed as a random variable (RV). The
different techniques can be classified according to the
data sketches they store for future processing. This pa-
per focuses on min/max sketches [2,6,11,15], which store
only the minimum/maximum hashed values. The intu-
ition behind such estimators is that each sketch car-
ries information about the desired quantity. For exam-
ple, when every element e j is associated with a uni-
form RV, h(e j) ∼ U(0, 1), the expected minimum value of
h(e1), h(e2), . . . , h(en) is 1/(n + 1). The hash function guar-
antees that h(e j) is identical for all the appearances of e j .
Thus, the existence of duplicates does not affect the value
of the extreme order statistics. The intuition behind the
new unified scheme presented in this paper is that each
RV carries information about the weight of the correspond-
ing element, and each sketch carries information about the
total weight.

There are other cardinality estimation techniques other
than min/max sketches. The first paper on cardinality esti-
mation [7] describes a bit pattern sketch. In this case, the
elements are hashed into a bit vector and the sketch holds
the logical OR of all hashed values. Bottom-m sketches [4]
are a generalization of min sketches, which maintain
the m minimal values, where m ≥ 1. Stable distribution
sketches [13] generate a sketch using a vector dot prod-
uct. A comprehensive overview of the different techniques
is given in [2,16].

Previous works have also dealt with the weighted prob-
lem. A weighted estimator for continuous variables is
given in [3]. Each element is hashed to a random variable
derived from exponential distribution h(e j) ∼ Exp(w j),
where w j is the weight of e j . Then, the minimum ob-
served value is stored and used for the estimation. The
intuition is that the minimum observed value is exponen-
tially distributed with a parameter that is the weighted
sum of the elements. This estimator can be obtained as
a direct result of our unified scheme, when our scheme is
applied to continuous max sketches.

In [5], the weighted problem with integer weights is
solved using binary representations. The number of stor-
age units is not fixed, because it depends on the weights.
In contrast, the proposed scheme does not assume integer
weights, and uses fixed memory. Another weighted esti-
mator, based on continuous bottom-m sketches, is given
in [4]. However, bottom-m sketches require maintaining a
sorted list of the bottom-m values, which is more compu-
tationally demanding than keeping the m separate mini-
mum/maximum values, as in the proposed unified scheme.

3. The beta distribution

We observe that all min/max sketches can be viewed as
a two step computation: (a) hash each element uniformly
into (0, 1); and (b) store only the minimum/maximum
observed value.1 In the unified scheme we only change
step (a) and hash each element into a beta distribution.
The parameters of the beta distribution are derived from
the weight of the element. In this section, we describe
the beta distribution and two of its properties that will be
used in the unified scheme.

The Beta(α, β) distribution is defined over the inter-
val (0, 1) and has the following probability and cumulative
density functions (PDF and CDF respectively):

P
[

X = x ∈ (0,1)
] = Γ (α + β)

Γ (β)Γ (α)
xα−1(1 − x)β−1 (1)

P [X ≤ x] =
x∫

0

Γ (α + β)

Γ (β)Γ (α)
xα−1(1 − x)β−1dx, (2)

1 Some estimators (e.g. [6]) transform the uniform hashed values to in-
duce a different distribution, and only then store the minimum/maximum
observed value. In Section 6.1 we will consider such estimators.

JID:IPL AID:5195 /SCO [m3G; v1.142; Prn:27/10/2014; 13:44] P.3 (1-7)

R. Cohen et al. / Information Processing Letters ••• (••••) •••–••• 3
where Γ (z) is the gamma function, defined as∫ ∞
0 e−ttz−1dt . Using integration by parts, the gamma func-

tion can be shown to satisfy Γ (z +1) = z ·Γ (z). Combining
this with Γ (1) = 1 yields Γ (n) = (n − 1)! for every inte-
ger n. Two other known beta identities are [14]:

Beta(1,1) ∼ U(0,1) (3)

and

Beta(α,β) ∼ 1 − Beta(β,α). (4)

A key property of the beta distribution, which we use
in our unified scheme is as follows:

Lemma 1. Let z1, z2, . . . , zn be independent RVs, where zi ∼
Beta(wi, 1). Then,

n
max
i=1

zi ∼ Beta

(
n∑

i=1

wi,1

)
.

