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Cardinality estimation algorithms receive a stream of elements that may appear in 
arbitrary order, with possible repetitions, and return the number of distinct elements. Such 
algorithms usually seek to minimize the required storage at the price of inaccuracy in their 
output. This paper shows how to generalize every cardinality estimation algorithm that 
relies on extreme order statistics (min/max sketches) to a weighted version, where each 
item is associated with a weight and the goal is to estimate the total sum of weights. The 
proposed unified scheme uses the unweighted estimator as a black-box, and manipulates 
the input using properties of the beta distribution.
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1. Introduction

Consider a very long stream of elements x1, x2, . . . , xs

with repetitions. Finding the number n of distinct elements 
is a well-known problem with numerous applications. The 
elements might represent IP addresses of packets passing 
through a router [8,9,16], elements in a large database [12], 
motifs in a DNA sequence [10], or elements of RFID/sen-
sor networks [17]. One can easily find the exact value of n
in the following way. When a new element xi is encoun-
tered, compare its value to every distinct (stored) value 
encountered so far. If the value of xi has not been seen 
before, keep it in the storage as well. After all the ele-
ments are treated, count the number of stored elements. 
This simple approach does not scale if storage is limited, or 
if the computation performed for each element xi should 
be minimized. In such a case, the following cardinality es-
timation problem should be solved:
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Problem 1 (The cardinality estimation problem).
Instance: A stream of elements x1, x2, . . . , xs with repeti-

tions, and an integer m. Let n be the number of dif-
ferent elements, namely n = |{x1, x2, . . . , xs}|, and let 
these elements be {e1, e2, . . . , en}.

Objective: Find an estimate n̂ of n using only m storage 
units, where m � n.

Several algorithms have been proposed for the cardinal-
ity estimation problem. See [2] for a theoretical overview 
and [16] for a practical overview with comparative simula-
tion results. In this paper we study the following weighted 
generalization of the cardinality estimation problem:

Problem 2 (The weighted cardinality estimation problem).
Instance: A stream of weighted elements x1, x2, . . . , xs

with repetitions, and an integer m. Let n be the num-
ber of different elements, namely n = |{x1, x2, . . . , xs}|, 
and let these elements be {e1, e2, . . . , en}. Finally, let 
w j be the weight of e j .

Objective: Find an estimate ŵ of w = ∑n
j=1 w j using only 

m storage units, where m � n.

An example of an instance for the cardinality estima-
tion problem is the stream: a, b, a, c, d, b, d. For this 
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instance, n = |{a, b, c, d}| = 4. An example of an instance 
for the weighted problem is: a(3), b(4), a(3), c(2), d(3), 
b(4), d(3). For this instance, e1 = a, e2 = b, e3 = c, e4 = d, 
w1 = 3, w2 = 4, w3 = 2, w4 = 3 and 

∑
w j = 12.

As an application example, x1, x2, . . . , xs could be IP 
packets received by a server. Each packet belongs to one 
of n IP flows e1, e2, . . . , en . The weight w j can be the load 
imposed by flow e j on the server. Thus, 

∑n
j=1 w j repre-

sents the total load imposed on the server by all the flows 
to which packets x1, x2, . . . , xs belong.

The main contribution of this paper is a unified scheme 
for generalizing any extreme order statistics estimator for 
the unweighted cardinality estimation problem to an es-
timator for the weighted cardinality estimation problem.
This scheme can be used for obtaining known estimators 
and new estimators in a generic way. In particular, we 
show in Section 6 that:

• The new scheme can be used to extend the Hyper-
LogLog algorithm [6], originally developed for the un-
weighted problem, to solve the weighted problem. 
The extended algorithm offers the best performance, 
in terms of statistical accuracy and memory stor-
age, among all the other known algorithms for the 
weighted problem.

• The new scheme can be used to extend the “data 
sketching with Bernoulli random variables” estimator 
[2] to solve the weighted algorithm. The extended al-
gorithm offers the best performance, in terms of sta-
tistical accuracy and memory storage, when sufficient 
a priori information about n is given.

• The new scheme can be used to obtain, in the same 
generic way, the estimator proposed by [3].

The rest of this paper is organized as follows: In Sec-
tion 2 we discuss previous works on both the unweighted 
and weighted cardinality estimation problems. In Section 3
we describe the beta distribution and recall several prop-
erties that will be used later. We present our new unified 
scheme in Sections 4 and 5. In Section 6 we present a 
weighted version for several known estimators. Finally, in 
Section 7 we conclude the paper.

2. Related work

State-of-the-art cardinality estimators hash every el-
ement e j into a low dimensional data sketch h(e j), 
which can be viewed as a random variable (RV). The 
different techniques can be classified according to the 
data sketches they store for future processing. This pa-
per focuses on min/max sketches [2,6,11,15], which store 
only the minimum/maximum hashed values. The intu-
ition behind such estimators is that each sketch car-
ries information about the desired quantity. For exam-
ple, when every element e j is associated with a uni-
form RV, h(e j) ∼ U(0, 1), the expected minimum value of 
h(e1), h(e2), . . . , h(en) is 1/(n + 1). The hash function guar-
antees that h(e j) is identical for all the appearances of e j . 
Thus, the existence of duplicates does not affect the value 
of the extreme order statistics. The intuition behind the 
new unified scheme presented in this paper is that each 
RV carries information about the weight of the correspond-
ing element, and each sketch carries information about the 
total weight.

There are other cardinality estimation techniques other 
than min/max sketches. The first paper on cardinality esti-
mation [7] describes a bit pattern sketch. In this case, the 
elements are hashed into a bit vector and the sketch holds 
the logical OR of all hashed values. Bottom-m sketches [4]
are a generalization of min sketches, which maintain 
the m minimal values, where m ≥ 1. Stable distribution 
sketches [13] generate a sketch using a vector dot prod-
uct. A comprehensive overview of the different techniques 
is given in [2,16].

Previous works have also dealt with the weighted prob-
lem. A weighted estimator for continuous variables is 
given in [3]. Each element is hashed to a random variable 
derived from exponential distribution h(e j) ∼ Exp(w j), 
where w j is the weight of e j . Then, the minimum ob-
served value is stored and used for the estimation. The 
intuition is that the minimum observed value is exponen-
tially distributed with a parameter that is the weighted 
sum of the elements. This estimator can be obtained as 
a direct result of our unified scheme, when our scheme is 
applied to continuous max sketches.

In [5], the weighted problem with integer weights is 
solved using binary representations. The number of stor-
age units is not fixed, because it depends on the weights. 
In contrast, the proposed scheme does not assume integer 
weights, and uses fixed memory. Another weighted esti-
mator, based on continuous bottom-m sketches, is given 
in [4]. However, bottom-m sketches require maintaining a 
sorted list of the bottom-m values, which is more compu-
tationally demanding than keeping the m separate mini-
mum/maximum values, as in the proposed unified scheme.

3. The beta distribution

We observe that all min/max sketches can be viewed as 
a two step computation: (a) hash each element uniformly 
into (0, 1); and (b) store only the minimum/maximum 
observed value.1 In the unified scheme we only change 
step (a) and hash each element into a beta distribution. 
The parameters of the beta distribution are derived from 
the weight of the element. In this section, we describe 
the beta distribution and two of its properties that will be 
used in the unified scheme.

The Beta(α, β) distribution is defined over the inter-
val (0, 1) and has the following probability and cumulative 
density functions (PDF and CDF respectively):

P
[

X = x ∈ (0,1)
] = Γ (α + β)

Γ (β)Γ (α)
xα−1(1 − x)β−1 (1)

P [X ≤ x] =
x∫

0

Γ (α + β)

Γ (β)Γ (α)
xα−1(1 − x)β−1dx, (2)

1 Some estimators (e.g. [6]) transform the uniform hashed values to in-
duce a different distribution, and only then store the minimum/maximum 
observed value. In Section 6.1 we will consider such estimators.
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where Γ (z) is the gamma function, defined as∫ ∞
0 e−ttz−1dt . Using integration by parts, the gamma func-

tion can be shown to satisfy Γ (z +1) = z ·Γ (z). Combining 
this with Γ (1) = 1 yields Γ (n) = (n − 1)! for every inte-
ger n. Two other known beta identities are [14]:

Beta(1,1) ∼ U(0,1) (3)

and

Beta(α,β) ∼ 1 − Beta(β,α). (4)

A key property of the beta distribution, which we use 
in our unified scheme is as follows:

Lemma 1. Let z1, z2, . . . , zn be independent RVs, where zi ∼
Beta(wi, 1). Then,

n
max
i=1

zi ∼ Beta

(
n∑

i=1

wi,1

)
.

Proof.