Proof.

P [zi ≤ z] =
z∫

0

wi · zwi−1dx = zwi

P
[n

max
i=1

zi ≤ z
]

=
n∏

i=1

P [zi ≤ z] =
n∏

i=1

zwi = z
∑n

i=1 wi .

The first equation follows by setting α = wi and β = 1 in
Eq. (2), and by the fact that Γ (wi + 1) = wiΓ (wi). The
second equation is due to the multiplication of indepen-
dent variables. �

The next lemma is a symmetric minimum version of
the former one:

Lemma 2. Let z1, z2, . . . , zn be independent RVs, where zi ∼
Beta(1, wi). Then,

n
min
i=1

zi ∼ Beta

(
1,

n∑
i=1

wi

)
.

Proof.

n
min
i=1

zi = − n
max
i=1

(−zi)

= 1 − n
max
i=1

(1 − zi) ∼ 1 − Beta

(
n∑

i=1

wi,1

)

∼ Beta

(
1,

n∑
i=1

wi

)
.

The first and second equations are due to algebraic ma-
nipulations. The first distribution identity follows from
1 − zi ∼ Beta(wi, 1) (see Eq. (4)) and Lemma 1, and the
second is due to Eq. (4). �
4. The unified scheme

Let x1, x2, . . . , xs be the values of a stream of ele-
ments with repetitions, such that |{x1, x2, . . . , xs}| = n and
xi ∈ {e1, e2, . . . , en}. Let each element e j be associated with
a weight w j . This implies that if two elements xi1 and
xi2 are equal (represented by the same element e j), their
weights are also equal. Let w = ∑n

j=1 w j be the value we
want to estimate.

Min/max sketch estimators use a hash function to map
every element xi to U(0, 1), and then remember only the
minimum/maximum hashed value. If only one hash func-
tion is used, the sketch estimates the value of n with an
infinite variance. To bound the variance, min/max sketches
use m different hash functions in parallel and use their
combined statistics for the estimation. With m hash func-
tions, any (unweighted) min/max sketch associates each el-
ement xi with m uniform hashed values hk(xi), 1 ≤ k ≤ m.
The estimator remembers the minimum/maximum ob-
served value for each hash function hk , and uses these m
values to estimate the number n of different elements. We
first present this generic algorithm and then show how it
can be generalized for the weighted cardinality problem.
We focus on max sketch estimators, but similar algorithms
can be developed for min sketches as well.

Algorithm 1 (A generic max sketch algorithm for the cardinal-
ity estimation problem).

1. Use m different hash functions, h1, h2, . . . , hm . For ev-
ery hk and every input element xi , compute hk(xi). Let
h+

k = maxs
i=1{hk(xi)} be the maximum observed value

for hash function hk .
2. Invoke ProcEstimate(h+

1 , h+
2 , . . . , h+

m) to estimate the
number n of different elements.

ProcEstimate() is the specific cardinality estimate pro-
cedure. Different algorithms employ different procedures,
some of which are discussed in Section 6.2. Consider one
of the hash functions, hk . Assuming that hk(x) ∼ U(0, 1),
then, by Eq. (3), hk(x) ∼ Beta(1, 1). Therefore, and by
Lemma 1, we get:

Theorem 1. For every hash function, h+
k = maxs

i=1 hk(xi) ∼
Beta(n, 1) holds. Thus, estimating the value of n by Proc-
Estimate() in Algorithm 1 is equivalent to estimating the value
of α in the Beta(α, 1) distribution of h+

k . �
The intuition behind our unified scheme is that in-

stead of associating each element xi with a uniform
hashed value hk(xi), we associate it with a RV taken
from a Beta(w j, 1) distribution, where w j is the ele-
ment’s weight. Technically, we first hash xi uniformly
hk(xi) ∼ U(0, 1). Then, we transform2 hk(xi) to ̃hk(xi), such
that ̃hk(xi) ∼ Beta(w j, 1). Hence, and by Lemma 1, we have
h̃+

k ∼ Beta(w = ∑n
j=1 w j, 1) instead of h+

k ∼ Beta(n, 1) as

2 We discuss the transformation from a uniform distribution to the beta
distribution in Section 6.1.

JID:IPL AID:5195 /SCO [m3G; v1.142; Prn:27/10/2014; 13:44] P.4 (1-7)