P [zi ≤ z] =
z∫

0

wi · zwi−1dx = zwi

P
[ n

max
i=1

zi ≤ z
]

=
n∏

i=1

P [zi ≤ z] =
n∏

i=1

zwi = z
∑n

i=1 wi .

The first equation follows by setting α = wi and β = 1 in 
Eq. (2), and by the fact that Γ (wi + 1) = wiΓ (wi). The 
second equation is due to the multiplication of indepen-
dent variables. �

The next lemma is a symmetric minimum version of 
the former one:

Lemma 2. Let z1, z2, . . . , zn be independent RVs, where zi ∼
Beta(1, wi). Then,

n
min
i=1

zi ∼ Beta

(
1,

n∑
i=1

wi

)
.

Proof.

n
min
i=1

zi = − n
max
i=1

(−zi)

= 1 − n
max
i=1

(1 − zi) ∼ 1 − Beta

(
n∑

i=1

wi,1

)

∼ Beta

(
1,

n∑
i=1

wi

)
.

The first and second equations are due to algebraic ma-
nipulations. The first distribution identity follows from 
1 − zi ∼ Beta(wi, 1) (see Eq. (4)) and Lemma 1, and the 
second is due to Eq. (4). �
4. The unified scheme

Let x1, x2, . . . , xs be the values of a stream of ele-
ments with repetitions, such that |{x1, x2, . . . , xs}| = n and 
xi ∈ {e1, e2, . . . , en}. Let each element e j be associated with 
a weight w j . This implies that if two elements xi1 and 
xi2 are equal (represented by the same element e j ), their 
weights are also equal. Let w = ∑n

j=1 w j be the value we 
want to estimate.

Min/max sketch estimators use a hash function to map 
every element xi to U(0, 1), and then remember only the 
minimum/maximum hashed value. If only one hash func-
tion is used, the sketch estimates the value of n with an 
infinite variance. To bound the variance, min/max sketches 
use m different hash functions in parallel and use their 
combined statistics for the estimation. With m hash func-
tions, any (unweighted) min/max sketch associates each el-
ement xi with m uniform hashed values hk(xi), 1 ≤ k ≤ m. 
The estimator remembers the minimum/maximum ob-
served value for each hash function hk , and uses these m
values to estimate the number n of different elements. We 
first present this generic algorithm and then show how it 
can be generalized for the weighted cardinality problem. 
We focus on max sketch estimators, but similar algorithms 
can be developed for min sketches as well.

Algorithm 1 (A generic max sketch algorithm for the cardinal-
ity estimation problem).

1. Use m different hash functions, h1, h2, . . . , hm . For ev-
ery hk and every input element xi , compute hk(xi). Let 
h+

k = maxs
i=1{hk(xi)} be the maximum observed value 

for hash function hk .
2. Invoke ProcEstimate(h+

1 , h+
2 , . . . , h+

m) to estimate the 
number n of different elements.

ProcEstimate() is the specific cardinality estimate pro-
cedure. Different algorithms employ different procedures, 
some of which are discussed in Section 6.2. Consider one 
of the hash functions, hk . Assuming that hk(x) ∼ U(0, 1), 
then, by Eq. (3), hk(x) ∼ Beta(1, 1). Therefore, and by 
Lemma 1, we get:

Theorem 1. For every hash function, h+
k = maxs

i=1 hk(xi) ∼
Beta(n, 1) holds. Thus, estimating the value of n by Proc-
Estimate() in Algorithm 1 is equivalent to estimating the value 
of α in the Beta(α, 1) distribution of h+

k . �
The intuition behind our unified scheme is that in-

stead of associating each element xi with a uniform 
hashed value hk(xi), we associate it with a RV taken 
from a Beta(w j, 1) distribution, where w j is the ele-
ment’s weight. Technically, we first hash xi uniformly 
hk(xi) ∼ U(0, 1). Then, we transform2 hk(xi) to ̃hk(xi), such 
that ̃hk(xi) ∼ Beta(w j, 1). Hence, and by Lemma 1, we have 
h̃+

k ∼ Beta(w = ∑n
j=1 w j, 1) instead of h+

k ∼ Beta(n, 1) as 

2 We discuss the transformation from a uniform distribution to the beta 
distribution in Section 6.1.
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in the unweighted case. Thus, and by Theorem 1, the same 
algorithm that estimates n in the unweighted case can es-
timate w in the weighted case. This algorithm is agnostic 
to the distribution of the weight classes.