4 R. Cohen et al. / Information Processing Letters ••• (••••) •••–•••
in the unweighted case. Thus, and by Theorem 1, the same
algorithm that estimates n in the unweighted case can es-
timate w in the weighted case. This algorithm is agnostic
to the distribution of the weight classes.

Algorithm 2 (A generic max sketch algorithm for the weighted
cardinality estimation problem).

1. Use m different hash functions, h1, h2, . . . , hm ∼
U(0, 1). For every hk and every xi , compute h̃k(xi) ∼
Beta(w j, 1) (the transformation is described in Sec-
tion 6.1). Let ̃h+

k = maxs
i=1{̃hk(xi)}.

2. Invoke ProcEstimate(̃h+
1 , ̃h+

2 , . . . , ̃h+
m) to estimate the

value of w .

The key point is that ProcEstimate() is exactly the same
procedure used to estimate the unweighted cardinality n
in Algorithm 1.

Theorem 2. Estimating the weighted sum w by the weighted
generalization (Algorithm 2) is equivalent to estimating the car-
dinality n by the original unweighted algorithm (Algorithm 1).
Thus, Algorithm 2 estimates w with the same variance and bias
as Algorithm 1 estimates n.

Proof. From Lemma 1 follows that for every hash func-
tion hk , h̃+

k = maxs
i=1 {̃hk(xi)} ∼ Beta(w, 1). Thus, and by

Theorem 1, the distribution of the input elements for
ProcEstimate() in Algorithm 2 is exactly as the distribution
of the input elements for ProcEstimate() in Algorithm 1:
Beta(α, 1), where α is the parameter to be estimated. Fi-
nally, from Theorem 1 follows that ProcEstimate() estimates
the value of α in both cases. �
5. Reducing the number of hash functions using
stochastic averaging

Algorithms 1 and 2 use m different hash functions in
order to obtain a better precision. In certain applications,
the computational burden renders the scheme infeasible
even for m = 10. Stochastic averaging [7] is a method to
overcome the computational cost at the price of reduced
statistical efficiency3 in the estimator’s variance, which is
negligible in this case. The main idea is to use only two
hash functions: the first for assigning a bucket (one of m)
for every element xi , and the second for associating every
element xi in every bucket with a U(0, 1) value.4 The es-
timator then stores the maximum observed value of each
bucket. We denote by H1 the hash used for bucketing and
by H2 the hash used for generating the sketches. Formally,
H1(xi) ∼ U{1, 2, . . . , m} and H2(xi) ∼ U(0, 1). We first in-
corporate this concept into the generic max sketch algo-
rithm for the cardinality estimation problem (Algorithm 1)

3 See the discussion regarding “statistical efficiency” at the end of this
section.

4 In fact, it is possible to use a single hash function, as proposed in [7].
In this case, the first logm bits are used for bucketing.
and then into the unified scheme for the weighted cardi-
nality estimation problem (Algorithm 2). As in the previous
section, we consider max sketch estimators, but the same
idea is applicable for min sketches as well.

Algorithm 3 (A generic max sketch algorithm for the cardinal-
ity estimation problem using stochastic averaging).

1. Use two hash functions: H1(xi) ∼ U{1, 2, . . . , m} and
H2(xi) ∼ U(0, 1). For every input element xi , com-
pute H1(xi) and H2(xi). Let h+

k = maxs
i=1{H2(xi) |

H1(xi) = k} be the maximum observed value in the
k’th bucket.

2. Invoke ProcEstimateSA(h+
1 , h+

2 , . . . , h+
m) to estimate the

number n of different elements.