Algorithm 2 (A generic max sketch algorithm for the weighted 
cardinality estimation problem).

1. Use m different hash functions, h1, h2, . . . , hm ∼
U(0, 1). For every hk and every xi , compute h̃k(xi) ∼
Beta(w j, 1) (the transformation is described in Sec-
tion 6.1). Let ̃h+

k = maxs
i=1{̃hk(xi)}.

2. Invoke ProcEstimate(̃h+
1 , ̃h+

2 , . . . , ̃h+
m) to estimate the 

value of w .

The key point is that ProcEstimate() is exactly the same 
procedure used to estimate the unweighted cardinality n
in Algorithm 1.

Theorem 2. Estimating the weighted sum w by the weighted 
generalization (Algorithm 2) is equivalent to estimating the car-
dinality n by the original unweighted algorithm (Algorithm 1). 
Thus, Algorithm 2 estimates w with the same variance and bias 
as Algorithm 1 estimates n.

Proof. From Lemma 1 follows that for every hash func-
tion hk , h̃+

k = maxs
i=1 {̃hk(xi)} ∼ Beta(w, 1). Thus, and by 

Theorem 1, the distribution of the input elements for 
ProcEstimate() in Algorithm 2 is exactly as the distribution 
of the input elements for ProcEstimate() in Algorithm 1: 
Beta(α, 1), where α is the parameter to be estimated. Fi-
nally, from Theorem 1 follows that ProcEstimate() estimates 
the value of α in both cases. �
5. Reducing the number of hash functions using 
stochastic averaging

Algorithms 1 and 2 use m different hash functions in 
order to obtain a better precision. In certain applications, 
the computational burden renders the scheme infeasible 
even for m = 10. Stochastic averaging [7] is a method to 
overcome the computational cost at the price of reduced 
statistical efficiency3 in the estimator’s variance, which is 
negligible in this case. The main idea is to use only two 
hash functions: the first for assigning a bucket (one of m) 
for every element xi , and the second for associating every 
element xi in every bucket with a U(0, 1) value.4 The es-
timator then stores the maximum observed value of each 
bucket. We denote by H1 the hash used for bucketing and 
by H2 the hash used for generating the sketches. Formally, 
H1(xi) ∼ U{1, 2, . . . , m} and H2(xi) ∼ U(0, 1). We first in-
corporate this concept into the generic max sketch algo-
rithm for the cardinality estimation problem (Algorithm 1) 

3 See the discussion regarding “statistical efficiency” at the end of this 
section.

4 In fact, it is possible to use a single hash function, as proposed in [7]. 
In this case, the first logm bits are used for bucketing.
and then into the unified scheme for the weighted cardi-
nality estimation problem (Algorithm 2). As in the previous 
section, we consider max sketch estimators, but the same 
idea is applicable for min sketches as well.

Algorithm 3 (A generic max sketch algorithm for the cardinal-
ity estimation problem using stochastic averaging).

1. Use two hash functions: H1(xi) ∼ U{1, 2, . . . , m} and 
H2(xi) ∼ U(0, 1). For every input element xi , com-
pute H1(xi) and H2(xi). Let h+

k = maxs
i=1{H2(xi) |

H1(xi) = k} be the maximum observed value in the 
k’th bucket.

2. Invoke ProcEstimateSA(h+
1 , h+

2 , . . . , h+
m) to estimate the 

number n of different elements.

Note that ProcEstimateSA() in Step (2) is different from 
ProcEstimate() in Algorithm 1 and Algorithm 2. In Sec-
tion 4 we defined h+

k to be the maximum observed value 
for the k’th hash, and showed in Theorem 1 that it sat-
isfies h+

k ∼ Beta(n, 1); namely, estimating the value of n
by ProcEstimate() is equivalent to estimating the value of 
α in the Beta(α, 1) distribution of h+

k . In the following 
analysis we show an equivalent result for the stochastic 
averaging case. To this end, (a) let 	h+ = (h+

1 , h+
2 , . . . , h+

m)

be the vector of the maximum observed values in each 
bucket; (b) let bk be the size of the k’th bucket, namely, 
bk = |{H1(xi) = k}|; and (c) let 	b = (b1, b2, . . . , bm) be the 
vector of the bucket’s sizes. Since h+

k is the maximum of 
bk uniformly distributed RVs, from Lemma 1 we get:

	h+ | 	b ∼ (
Beta(b1,1),Beta(b2,1), . . . ,Beta(bm,1)

)
. (5)

From the Central Limit Theorems follows that bk is highly 
concentrated around n

m . Specifically, bk = n
m ± O (

√
n
m ). 