Note that ProcEstimateSA() in Step (2) is different from
ProcEstimate() in Algorithm 1 and Algorithm 2. In Sec-
tion 4 we defined h+

k to be the maximum observed value
for the k’th hash, and showed in Theorem 1 that it sat-
isfies h+

k ∼ Beta(n, 1); namely, estimating the value of n
by ProcEstimate() is equivalent to estimating the value of
α in the Beta(α, 1) distribution of h+

k . In the following
analysis we show an equivalent result for the stochastic
averaging case. To this end, (a) let 	h+ = (h+

1 , h+
2 , . . . , h+

m)

be the vector of the maximum observed values in each
bucket; (b) let bk be the size of the k’th bucket, namely,
bk = |{H1(xi) = k}|; and (c) let 	b = (b1, b2, . . . , bm) be the
vector of the bucket’s sizes. Since h+

k is the maximum of
bk uniformly distributed RVs, from Lemma 1 we get:

	h+ | 	b ∼ (
Beta(b1,1),Beta(b2,1), . . . ,Beta(bm,1)

)
. (5)

From the Central Limit Theorems follows that bk is highly
concentrated around n

m . Specifically, bk = n
m ± O (

√
n
m).

Substituting bk = n
m into Eq. (5) yields the following theo-

rem, which is the stochastic averaging equivalence of The-
orem 1:

Theorem 3. For every hash function, h+
k = maxs

i=1{H2(xi) |
H1(xi) = k} ∼ Beta(bk, 1) ≈ Beta(n

m , 1). Thus, estimating the
value of n

m by ProcEstimateSA() in Algorithm 3 is equivalent
to estimating the value of α in the Beta(α, 1) distribution
of h+

k . �
To generalize Algorithm 3 for solving the weighted

problem using stochastic averaging, we employ the same
idea used for generalizing Algorithm 1, where each el-
ement xi is associated with a variable taken from a
Beta(w j, 1) distribution. Thus, we first use H1 to in-
sert each element xi into a random bucket 1 ≤ k ≤ m,
and H2 to associate xi with a uniformly distributed vari-
able H2(xi) ∼ U(0, 1). Then, we transform H2(xi) to have
a beta distribution, H̃2(xi) ∼ Beta(w j, 1). Hence, and by
Lemma 1, we get ̃h+

k ∼ Beta(w
m = ∑

{H1(xi)=k} w j, 1) instead
of h+

k ∼ Beta(n
m , 1) in the unweighted case.

Algorithm 4 (A generic max sketch algorithm for the weighted
cardinality estimation problem using stochastic averaging).

JID:IPL AID:5195 /SCO [m3G; v1.142; Prn:27/10/2014; 13:44] P.5 (1-7)

R. Cohen et al. / Information Processing Letters ••• (••••) •••–••• 5
1. Use two hash functions: H1(xi) ∼ U{1, 2, . . . , m} and
H2(xi) ∼ U(0, 1). For every xi , compute H1(xi) and
H̃2(xi) ∼ Beta(w j, 1) (the transformation is described
in Section 6.1). Let h̃+

k = s
max
i=1

{H̃2(xi) | H1(xi) = k} be

the maximum observed value in the k’th bucket.
2. Invoke ProcEstimateSA(̃h+

1 , ̃h+
2 , . . . , ̃h+

m) to estimate the
value of w .

Define 	h+ = (̃h+
1 , ̃h+

2 , . . . , ̃h+
m) and let bk = ∑

{H1(xi)=k} w j

be the sum of the elements in the k’th bucket. As for the
unweighted case, when 	b is known, from Lemma 1 follows
that:

	h+ | 	b ∼ (
Beta(b1,1),Beta(b2,1), . . . ,Beta(bm,1)

)
. (6)

Again, from the Central Limit Theorems follows that bk
is highly concentrated around w

m . Specifically, bk = w
m ±

O (

√
1
m

∑n
j=1 w2

j). Substituting this into Eq. (6) yields bk ∼
Beta(w

m , 1), and the following equivalence of Theorem 2:

Theorem 4. Estimating the weighted sum w by the weighted
generalization (Algorithm 4) is equivalent to estimating the car-
dinality n by the original unweighted algorithm (Algorithm 3).
Thus, Algorithm 4 estimates w with the same variance and bias
as Algorithm 3 estimates n.

Proof. The proof is similar to that of Theorem 2. �
The most thorough study of the statistical effect of

stochastic averaging on cardinality estimation [15] states
that “it brings computational efficiency at the cost of a
delayed asymptotical regime.” In other words, when n is
sufficiently large, the variance of each bucket size bk is
negligible. The question in turn is how large n should be
in order to obtain negligible variance of bk in the uni-
fied scheme as well. From our simulation study we de-
duce that for the unweighted case, when the normalized
standard deviation (i.e., the variance divided by the ex-
pectation) of each bk is less than 10−3, there is negligi-
ble loss of statistical efficiency. For example, when n =
106 and m = 1000, we get Var[bk/E[bk]] ≈ m

n = 10−3. For

the weighted case, assuming that
∑n

j=1 w2
j

w2 = 10−6, we get

Var[bk/E[bk]] =
∑n

j=1 w2
j

w2 m = 10−3. However, other choices
of the weights may “delay” this bound for bigger values

of n. To get a more natural view of
∑n

j=1 w2
j

w2 , let us assume
that the weights w j are drawn from a random distribution.
Thereby, w = ∑n

j=1 w j = nE[w j] and
∑n

j=1 w2
j = nE[w2

j].
Using the variance definition, we obtain:∑n

j=1 w2
j

w2
= nE[w2

j]
n2E2[w j] = E[w2

j] −E
2[w j] +E

2[w j]
nE2[w j]

= 1

n

(
1 + Var[w j]

E2[w j]
)

.

Therefore,

Var
[
bk/E[bk]

] =
∑n

j=1 w2
j

w2
m = m

n

(
1 + Var[w j]

E2[w]
)

.

j

Table 1
Distribution transformation examples.

Source Transformation

u ∼ U(0,1) u
1
α ∼ Beta(α,1)

u ∼ U(0,1) (1 − (1 − u)
1
β) ∼ Beta(1, β)

u ∼ U(0,1) �log1−p (1 − u)� = � ln(1−u)
ln(1−p)

� ∼ Geom(p)

u ∼ U(0,1) − ln u1/w ∼ Exp(w)

It follows that the unified scheme can deal with un-
bounded number of weights as long as: (1) the weights
are positive; and (2) Var[w j]/E2[w j] is a small constant.

6. Implementation

6.1. Transformations between distributions

In Algorithms 1, 2, 3 and 4, each element xi is associ-
ated with a uniformly distributed RV h(xi) ∼ U(0, 1). How-
ever, some estimators transform the uniformly distributed
hashed values into another distribution. For instance, in
[2,6], h(xi) is transformed into a geometrical distribution.
In this case, the transformation into a discrete distribution
allows the number of bits required for storing every num-
ber to be controlled. The unified scheme proposed in this
paper (Algorithms 2 and 4) transforms each hashed value
h(xi) into a beta distribution h̃(xi) ∼ Beta(w j, 1). We now
show how to transform a uniformly distributed RV to any
distribution, and in particular to the beta distribution.

Let x be an RV whose CDF is a monotonically non-
decreasing function F . The inverse function, also known as
the quantile function, F −1 is defined as

F −1(y) = inf
{

x : F (x) ≥ y
}
, where 0 ≤ y ≤ 1. (7)

The Inverse–Transform Method [18] is a method for gen-
erating random numbers from any probability distribu-
tion whose CDF is known, using the observation where if
u ∼ U(0, 1) and x = F −1(u) then x has a CDF F .

Thus, to generate a random number x from distribu-
tion D with CDF F , one can generate a random number
u ∼ U(0, 1) and output x = F −1(u). Therefore, the generic
algorithms for the unweighted cardinality estimation prob-
lem, namely, Algorithm 1 and Algorithm 3, require convert-
ing each hashed value h(xi) into h̃(xi) = F −1(h(xi)). Note
that the estimator may keep the original uniform hashed
values without any transformation, in which case F (x) = x.
In Table 1 we describe several transformation examples
(see [14,19] for more details).