Substituting bk = n
m into Eq. (5) yields the following theo-

rem, which is the stochastic averaging equivalence of The-
orem 1:

Theorem 3. For every hash function, h+
k = maxs

i=1{H2(xi) |
H1(xi) = k} ∼ Beta(bk, 1) ≈ Beta( n

m , 1). Thus, estimating the 
value of n

m by ProcEstimateSA() in Algorithm 3 is equivalent 
to estimating the value of α in the Beta(α, 1) distribution 
of h+

k . �
To generalize Algorithm 3 for solving the weighted 

problem using stochastic averaging, we employ the same 
idea used for generalizing Algorithm 1, where each el-
ement xi is associated with a variable taken from a 
Beta(w j, 1) distribution. Thus, we first use H1 to in-
sert each element xi into a random bucket 1 ≤ k ≤ m, 
and H2 to associate xi with a uniformly distributed vari-
able H2(xi) ∼ U(0, 1). Then, we transform H2(xi) to have 
a beta distribution, H̃2(xi) ∼ Beta(w j, 1). Hence, and by 
Lemma 1, we get ̃h+

k ∼ Beta( w
m = ∑

{H1(xi)=k} w j, 1) instead 
of h+

k ∼ Beta( n
m , 1) in the unweighted case.

Algorithm 4 (A generic max sketch algorithm for the weighted 
cardinality estimation problem using stochastic averaging).
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1. Use two hash functions: H1(xi) ∼ U{1, 2, . . . , m} and 
H2(xi) ∼ U(0, 1). For every xi , compute H1(xi) and 
H̃2(xi) ∼ Beta(w j, 1) (the transformation is described 
in Section 6.1). Let h̃+

k = s
max
i=1

{H̃2(xi) | H1(xi) = k} be 

the maximum observed value in the k’th bucket.
2. Invoke ProcEstimateSA(̃h+

1 , ̃h+
2 , . . . , ̃h+

m) to estimate the 
value of w .

Define 	h+ = (̃h+
1 , ̃h+

2 , . . . , ̃h+
m) and let bk = ∑

{H1(xi)=k} w j

be the sum of the elements in the k’th bucket. As for the 
unweighted case, when 	b is known, from Lemma 1 follows 
that:

	h+ | 	b ∼ (
Beta(b1,1),Beta(b2,1), . . . ,Beta(bm,1)

)
. (6)

Again, from the Central Limit Theorems follows that bk
is highly concentrated around w

m . Specifically, bk = w
m ±

O (

√
1
m

∑n
j=1 w2

j ). Substituting this into Eq. (6) yields bk ∼
Beta( w

m , 1), and the following equivalence of Theorem 2:

Theorem 4. Estimating the weighted sum w by the weighted 
generalization (Algorithm 4) is equivalent to estimating the car-
dinality n by the original unweighted algorithm (Algorithm 3). 
Thus, Algorithm 4 estimates w with the same variance and bias 
as Algorithm 3 estimates n.

Proof. The proof is similar to that of Theorem 2. �
The most thorough study of the statistical effect of 

stochastic averaging on cardinality estimation [15] states 
that “it brings computational efficiency at the cost of a 
delayed asymptotical regime.” In other words, when n is 
sufficiently large, the variance of each bucket size bk is 
negligible. The question in turn is how large n should be 
in order to obtain negligible variance of bk in the uni-
fied scheme as well. From our simulation study we de-
duce that for the unweighted case, when the normalized 
standard deviation (i.e., the variance divided by the ex-
pectation) of each bk is less than 10−3, there is negligi-
ble loss of statistical efficiency. For example, when n =
106 and m = 1000, we get Var[bk/E[bk]] ≈ m

n = 10−3. For 

the weighted case, assuming that 
∑n

j=1 w2
j

w2 = 10−6, we get 

Var[bk/E[bk]] =
∑n

j=1 w2
j

w2 m = 10−3. However, other choices 
of the weights may “delay” this bound for bigger values 

of n. To get a more natural view of 
∑n

j=1 w2
j

w2 , let us assume 
that the weights w j are drawn from a random distribution. 
Thereby, w = ∑n

j=1 w j = nE[w j] and 
∑n

j=1 w2
j = nE[w2

j ]. 
Using the variance definition, we obtain:∑n

j=1 w2
j

w2
= nE[w2

j ]
n2E2[w j] = E[w2

j ] −E
2[w j] +E

2[w j]
nE2[w j]

= 1

n

(
1 + Var[w j]

E2[w j]
)

.