We now return to our generic algorithms for the
weighted cardinality estimation problem, namely, Algo-
rithm 2 and Algorithm 4. The desired distribution is
Beta(wi, 1), whose CDF and CDF inverse are Gmax(x) = xw j

and G−1
max(u) = u1/w j respectively. The Inverse–Transform

Method yields that G−1
max(h(xi)) = h(xi)

1/w j ∼ Beta(w j, 1).
Namely, given a uniformly distributed hashed value h(xi) ∼
U(0, 1), taking h̃(xi) = h(xi)

1/w j will satisfy h̃(xi) ∼
Beta(w j, 1). Thus, both Algorithms 2 and 4 require con-
verting each hashed value h(xi) into h̃(xi) =
F −1(G−1

max(h(xi))), where G−1
max(u) = u1/w j .

JID:IPL AID:5195 /SCO [m3G; v1.142; Prn:27/10/2014; 13:44] P.6 (1-7)

6 R. Cohen et al. / Information Processing Letters ••• (••••) •••–•••
6.2. Examples of specific generalized algorithms

We now discuss several known algorithms for the car-
dinality estimation problem (Problem 1), and show how
each of them is extended to solve the weighted cardinal-
ity problem (Problem 2), using Algorithm 2 or Algorithm 4.
For each known algorithm we present:

1. the final distribution it uses and the transformation
needed from the initial uniform hashed values;

2. the ProcEstimate() it uses for the estimation;
3. the asymptotic relative efficiency (ARE), as a measure-

ment for the efficiency of each estimator [2] (it is de-
fined as the ratio between n2/m and the asymptotic
variance of the estimator);

4. the size of the storage it uses;
5. how this algorithm is extended using our unified

scheme to solve the weighted cardinality estimation
problem.

Note that by Theorems 2 and 4, (3) and (4) above are
the same for the unweighted algorithm and the weighted
generalization.

Method-1: Continuous U(0, 1) with stochastic averaging

The basic algorithm is presented in [1] and is the mini-
mum variance unbiased estimator. Its key properties are:

1. The estimator uses uniform variables. Thus, no trans-
formation is needed and F −1(u) = u holds.

2. ProcEstimate(h+
1 , h+

2 , . . . , h+
m) = m(m−1)∑m

k=1 (1−h+
k)

.

3. The ARE of this estimator is 1.00 [1].
4. The storage size is 32 · m bits [1].
5. To generalize this estimator, we convert each hashed

value into H̃2(xi) = G−1
max(H2(xi)) and then apply Al-

gorithm 4. Thus, we get that

ŵ = m(m − 1)∑m
k=1 (1 − h̃+

k)

holds, where

h̃+
k = max

{(
H2(e j)

) 1
w j | H1(e j) = k

}
.

Method-2: Continuous U(0, 1) with m different hash functions

This algorithm, presented in [3], is a maximum likeli-
hood estimator. In addition, a weighted generalization to
this algorithm is also presented in [3]. The weighted gener-
alization can be directly obtained when the unified scheme
proposed in this paper is applied to the continuous max
sketches. Its key properties are:

1. The estimator uses exponential random variables with
parameter 1. Therefore, according to Table 1, F −1(u) =
− ln u ∼ Exp(1).

2. ProcEstimate(̃h+
1 , ̃h+

2 , . . . , ̃h+
m) = m∑m

k=1 h̃+
k

, where

h̃+
k = max

{− ln
(
hk(xi)

)}
.

3. The ARE of this estimator is 1.00 [2].
4. The storage size is 32 · m bits [2].
5. To generalize this estimator, each hashed value is con-

verted into h̃k(xi) = F −1(G−1
max(hk(xi))) and then Al-

gorithm 4 is applied. Thus, we get that ŵ = m∑m
k=1 h̃+

k

holds, where h̃+
k = max{− ln(hk(xi)

1/w j)}. This gener-
alization is identical to the algorithm presented in [3].

Method-3: HyperLogLog with stochastic averaging

This algorithm, presented in [6], is the best known al-
gorithm for addressing Problem 1 in terms of the tradeoff
between its ARE and storage size. Its key properties are:

1. The estimator uses geometric random variables with
success probability 1/2. Therefore, according to Ta-
ble 1, F −1(u) = �− log2 u� ∼ Geom(1/2).