Therefore,

Var
[
bk/E[bk]

] =
∑n

j=1 w2
j

w2
m = m

n

(
1 + Var[w j]

E2[w ]
)

.

j

Table 1
Distribution transformation examples.

Source Transformation

u ∼ U(0,1) u
1
α ∼ Beta(α,1)

u ∼ U(0,1) (1 − (1 − u)
1
β ) ∼ Beta(1, β)

u ∼ U(0,1) �log1−p (1 − u)� = � ln(1−u)
ln(1−p)

� ∼ Geom(p)

u ∼ U(0,1) − ln u1/w ∼ Exp(w)

It follows that the unified scheme can deal with un-
bounded number of weights as long as: (1) the weights 
are positive; and (2) Var[w j]/E2[w j] is a small constant.

6. Implementation

6.1. Transformations between distributions

In Algorithms 1, 2, 3 and 4, each element xi is associ-
ated with a uniformly distributed RV h(xi) ∼ U(0, 1). How-
ever, some estimators transform the uniformly distributed 
hashed values into another distribution. For instance, in 
[2,6], h(xi) is transformed into a geometrical distribution. 
In this case, the transformation into a discrete distribution 
allows the number of bits required for storing every num-
ber to be controlled. The unified scheme proposed in this 
paper (Algorithms 2 and 4) transforms each hashed value 
h(xi) into a beta distribution h̃(xi) ∼ Beta(w j, 1). We now 
show how to transform a uniformly distributed RV to any 
distribution, and in particular to the beta distribution.

Let x be an RV whose CDF is a monotonically non-
decreasing function F . The inverse function, also known as 
the quantile function, F −1 is defined as

F −1(y) = inf
{

x : F (x) ≥ y
}
, where 0 ≤ y ≤ 1. (7)

The Inverse–Transform Method [18] is a method for gen-
erating random numbers from any probability distribu-
tion whose CDF is known, using the observation where if 
u ∼ U(0, 1) and x = F −1(u) then x has a CDF F .

Thus, to generate a random number x from distribu-
tion D with CDF F , one can generate a random number 
u ∼ U(0, 1) and output x = F −1(u). Therefore, the generic 
algorithms for the unweighted cardinality estimation prob-
lem, namely, Algorithm 1 and Algorithm 3, require convert-
ing each hashed value h(xi) into h̃(xi) = F −1(h(xi)). Note 
that the estimator may keep the original uniform hashed 
values without any transformation, in which case F (x) = x. 
In Table 1 we describe several transformation examples 
(see [14,19] for more details).

We now return to our generic algorithms for the 
weighted cardinality estimation problem, namely, Algo-
rithm 2 and Algorithm 4. The desired distribution is 
Beta(wi, 1), whose CDF and CDF inverse are Gmax(x) = xw j

and G−1
max(u) = u1/w j respectively. The Inverse–Transform 

Method yields that G−1
max(h(xi)) = h(xi)

1/w j ∼ Beta(w j, 1). 
Namely, given a uniformly distributed hashed value h(xi) ∼
U(0, 1), taking h̃(xi) = h(xi)

1/w j will satisfy h̃(xi) ∼
Beta(w j, 1). Thus, both Algorithms 2 and 4 require con-
verting each hashed value h(xi) into h̃(xi) =
F −1(G−1

max(h(xi))), where G−1
max(u) = u1/w j .
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6.2. Examples of specific generalized algorithms

We now discuss several known algorithms for the car-
dinality estimation problem (Problem 1), and show how 
each of them is extended to solve the weighted cardinal-
ity problem (Problem 2), using Algorithm 2 or Algorithm 4. 
For each known algorithm we present:

1. the final distribution it uses and the transformation 
needed from the initial uniform hashed values;

2. the ProcEstimate() it uses for the estimation;
3. the asymptotic relative efficiency (ARE), as a measure-

ment for the efficiency of each estimator [2] (it is de-
fined as the ratio between n2/m and the asymptotic 
variance of the estimator);

4. the size of the storage it uses;
5. how this algorithm is extended using our unified 

scheme to solve the weighted cardinality estimation 
problem.

Note that by Theorems 2 and 4, (3) and (4) above are 
the same for the unweighted algorithm and the weighted 
generalization.

Method-1: Continuous U(0, 1) with stochastic averaging

The basic algorithm is presented in [1] and is the mini-
mum variance unbiased estimator. Its key properties are:

1. The estimator uses uniform variables. Thus, no trans-
formation is needed and F −1(u) = u holds.

2. ProcEstimate(h+
1 , h+

2 , . . . , h+
m) = m(m−1)∑m

k=1 (1−h+
k )

.

3. The ARE of this estimator is 1.00 [1].
4. The storage size is 32 · m bits [1].
5. To generalize this estimator, we convert each hashed 

value into H̃2(xi) = G−1
max(H2(xi)) and then apply Al-

gorithm 4. Thus, we get that

ŵ = m(m − 1)∑m
k=1 (1 − h̃+

k )

holds, where

h̃+
k = max

{(
H2(e j)

) 1
w j | H1(e j) = k

}
.

Method-2: Continuous U(0, 1) with m different hash functions

This algorithm, presented in [3], is a maximum likeli-
hood estimator. In addition, a weighted generalization to 
this algorithm is also presented in [3]. The weighted gener-
alization can be directly obtained when the unified scheme 
proposed in this paper is applied to the continuous max 
sketches. Its key properties are:

1. The estimator uses exponential random variables with 
parameter 1. Therefore, according to Table 1, F −1(u) =
− ln u ∼ Exp(1).

2. ProcEstimate(̃h+
1 , ̃h+

2 , . . . , ̃h+
m) = m∑m

k=1 h̃+
k

, where

h̃+
k = max

{− ln
(
hk(xi)

)}
.

3. The ARE of this estimator is 1.00 [2].
4. The storage size is 32 · m bits [2].
5. To generalize this estimator, each hashed value is con-

verted into h̃k(xi) = F −1(G−1
max(hk(xi))) and then Al-

gorithm 4 is applied. Thus, we get that ŵ = m∑m
k=1 h̃+

k

holds, where h̃+
k = max{− ln(hk(xi)

1/w j )}. This gener-
alization is identical to the algorithm presented in [3].

Method-3: HyperLogLog with stochastic averaging

This algorithm, presented in [6], is the best known al-
gorithm for addressing Problem 1 in terms of the tradeoff 
between its ARE and storage size. Its key properties are:

1. The estimator uses geometric random variables with 
success probability 1/2. Therefore, according to Ta-
ble 1, F −1(u) = �− log2 u� ∼ Geom(1/2).

2. ProcEstimate(̃h+
1 , ̃h+

2 , . . . , ̃h+
m) = αmm2∑m

k=1 2−h̃+
k

, where

h̃+
k = max

{⌊− log2
(

H2(xi)
)⌋ ∣∣ H1(xi) = k

}
and

αm =
(

m

∞∫
0

(
log2

(
2 + u

1 + u

))m

du

)−1

.

3. The ARE of this estimator is 0.925 [2].
4. The storage size is 5 · m bits [2].
5. To generalize this estimator, each hashed value is con-

verted into H̃2(xi) = F −1(G−1
max(H2(xi))) and then Al-

gorithm 4 is applied. Thus, we get that

ŵ = αmm2∑m
k=1 2−h̃+

k

holds, where

h̃+
k = max

{⌊− log2
(

H2(e j)
1

w j
)⌋ ∣∣ H1(e j) = k

}
.

In summary, the HyperLogLog algorithm (Method-3), 
which offers the best tradeoff between precision and stor-
age size, can be extended using our unified scheme to 
solve the weighted problem. The extended algorithm is the 
best algorithm for solving the weighted problem, and it is 
therefore the most important practical result of this paper.

7. Conclusion

In this paper we showed how to generalize every car-
dinality estimation algorithm that relies on extreme order 
statistics (min/max sketches) to a weighted version, where 
each item is associated with a weight and the goal is to 
estimate the total sum of weights. The proposed unified 
scheme uses the unweighted estimator as a black box, and 
manipulates the input using properties of the beta distri-
bution. We proved that estimating the weighted sum by 
generalizing an underlying unweighted algorithm using our 
unified scheme is statistically equivalent to estimating the 
unweighted cardinality by the underlying unweighted al-
gorithm.
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