2. ProcEstimate(̃h+
1 , ̃h+

2 , . . . , ̃h+
m) = αmm2∑m

k=1 2−h̃+
k

, where

h̃+
k = max

{⌊− log2
(

H2(xi)
)⌋ ∣∣ H1(xi) = k

}
and

αm =
(

m

∞∫
0

(
log2

(
2 + u

1 + u

))m

du

)−1

.

3. The ARE of this estimator is 0.925 [2].
4. The storage size is 5 · m bits [2].
5. To generalize this estimator, each hashed value is con-

verted into H̃2(xi) = F −1(G−1
max(H2(xi))) and then Al-

gorithm 4 is applied. Thus, we get that

ŵ = αmm2∑m
k=1 2−h̃+

k

holds, where

h̃+
k = max

{⌊− log2
(

H2(e j)
1

w j
)⌋ ∣∣ H1(e j) = k

}
.

In summary, the HyperLogLog algorithm (Method-3),
which offers the best tradeoff between precision and stor-
age size, can be extended using our unified scheme to
solve the weighted problem. The extended algorithm is the
best algorithm for solving the weighted problem, and it is
therefore the most important practical result of this paper.

7. Conclusion

In this paper we showed how to generalize every car-
dinality estimation algorithm that relies on extreme order
statistics (min/max sketches) to a weighted version, where
each item is associated with a weight and the goal is to
estimate the total sum of weights. The proposed unified
scheme uses the unweighted estimator as a black box, and
manipulates the input using properties of the beta distri-
bution. We proved that estimating the weighted sum by
generalizing an underlying unweighted algorithm using our
unified scheme is statistically equivalent to estimating the
unweighted cardinality by the underlying unweighted al-
gorithm.

JID:IPL AID:5195 /SCO [m3G; v1.142; Prn:27/10/2014; 13:44] P.7 (1-7)

R. Cohen et al. / Information Processing Letters ••• (••••) •••–••• 7
References

[1] P. Chassaing, L. Gérin, Efficient estimation of the cardinality of large
data sets, in: Proceedings of the 4th Colloquium on Mathematics
and Computer Science, in: Discrete Math. Theor. Comput. Sci. Proc.,
vol. AG, 2006, pp. 419–422.

[2] P. Clifford, I.A. Cosma, A statistical analysis of probabilistic counting
algorithms, Scand. J. Stat. (2011).

[3] E. Cohen, Size-estimation framework with applications to transitive
closure and reachability, J. Comput. Syst. Sci. 55 (3) (1997) 441–453.

[4] E. Cohen, H. Kaplan, Tighter estimation using bottom k sketches,
Proc. VLDB Endow. 1 (1) (2008) 213–224.

[5] J. Considine, F. Li, G. Kollios, J.W. Byers, Approximate aggregation
techniques for sensor databases, in: ICDE, 2004, pp. 449–460.

[6] P. Flajolet, É. Fusy, O. Gandouet, F. Meunier, HyperLogLog: the analy-
sis of a near-optimal cardinality estimation algorithm, in: Analysis of
Algorithms, AofA 2007, in: Discrete Math. Theor. Comput. Sci., 2007.

[7] P. Flajolet, G.N. Martin, Probabilistic counting algorithms for data
base applications, J. Comput. Syst. Sci. 31 (Sep. 1985) 182–209.

[8] É. Fusy, F. Giroire, Estimating the number of active flows in a data
stream over a sliding window, in: D. Panario, R. Sedgewick (Eds.),
ANALCO, SIAM, 2007, pp. 223–231.

[9] S. Ganguly, M.N. Garofalakis, R. Rastogi, K.K. Sabnani, Streaming al-
gorithms for robust, real-time detection of DDoS attacks, in: ICDCS,
IEEE Computer Society, 2007, p. 4.
[10] F. Giroire, Directions to use probabilistic algorithms for cardinality for
DNA analysis, Journ. Ouvert. Biol. Inform. Math. (2006).

[11] F. Giroire, Order statistics and estimating cardinalities of massive
data sets, Discrete Appl. Math. 157 (2009) 406–427.

[12] S. Heule, M. Nunkesser, A. Hall, HyperLogLog in practice: algorithmic
engineering of a state of the art cardinality estimation algorithm, in:
Proceedings of the EDBT 2013 Conference, 2013.

[13] P. Indyk, Stable distributions, pseudorandom generators, embeddings,
and data stream computation, J. ACM 53 (May 2006) 307–323.

[14] K. Krishnamoorthy, Handbook of Statistical Distributions with Appli-
cations, Chapman & Hall/CRC Press, Boca Raton, FL, 2006.

[15] J. Lumbroso, An optimal cardinality estimation algorithm based on
order statistics and its full analysis, in: Analysis of Algorithms, AofA
2010, in: Discrete Math. Theor. Comput. Sci., 2010.

[16] A. Metwally, D. Agrawal, A.E. Abbadi, Why go logarithmic if we
can go linear? Towards effective distinct counting of search traf-
fic, in: Proceedings of the 11th International Conference on Extend-
ing Database Technology: Advances in Database Technology, EDBT’08,
2008, pp. 618–629.

[17] C. Qian, H. Ngan, Y. Liu, L.M. Ni, Cardinality estimation for large-
scale RFID systems, IEEE Trans. Parallel Distrib. Syst. 22 (9) (2011)
1441–1454.

[18] R.Y. Rubinstein, D.P. Kroese, Simulation and the Monte Carlo Method,
2nd edition, Wiley Series in Probability and Statistics, 2008.

[19] C. Walck, Handbook on Statistical Distributions for Experimentalists,
Dec. 1996.

http://refhub.elsevier.com/S0020-0190(14)00224-5/bib436861737361696E6732303036s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib436861737361696E6732303036s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib436861737361696E6732303036s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib436861737361696E6732303036s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib436F736D613A32303131s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib436F736D613A32303131s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib436F68656E3937s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib436F68656E3937s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib436F68656E4B3038s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib436F68656E4B3038s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib436F6E736964696E6532303034s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib436F6E736964696E6532303034s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib466C616A6F6C657432303037s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib466C616A6F6C657432303037s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib466C616A6F6C657432303037s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib466C616A6F6C65743A31393835s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib466C616A6F6C65743A31393835s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4769726F69726532303037s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4769726F69726532303037s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4769726F69726532303037s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib47616E67756C7932303037s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib47616E67756C7932303037s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib47616E67756C7932303037s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4769726F69726532303036s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4769726F69726532303036s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4769726F69726532303039s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4769726F69726532303039s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4865756C6532303133s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4865756C6532303133s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4865756C6532303133s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib496E64796B32303036s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib496E64796B32303036s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4B726973686E616D6F6F7274687932303036s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4B726973686E616D6F6F7274687932303036s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4C756D62726F736F32303130s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4C756D62726F736F32303130s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4C756D62726F736F32303130s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4D657477616C6C793A32303038s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4D657477616C6C793A32303038s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4D657477616C6C793A32303038s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4D657477616C6C793A32303038s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib4D657477616C6C793A32303038s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib5169616E32303131s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib5169616E32303131s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib5169616E32303131s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib527562696E737465696E32303037s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib527562696E737465696E32303037s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib57616C636B31393936s1
http://refhub.elsevier.com/S0020-0190(14)00224-5/bib57616C636B31393936s1

	A uniﬁed scheme for generalizing cardinality estimators to sum aggregation
	1 Introduction
	2 Related work
	3 The beta distribution
	4 The uniﬁed scheme
	5 Reducing the number of hash functions using stochastic averaging
	6 Implementation
	6.1 Transformations between distributions
	6.2 Examples of speciﬁc generalized algorithms
	Method-1: Continuous U (0, 1) with stochastic averaging
	Method-2: Continuous U (0, 1) with m different hash functions
	Method-3: HyperLogLog with stochastic averaging

	7 Conclusion
	References

